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The Born supremacy: quantum advantage and training
of an Ising Born machine
Brian Coyle 1✉, Daniel Mills 1, Vincent Danos1,2 and Elham Kashefi1,3

The search for an application of near-term quantum devices is widespread. Quantum machine learning is touted as a potential
utilisation of such devices, particularly those out of reach of the simulation capabilities of classical computers. In this work, we study
such an application in generative modelling, focussing on a class of quantum circuits known as Born machines. Specifically, we
define a subset of this class based on Ising Hamiltonians and show that the circuits encountered during gradient-based training
cannot be efficiently sampled from classically up to multiplicative error in the worst case. Our gradient-based training methods use
cost functions known as the Sinkhorn divergence and the Stein discrepancy, which have not previously been used in the gradient-
based training of quantum circuits, and we also introduce quantum kernels to generative modelling. We show that these methods
outperform the previous standard method, which used maximum mean discrepancy (MMD) as a cost function, and achieve this
with minimal overhead. Finally, we discuss the ability of the model to learn hard distributions and provide formal definitions for
‘quantum learning supremacy’. We also exemplify the work of this paper by using generative modelling to perform quantum circuit
compilation.
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INTRODUCTION
As quantum devices with ~80−200 qubits, but without fault
tolerance, begin to be built, we near the dawn of the noisy
intermediate scale quantum (NISQ)1 technology era. Because of
the low number of qubits, the limited connectivity between them,
and the low circuit depth permitted by low decoherence times,
these devices cannot perform many of the most famous
algorithms thought to demonstrate exponential speedups over
classical algorithms2,3.
In spite of this, NISQ devices could provide efficient solutions to

other problems that cannot be solved in polynomial time by
classical means. Showing this to be true is referred to as a
demonstration of quantum computational supremacy4–9, with the
first such experimental realisation occurring recently10.
Proposals for demonstrations of quantum computational

supremacy on NISQ technology typically involve sampling from
the output distribution of random quantum circuits. While a
realisation of such an advantage is of great theoretical importance,
generating random samples is not obviously independently
interesting. We incorporate this sampling into a useful application,
keeping the provable quantum advantage, but in a context with
more practical applicability.
Specifically, we explore generative modelling in quantum

machine learning (QML), which is the task of generalising from a
finite set of samples, {y}M, drawn from a data set. By learning the
underlying probability distribution from which these samples are
drawn, π(y), a model should be able to generate new samples
from the said distribution.
Generative models range from simple naive Bayes11 models to

complicated neural networks, like generative adversarial networks
(GANs)12. The intrinsic randomness inherent in quantum
mechanics allows for the definition of a new class of generative
models that are without a classical analogue. Known as Born
machines13–15, they have the ability to produce statistics

according to Born’s measurement rule. Specifically, for a state
|ψ〉, a measurement produces a sample x ~ p(x)= |〈x|ψ〉|2. There
are several variants, including Bayesian approaches16, adversarial
training methods17, and adaptations to continuous distributions18.
Quantum circuit Born machines (QCBM) are a subclass of

parameterised quantum circuits (PQCs) and are widely applicable
(see ref. 19 for a review). PQCs consist of a quantum circuit which
carries parameters that are updated during a training process
(typically a classical optimisation routine). The circuit is kept as
shallow as possible so as to be suitable for NISQ devices.
We ask in this work whether it is possible to have a machine

learning application for a PQC, which comes with a provable
superior performance over all classical alternatives on near term
devices? Such provable guarantees are even more relevant given
recent work in QML algorithm ‘dequantisations’20–24.
We take the first steps in answering this question in several

ways. We define a subclass of QCBM that we call Ising Born
machines (QCIBM). We improve the training of the model over
previous methods, which use the maximum mean discrepancy14

(MMD) with a classical kernel, by introducing quantum kernels
into the MMD, as well as by using entirely new cost functions: the
Stein discrepancy (SD) and the Sinkhorn divergence (SHD). To do
so, we derive their corresponding gradients in the quantum
setting.
We show that these novel methods outperform the MMD with

classical kernel by achieving a closer fit to the data as measured by
the total variation (TV) distance. We derive forms of the SHD,
which can either be efficient to compute or result in an upper
bound on TV. We observe numerically that the SD provides an
upper bound to TV. Next, we show that sampling from this model
cannot be simulated efficiently by any classical randomised
algorithm, up to multiplicative error in the worst case, subject to
common assumptions in complexity theory (namely the non-collapse
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of the polynomial hierarchy). Furthermore, this holds for many
circuit families encountered during training.
We define a framework in which a provable advantage could be

demonstrated, which we refer to as quantum learning supremacy
(QLS), and based on distribution learning theory25. Based on our
classical sampling hardness results, we conjecture that the QCIBM
may be a good candidate for a quantum model which could
demonstrate this notion of learning supremacy; however, we
leave the further investigation of QLS and its potential to be
achieved by such models to future work. Finally, we provide a
novel utilisation of such generative models in quantum circuit
compilation.

RESULTS
The main results of this work are new efficient gradient-based
training methods and results on the hardness of simulating the
model we introduce using classical computers. First, we define the
model used and discuss its connection to previously studied
quantum circuit families. We then discuss the efficient training of
the model, first recalling a previously known gradient-based
training method, which uses the MMD cost function, and then
moving onto our new training methods, which use the SD and the
SHD. We then discuss the SHD complexity in detail, and further
argue, using its connection to the TV distance, why it should be
used. We then prove the hardness results mentioned above,
namely that many circuits encountered during gradient-based
training are hard to classically simulate, before finally discussing
the potential use of quantum generative models in learning
distributions that are intractable to classical models. In addition,
we provide a framework to study these advantages.

Ising Born machine
Here we define the model we use for distribution learning. A
generic quantum circuit Born machine consists of a parameterised
quantum circuit, which produces samples by measuring the
resulting quantum state, and a classical optimisation loop used to
learn a data distribution. The circuits we study have the following
structure:

ð1Þ

where xi∈ {0, 1}; the unitaries are defined by Eqs. (2) and (3); Sj
indicates the subset of qubits on which each operator, j, is applied;
and a boldface parameter indicates a set of parameters, α= {αj}.

UzðαÞ :¼
Y
j

Uz αj; Sj
� � ¼Y

j

exp iαj �
k2Sj

Zk

� �
(2)

Uf Γ;Δ;Σð Þ:¼ exp i
Xn
k¼1

ΓkXk þ ΔkYk þ ΣkZk

 !
(3)

The operators, Xk, Yk, and Zk, are the standard Pauli operators
acting on qubit k. Restricting to the case |Sj| ≤ 2 (since only single
and two-qubit gates are required for universal quantum
computation), the term in the exponential of Eq. (2) becomes
exactly an Ising Hamiltonian:

H :¼ i
X
i<j

JijZiZj þ i
Xn
k¼1

bkZk ; (4)

where we are dividing the diagonal unitary parameters, α= {Jij,

bk}, into local terms that act only on qubit k, {bk}, and coupling
terms between two qubits i and j, {Jij}. We call the model a QCIBM.
A measurement on all qubits in the computational basis results

in sample vectors, x 2 Xn, where X ¼ f0; 1g. These samples are
drawn from the distribution, pθ(x), parameterised by the set of
angles, θ= {α, Γ, Δ, Σ}:

pθðxÞ :¼ xh jUf Γ;Δ;Σð ÞUzðαÞ þj i�n
�� ��2: (5)

We denote the above model and parameters by QCIBM(θ) :=
QCIBM(α, Γ, Δ, Σ). We choose this structure in order to easily
recover two well-known circuit classes, namely instantaneous
quantum polynomial time26 (IQP) circuits, and the shallowest
depth (p= 1) version of the quantum approximate optimisation
algorithm27 (QAOA).
IQP circuits are named to reflect the commuting nature of

elements in the produce defining the unitary Uz, while QAOA27 was
originally developed as an approximate version of the quantum
adiabatic algorithm28. Both of these classes of circuits are known to
be routes to demonstrate quantum supremacy4,6,8,29, and we extend
this property here by using the results of ref. 30. These classes can be
recovered by setting the parameters of a QCIBM as follows:

IQPðfJij; bkgÞ ¼ QCIBM fJij ; bkg; Γ ¼ π

2
ffiffiffi
2
p

� 	
; 0;Σ ¼ π

2
ffiffiffi
2
p

� 	� �
;

(6)

QAOAp¼1ðfJij ; bkg; ΓÞ ¼ QCIBM fJij ; bkg; Γ ¼ �Γ; 0; 0
� �

: (7)

We denote, for example π
2
ffiffi
2
p

n o
, to be all parameters of the n single

qubit gates set to the same value, π=2
ffiffiffi
2
p

. We choose the final gate
before the computational basis measurement to be in the form of
Eq. (3), rather than the more common Euler decomposition of a
single qubit gate decomposition found in the literature14,16. This is
chosen to make the classical simulation hardness results more
apparent in our proofs.
To recover IQP circuits, we simply need to generate the final

layer of Hadamard gates (up to a global phase) and do so by
setting Uf in Eq. (3) as follows:

UIQP
f

π

2
ffiffiffi
2
p

� 	
; 0;

π

2
ffiffiffi
2
p

� 	� �
¼ �n

k¼1
e

iπ
2
ffiffi
2
p XkþZkð Þ ¼ iH�n: (8)

To recreate depth 1 QAOA circuits, we need to set the Pauli Z and
Y parameters, Δ, Σ= 0, since the final gates should be a product of
Pauli-X rotations with parameters, −Γ.

Training the Ising Born machine
Here we introduce the alternative training methods that we use
for our purposes and that would be applicable to any generative
model. The training procedure is a hybrid of classical and
quantum computation, with the only quantum component being
the model itself. The remainder of the computation is classical,
bringing our scheme into the realm of what is possible for NISQ
devices. The procedure can be seen in Fig. 1.
The optimisation procedures we implement are stochastic

gradient descents. Parameters, θk, are updated at each epoch of
training, d, according to the rule θdþ1k  θdk � η ∂θkLB. The
parameter η is the learning rate and controls the speed of the
descent. The initial proposals to train QCBMs were gradient-
free15,31, but gradient-based methods have also been pro-
posed14,16,32. In this work, we advocate for increasing the classical
computational power required in training to achieve better
performance, rather than increasing the quantum resources, for
example by adding extra ancillae16 or adding costly and
potentially unstable (quantum) adversaries17,33,34.
For gradient-based methods, a cost function or metric is

required, LB pθðxÞ; πðyÞð Þ to compare the Born Machine distribu-
tion, pθ(x), and the data distribution, π(y). Good cost functions will

B. Coyle et al.

2

npj Quantum Information (2020)    60 Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;



have several characteristics. They should be efficient to compute,
measured both by sample and computational complexity. They
should also be powerful in the sense that they are sensitive to
differences between the two distributions. In this work, we will
assess sensitivity by using the TV metric as a benchmark:

TVðpθ; πÞ :¼ 1
2

X
x

jpθðxÞ � πðxÞj: (9)

As discussed later, this is a particularly strong metric. The cost
functions we use are typically easier to deal with than TV, and we
will remark on their relationship to TV.
One cost function commonly used to train generative models is

the Kullback–Leibler (KL) divergence. The KL divergence is also
relatively strong, in the sense that it upper bounds TV through
Pinsker’s inequality:

TVðpθ; πÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
DKLðpθjjπÞ

r
; (10)

where DKL(pθ||π) is the KL divergence of π from pθ. Unfortunately,
it is difficult to compute, having a high sample complexity, so
neither its gradient nor the KL divergence itself can be evaluated
efficiently when training parameterised circuits14.
The first efficient gradient method to train Born machines was

proposed by ref. 14. There the MMD is used to define the cost
function. We extend this methodology in two ways. The first is an
alteration to the MMD itself, and the second is by introducing new
cost functions. From the MMD, the following cost function35,36 can
be defined:

LMMD :¼ E
x�pθ
y�p

θ

ðκðx; yÞÞ þ E
x�π
y�π
ðκðx; yÞÞ � 2 E

x�pθ
y�π
ðκðx; yÞÞ: (11)

The MMD has some very favourable properties; it is a metric on
the space of probability distributions, and it is relatively easy to
compute (due to low sample complexity). The function, κ in Eq.
(11) is a kernel function, a measure of similarity between points in
the sample space x 2 Xn. A popular choice for this function is the
Gaussian mixture kernel14:

κGðx; yÞ :¼ 1
c

Xc
i¼1

exp � jjx� yjj22
2σi

 !
: (12)

The parameters, σi, are bandwidths that determine the scale at
which the samples are compared, and ||⋅||2 is the ‘2 norm.
Recent works37,38 on the near term advantage of using

quantum computers in QML have explored quantum kernels,
which can be evaluated on a quantum computer. To gain such an

advantage, these kernels should be difficult to compute on a
classical device. In particular, we will adopt the following kernel37

in which the samples are encoded in a quantum state, |ϕ(x)〉, via a
feature map, ϕ:x→ |ϕ(x)〉. The kernel is the inner product between
vectors:

κQðx; yÞ :¼ j ϕðxÞjϕðyÞh ij2: (13)

The inner product in Eq. (13) is evaluated on a quantum computer
and is conjectured to be hard to compute on a classical one37,
given only a classical description of the quantum states. The state
|ϕ(x)〉 is produced by acting an encoding unitary on an initial state,
ϕðxÞj i ¼ UϕðxÞ 0j i�n. Explicitly, the kernel is then given by:

κQðx; yÞ ¼ 0�nh jUyϕðxÞUϕðyÞ 0�nj i
��� ���2; (14)

which can be calculated by measuring, in the computational basis,
the state which results from running the circuit given by UϕðyÞ,
followed by that of UyϕðxÞ . This is seen in Fig. 1. The kernel, Eq. (14),
is the observed probability of measuring the all-zero outcome, 0n.
If this outcome is not observed after polynomially many
measurements, the value of the kernel for this particular pair of
samples (x, y) is set to zero. Intuitively, this means the feature map
has mapped the original points to points with at most
exponentially small overlap in the Hilbert space and therefore
will not contribute to the MMD.
It is also necessary to derive an expression for the gradient of

the cost function. For the MMD, the gradient with respect to the
kth parameter14, carried by the kth unitary gate, Uk(θk), is given by:

∂LMMD

∂θk
¼ 2E

a�p�
θk

x�p
θ

ðκða; xÞÞ � 2E
b�pþ

θk
x�pθ

ðκðb; xÞÞ � 2E
a�p�

θk
y�π

ðκða; yÞÞ þ 2E
b�pþ

θk
y�π

ðκðb; yÞÞ;

(15)

where p±
θk

are output distributions generated by running the
following auxiliary circuits39,40 for each unitary gate, Uk(θk):

ð16Þ

where θ±
k :¼ θk ± π=2 and Ul:m := UlUl+1…Um−1Um are the unitary

gates in the Born machine. This gradient occurs because the form
of the unitary gates in our case are exponentiated Pauli operators
Uk(θk)= exp(iθkΣk), with Σ2k ¼ I. With the unitaries in this form, the
gradient of the probabilities outputted from the parameterised

Fig. 1 The hybrid training procedures we propose in this work.We have a quantum generator along with auxiliary circuits used to compute
the gradient of the various cost functions with respect to the parameters. The training procedure proceeds as follows. First, the QCIBM is
sampled from N times via measurements. These samples, along with M data samples y ~ π(y), are used to evaluate a cost function, LB, where
B∈ {MMD, SD, SHD} is one of the efficiently computable cost functions. For each updated parameter, θk, two parameter-shifted circuits are also
ran to generate samples, a, b ~ pθ±, which are used to compute the corresponding gradients, ∂θLB. For all costs functions and gradients, either
a kernel (if a quantum kernel is used, the circuit in this figure must be run) is computed for each pair of samples (as is the case for MMD and
SD) or an optimal transport cost function is evaluated (as is the case for SHD).
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state, with respect to a parameter θ, is given by14,40:

∂pθðzÞ
∂θk

¼ p�θk ðzÞ � pþθk ðzÞ: (17)

There is a slight difference between Eq. (17) and that of ref. 14, due
to a different parameterisation of the unitaries above.
The gradients of the cost functions which we introduce next will

also require the parameter-shifted circuits in Eq. (16). For more
details on kernel methods and the MMD, see Supplementary
Material Section II.

SD training
So far, we have only proposed a change of kernel in the MMD
method of training QCIBMs. We now consider changing the cost
function altogether. We endeavour to find costs which are
efficient to compute for quantum models, yet stronger than MMD.
The first cost we propose is called the SD. SD has become

popular for goodness-of-fit tests41, i.e. testing whether samples
come from a particular distribution or not, as opposed to the
MMD, which is typically used for kernel two-sample tests36. This
discrepancy is based on Stein’s method42, which is a way to bound
distance metrics between probabilities including, for example, the
other integral probability metrics (IPM) we utilise in this work. For
details on IPMs, see Supplementary Material Section I.
We use the discrete version of the SD43 since, in its original

form41, it only caters for the case where the distributions are
supported over a continuous space. The discretisation is necessary
since the QCIBM outputs binary strings and so the standard
gradient w.r.t. a sample, x, ∇x, is undefined. As such, we need to
use a discrete ‘shift’ operator, Δx, instead, which is an operator
defined by [Δxf(x)]i := f(x)− f(¬ix) for a function f, where ¬i flips
the ith element of the binary vector x.
Fortunately, the discretisation procedure is relatively straightfor-

ward (the necessary definitions and proofs can be found in
Supplementary Material Section III). The discrepancy is derived41,44

from the (discrete) Stein identity43, given by:

E
x�π½AπϕðxÞ� ¼ E

x�π sπðxÞϕðxÞ � ΔxϕðxÞ½ � ¼ 0; (18)

AπϕðxÞ :¼ sπðxÞϕðxÞ � ΔxϕðxÞ; (19)

where E
x�π denotes the expectation value over the distribution, π.

This holds for any function ϕ : Xn ! C and probability mass
function π on Xn. The function sπ(x)= Δx log(π(x)) is the Stein
score function of the distribution π, and Aπ is a so-called Stein
operator of π. Now, the SD cost function can be written in a
kernelised form41,43, similarly to the MMD:

LSDðpθ; πÞ :¼ Ex;y�pθ κπðx; yÞ½ �; (20)

κπðx; yÞ :¼ sπðxÞTκðx; yÞsπðyÞ � sπðxÞTΔ�yκðx; yÞ
�Δ�xκðx; yÞT sπðyÞ þ trðΔ�x;yκðx; yÞÞ;

(21)

where κπ is the Stein kernel and κ is a usual positive semi-definite
kernel. Δ�x is a conjugate version of the operator Δx, but for our
purposes, the behaviour of both Δ�x and Δx are identical. For
completeness, we define it in generality in Supplementary
Material Section III.
Just as above, the gradient (derived in an identical fashion to

the MMD gradient Eq. (15) as is detailed in Supplementary
Material Section III) of LSD with respect to the parameter, θk, is
given by:

∂LSD

∂θk
¼ E

x�p�
θ

y�p
θ

½κπðx; yÞ� � E
x�pþ

θ
y�pθ

½κπðx; yÞ� � E
x�pθ
y�p�

θ

½κπðx; yÞ� � E
x�pθ
y�pþ

θ

½κπðx; yÞ�:

(22)

We show that almost every term in Eqs. (20) and (22) can be

computed efficiently, even when the quantum kernel κQ from Eq.
(13) is used in Eq. (21), that is, with the exception of the score
function sπ with respect to the data distribution. The score
contains an explicit dependence on the data distribution, π. If we
are given oracle access to the probabilities, π(y), then there is no
issue and SD will be computable. Unfortunately, in any practical
application this will not be the case.
To deal with such a scenario, we give two approaches to

approximate the score via samples from π. The first of these we
call the ‘Identity’ method since it inverts Stein’s identity45 from Eq.
(18). We refer to the second as the ‘Spectral’method since it uses a
spectral decomposition46 of a kernel to approximate the score.
The latter approach uses the Nyström method47, which is a
technique used to approximately solve integral equations. We will
only use the Spectral method in training the QCIBM in the
numerical results in Fig. 3, since the Identity method does not give
an immediate out-of-sample method to compute the score.
Details of these methods can be found in Supplementary Material
Section III.
Notice that, even with the difficulty in computing the score, the

SD is still more suitable for training these models than the KL
divergence as the latter requires computing the circuit probabil-
ities, pθ(x), which is in general intractable, and so could not be
computed for any data set.

SHD training
The second cost function we consider is the so-called SHD. This is
a relatively new method to compare probability distributions48–50,
defined by the following:

Lϵ
SHDðpθ; πÞ :¼ OTcϵðpθ; πÞ �

1
2
OTcϵðpθ; pθÞ �

1
2
OTcϵðπ; πÞ; (23)

OTcϵðpθ; πÞ :¼ min
U2Uðpθ;πÞ

X
ðx;yÞ

2Xd ´Yd

cðx; yÞUðx; yÞ þ ϵKLðUjpθ � πÞ

0
B@

1
CA;

(24)

where ϵ � 0 is a regularisation parameter, c(x, y) is a Lipschitz ‘cost’
function, and Uðp; πÞ is the set of all couplings between pθ and π,
i.e. the set of all joint distributions, whose marginals with respect
to x and y are pθ(x) and π(y), respectively. The above cost function,
LϵSHD, is particularly favourable as a candidate because of its
relationship to the theory of optimal transport51 (OT), a method to
compare probability distributions. It has become a major tool used
to train models in the classical domain, for example with GANs52

through a restriction of OT called the Wasserstein metric, which is
derived from OT, when the cost (c(x, y)) is chosen to be a metric
on the space of Xn.
We would like to use OT itself to train generative models, due to

its metric properties. Unfortunately, OT has high computational
cost and exponential sample complexity53. For this reason, the
SHD was proposed in refs 48–50 to interpolate between OT and the
MMD as a function of the regularisation parameter ϵ in Eq. (24). In
particular, for the two extreme values of ϵ, we recover48 both
unregularised OT and the MMD:

! 0 :

L0SHDðpθ; πÞ ! OTc0ðpθ; πÞ
: (25)

ϵ!1 :

LϵSHDðpθ; πÞ ! MMDðpθ; πÞ : κðx; yÞ ¼ �cðx; yÞ
: (26)

As before, we need a gradient of the Lϵ
SHD with respect to the

parameters, which is given by:

∂Lϵ
SHDðpθ; πÞ
∂θk

¼ E
x�pθ�

k

½φðxÞ� � E
x�p

θþ
k

½φðxÞ�; (27)
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where φ(x) is a function that depends on the optimal solutions
found to the regularised OT problem in Eq. (24). See Supplemen-
tary Material Section IV for more details on the SHD and its
gradient.

Sinkhorn complexity
The sample complexity of the SHD is of great interest to us as we
claim that the TV and the KL are not suitable to be directly used as
cost functions. This is due to the difficulty of computing the
outcome probabilities of quantum circuits efficiently. We now
analyse why the MMD is a weak cost function and why the SHD
should be used as an alternative. This will depend critically on the
regularisation parameter ϵ, which allows a smooth interpolation
between the OT metric and the MMD.
First, we address the computability of LϵSHD and we find, due to

the results of ref. 54, a somewhat ‘optimal’ value for ϵ, for which
the sample complexity of LSHD becomes efficient. Specifically, the
mean error between LSHD and its approximation L̂ϵ

SHD for n qubits,
computed using M samples, scales as:

EjLϵSHD � L̂ϵ
SHDj ¼ O

1ffiffiffiffi
M
p 1þ e 2n

2þn
ϵ

� �� �
1þ 1

ϵ n=2b c

� �� �
: (28)

We show in Supplementary Material Section IV.1 that by choosing
ϵ ¼ Oðn2Þ, we get:

EjLOðn2ÞSHD � L̂Oðn
2Þ

SHD j ¼ O
1ffiffiffiffi
M
p
� �

; (29)

which is the same sample complexity as the MMD55 but
exponentially better than that of unregularised OT, which scales
as O 1=M1=n

� �53.
A similar result can be derived using a concentration bound54,

such that, with probability 1− δ,

jLOðn2ÞSHD � L̂Oðn
2Þ

SHD j ¼ O
nffiffiffiffi
M
p logð1=δÞ1=2
� �

; (30)

where we have chosen the same scaling for ϵ as in Eq. (29).
Therefore, we can choose an optimal theoretical value for the
regularisation, such that LSHD is sufficiently far from OT to be
efficiently computable but perhaps still retains some of its
favourable properties. It is likely in practice, however, that a much
lower value of ϵ could be chosen without a blow up in sample
complexity49,54. See Supplementary Material Section IV for
derivations of the above results.
Second, we can relate the LSHD to unregularised OT and TV via a

sequence of inequalities. We have mentioned that the MMD is
weak, meaning it provides a lower bound on TV in the following
way55:

TVðpθ; πÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MMDðpθ; πÞ

p
ffiffiffi
C
p ; (31)

if C :¼ supx2Xnκðx; xÞ<1.
Note that for the two kernels introduced earlier:

κGðx; xÞ ¼ 1
c

X
c

e�
1
2σi
jx�xj2 ¼ 1

c
ðcÞ ¼ 1; (32)

κQðx; xÞ ¼ j ϕðxÞjϕðxÞh ij2 ¼ j 0j0h i�nj2 ¼ 1; (33)

hence C= 1 and the lower bound is immediate.
In contrast, as is seen from the inequality on a discrete sample

space in Eq. (34)56, the Wasserstein metric (unregularised OT)
provides an upper bound on TV, and hence we would expect it to
be stronger than the MMD.

dminTVðpθ; πÞ � OTd0ðpθ; πÞ � diamðXÞTVðpθ; πÞ; (34)

where diamðXnÞ ¼ maxfdðx; yÞ; x; y 2 Xng, dmin=minx≠y d(x, y),
and d(x, y) is the metric on the space, Xn. This arises by choosing

c= d and ϵ ¼ 0 in Eq. (24). If, for instance, we were to choose d(x,
y) to be the ‘1 metric between the binary vectors of length n (a.k.a.
the Hamming distance), then we get that dmin ¼ 1;diamðXÞ ¼ n,
and so:

TVðpθ; πÞ � OT‘10 ðpθ; πÞ � n TVðpθ; πÞ: (35)

Finally, we can examine the relationship induced by the
regularisation parameter through the following inequality; Theo-
rem 1 in ref. 54:

0 � OTcϵðpθ; πÞ � OTc0ðpθ; πÞ � 2ϵlog
e2LD
nϵ

� �
�ϵ!0 2ϵ log 1=ϵð Þ;

(36)

where the size of the sample space is bounded by D, as measured
by the metric, and L is the Lipschitz constant of the cost c. As
detailed in Supplementary Material Section IV.1, we can choose
D= n and L= n:

0 � OT‘1ϵ ðpθ; πÞ � OT‘10 ðpθ; πÞ � 2ϵ log
e2n
ϵ

� �
: (37)

The log term will be positive as long as ϵ � ne2, in which case
regularised OT will give an upper bound for the Wasserstein
metric, and hence the TV through Eq. (34), so we arrive at:

TVðpθ; πÞ � OT‘10 ðpθ; πÞ � OT‘1ϵ�ne2 : (38)

Unfortunately, comparing this with Eqs. (29) and (30), we can see
that, with this scaling of ϵ, the sample complexity would pick up
an exponential dependence on the dimension, n, so it would not
be efficiently computable. We comment further on this point later.

Numerical performance
In Figs 2–4, we illustrate the superior performance of our
alternative training methods, as measured by the TV distance. A
lower TV indicates that the model is able to learn parameters
which fit the true data more closely. TV was chosen as an objective
benchmark for several reasons. First, it is typically the notion of
distance that is required by quantum supremacy experiments
where one wants to prove hardness of classical simulation.
Second, we use it in the definitions of QLS. Finally, it is one of the
strongest notions of convergence in probability one can ask for, so
it follows that a training procedure that can more effectively
minimise TV, in an efficient way, should be better for generative
modelling.
We train the model on Rigetti’s Forest platform57 using both a

simulator and the real quantum hardware, the Aspen QPU. Figure
2 illustrates the training of the model using the Gaussian (Eq. (12))
vs. the quantum kernel (Eq. (13)) for 4 qubits, and we see that the
quantum kernel offers no significant advantage vs. training with a
purely classical one. Figure 2a shows the TV as trained for 200
epochs, using both the classical and quantum kernels with various
learning rates. Figure 2b shows the learned probabilities out-
putted after training with each kernel, and Fig. 2c shows the
difference in the actual LMMD itself while training with both
methods. Interestingly, the latter behaviour is quite different for
both kernels, with the quantum kernel initialising with much
higher values of LMMD, whereas they both minimise TV in
qualitatively the same way. This indicates that hardness of
classical simulation (of computing the kernel) does not imply an
advantage in learning.
On the other hand, a noticeable outperformance is observed for

the SHD and the SD relative to training with the MMD (using a
Gaussian kernel), as measured by TV in Fig. 3. Furthermore, we
observed that the gap (highlighted in the inset in Fig. 3a) which
separates the SHD and SD (red and blue lines) from the MMD
(green, yellow, and cyan lines) grows as the number of qubits
grows. Unfortunately, the Spectral method to approximate the

B. Coyle et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2020)    60 



Stein score does not outperform the MMD, despite training
successfully. The discrepancy between the true and approximate
versions of the Stein score is likely due to the low number of
samples used to approximate the score, with the number of
samples limited by the computational inefficiency. We leave

tuning the hyperparameters of the model in order to get better
performance to future work.
This behaviour is shown to persist on the QPU, Fig. 4, where we

show training of the model with both the MMD and SHD relative
to TV, (Fig. 4a), the learned probabilities of both methods on, and

Fig. 3 MMD (cyan, yellow, green) vs. Sinkhorn (blue) and Stein training with Exact score function (red) and Spectral score method
(magenta) for 3 qubits with fully connected topology on the Rigetti 3q−qvm, trained on the data, Eq. (44). Five hundred data points
are used for training, with 400 used as a training set and 100 used as a test set. Plots show mean, maximum, and minimum values achieved
over five independent training runs on the same data set. a TV difference between training methods, with regularisation parameter for SHD
and 3 eigenvectors for Spectral Stein method. Both Sinkhorn divergence and Stein discrepancy are able to achieve a lower TV than the MMD.
Inset shows region of outperformance on the order of ~0.01 in TV. We observe that the Spectral score method was not able to minimise TV as
well as the exact Stein discrepancy, potentially indicating the need for better approximation methods. b Final learned probabilities of each
training method. See Supplementary Material Section V for behaviour of corresponding cost functions.

Fig. 4 MMD (green, yellow) vs. Sinkhorn (blue, cyan) for 4 qubits comparing performance on the real QPU (Aspen–4–4Q–A) vs. simulated
behaviour on QVM (Aspen–4–4Q–A–qvm) using 500 samples and a batch size of 250, learning target data (black), and a initial learning
rate for Adam as ηinit= 0.01. a TV difference between training methods with regularisation parameter ϵ ¼ 0:08. b Final learned probabilities
(black) indicates the probabilities of a random instance of the data distribution (see ‘Methods’) chosen. The probabilities given by the other
bars are those achieved after training the model with either the MMD or SHD on the simulator or the physical Rigetti chip, on an average run.
The probabilities of the model are generated by simulating the entire wavefunction after training. c L0:08SHD on QVM (cyan) vs. QPU (blue).
d LMMD on QVM (yellow) vs. QPU (green). In both latter cases, trained model performance on 100 test samples is seen as the thin lines without
markers. Again it can be seen that the Sinkhorn divergence outperforms the MMD both simulated and on chip, with the deviation apparent
towards the end of training. Similar behaviour observed after 100 epochs but not shown due to limited QPU time.

Fig. 2 The performance of the quantum kernel κQ (red) vs. the Gaussian kernel, κG (blue) (with ηinit= 0.1) for 4 qubits. During training, we
sample from the QCIBM and the data 500 times and use a minibatch size of 250. One epoch is one complete update of all parameters
according to gradient descent. Error bars represent maximum, minimum, and mean values achieved over five independent training runs, with
the same initial conditions on the same data samples. a TV difference achieved with both kernel methods during training. No observable or
obvious advantage is seen in using the quantum kernel over the Gaussian one; in contrast, the Gaussian kernel seems to perform better on
average. b Final learned probabilities with ηinit= 0.01 using the Adam optimiser. c MMD computed using 400 samples as training points and
100 as test points (seen as the thin lines without markers), independent of the training data.
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off, the QPU (Fig. 4b), and the behaviour of the cost functions
associated with both methods (Fig. 4c, d). This reinforces our
theoretical argument that the SHD is able to better minimise TV to
achieve superior results.
Given the performance noted above, we would recommend the

SHD as the primary candidate for future training of these models,
due to its simplicity and competitive performance. One should also
note that we do not attempt to learn these data distributions
exactly since we use a shallow fixed circuit structure for training (i.e.
a QAOA circuit), which we do not alter. Better fits to the data could
likely be achieved with deeper circuits with more parameters.
For extra numerical result demonstrating the performance of the

learning algorithms, see Supplementary Material Section V, includ-
ing a comparison between the quantum and Gaussian kernels for
two qubits, similar to Fig. 2; the behaviour of the corresponding cost
functions themselves associated with Fig. 3; the performance of the
model for 4 qubits, similar to Fig. 3; and the results using a 3 qubit
device, the Aspen–4–3Q–A. In all cases, the performance was
qualitatively similar to that reported in the main text.

Hardness and quantum advantage
It is crucially important, not just for our purposes but for the
design of QML algorithms in general, that the algorithm itself is
providing some advantage over any classical one for the same
task. This is the case for so-called coherent algorithms, like the
HHL linear equation solver3, which is BQP-complete, and therefore
unlikely to be fully dequantised. However, such a proven
advantage for near term QML algorithms is yet out of reach. We
attempt to address such a question in two steps.

1. We show that, for a large number of parameter values, θ,
our QCIBM circuits are ‘hard’. That is to say, it cannot be
efficiently simulated classically up to a multiplicative error, in
the worst case. We also show that this holds for the auxiliary
quantum circuits used for the gradient estimation, and
hence the model may remain hard during training (although
we do not know for sure).

2. We provide formal definitions for QLS, the ability of a
quantummodel to provably outperform all classical models in
a certain task, and a potential pathway to prove such a thing.

The intuition behind point 2 is the following. If our QCIBM
model could learn a target distribution π, which demonstrates
quantum supremacy, by providing a quantum circuit C close
enough to π (i.e. below a threshold error in TV), then the model
would have demonstrated something that is classically infeasible.
Else there would exist an efficient classical algorithm that can get
close to π, which contradicts hardness.
Point 1 does not completely fit that intuition. For one thing,

hardness is not known to hold for the required notion of additive
error (i.e. TV distance) but only for multiplicative error. Also, even
though the model is more expressive than any classical model16,
this does not imply that it could actually learn a hard distribution.
On the other hand, it is easy to see why the converse would be
true, if the QCIBM could learn a distribution that is hard to sample
from classically, the underlying circuit must have, at some point,
reached a circuit configuration for which the output distribution is
hard to classically sample.
We can address point 1 informally (see Supplementary Material

Section VI for the formal statements and proof) in three steps:

● If the parameters of the model are initialised randomly in
fαg ¼ fJij; bkg 2 f0; π8 ; ¼ ; 7π8 g and final measurement angles
are chosen such that Uf(Γ, Δ, Σ)= H⊗n, then the resulting
QCIBM circuit class will be hard to simulate up to an additive
error of 1/384 in TV distance, subject to a conjecture relating
to the hardness of computing the Ising partition function6.

● If certain configurations of the parameters are chosen to be

either of the form, (2l+ 1)π/kd, where l and d are integers and
k is a number that depends on the circuit family, or in the form
2πν, where ν is irrational, then the resulting class of circuits will
be hard to sample from classically, up to a multiplicative error,
in the worst case.

● The circuits produced at each epoch as a result of the gradient
updates will each result in a hard circuit class as long as the
gradient updates are not chosen carelessly. In each epoch, if
the update step is constrained in a way that the new value of
the parameter θdþ1k ¼ θdk � η∂θkLB does not become rational,
then the updated circuits will also belong to a class that is
hard to simulate (a similar result can be shown for the case
where the parameters are updated to keep within the form of
(2l+ 1)π/kd). This is because the updates can simply be
absorbed into the original gates, to give a circuit which has
the same form. This holds also for the gradient-shifted circuits
in Eq. (16) since these correspond to circuits whose
parameters are updated as follows: θd;±k  θdk ± π=2.

We now provide definitions to meet the requirements of point
2, adapting definitions from distribution learning theory25 for this
purpose. Specifically, we say that a generative QML algorithm,
A 2 BQP (with a small abuse of notation) has demonstrated QLS if
there exists a class of probability distributions Dn over Xn (bit
vectors of length n), for which there exists a metric d and a fixed ϵ
such that Dn is ðd; ϵ; BQPÞ-learnable via A but not
d; ϵ; BPPð Þ-learnable (i.e. learnable by a purely classical algorithm).
The task of the learning algorithm A is, given a target distribution
D 2 Dn, to output, with high probability, a Generator, GEND′, for a
distribution D′, such that D′ is close to D 2 Dn with respect to the
metric d. For the precise definitions of learnability we employ, see
Supplementary Material Section VII.
This framework is very similar to that of, and inspired by,

probably approximately correct (PAC) learning, which has been
well studied in the quantum case58 but it applies more closely to
the task of generative modelling. It is known that, in certain cases,
the use of quantum computers can be beneficial to PAC learning
but not generically59. Based on this, it is possible that there exist
some classes of distributions that cannot be efficiently learned by
classical computers (BPP algorithms) but that could be learned by
quantum devices (BPQ algorithms). The motivation for this is
exactly rooted in the question of quantum supremacy and
illustrated crudely in Fig. 5b.
An initial attempt at QLS is as follows. As mentioned above, if

random IQP circuits could be classically simulated to within a TV
error of ϵ ¼ 1=3846 in the worst case (with high probability over
the choice of circuit), this would imply unlikely consequences for
complexity theory. Now, if a generative quantum model was able
to achieve a closeness in TV less than this constant value, perhaps
by minimising one of the upper bounds in Eq. (38), then we could
claim that this model had achieved something classically
intractable. For example, if we make the following assumptions,

1. QCIBM could achieve a TV < δ to a target IQP distribution.
2. A classical probabilistic algorithm, C, could output a

distribution q in polynomial time which was γ close in TV
to the QCIBM, i.e. it could simulate it efficiently.Then

TVðpIQP; qÞ ¼ 1
2

X
x

jpIQPðxÞ � qðxÞj (39)

¼ 1
2

X
x

jpIQPðxÞ � pθðxÞ þ pθðxÞ � qðxÞj (40)

� 1
2

X
x

jpIQPðxÞ � pθðxÞj þ 1
2

X
x

jpθðxÞ � qðxÞj (41)

� δþ γ 	 ϵ; (42)
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where the third line follows from the triangle inequality. Therefore,
C could simulate an IQP distribution also, and we arrive at a
contradiction.
The major open question left by this work is whether QLS is

possible at all; can a quantum model outperform all classical ones
in generative learning? This idea motivated our search for metrics
that upper bound TV but yet were efficiently computable and
therefore could be minimised to efficiently learn distributions to a
sufficiently small value of TV. Unfortunately, we can see from the
exponential scaling observed in Eq. (38), which gives the upper
bound on TV by regularised OT, that SHD will not provably achieve
this particular task, despite achieving our primary goal of being
stronger than the MMD for generative modelling. We briefly
discuss avenues of future research in the ‘Discussion’ section,
which could provide alternative routes to QLS.

Quantum compiling
As a concrete application of such a model outside the scope of
classical generative modelling, we can use the QCIBM training to
perform a type of ‘weak’ quantum circuit compilation. There are
potentially other areas that could be studied using these tools or
by applying techniques in generative modelling to other quantum
information processing tasks, but this is beyond the scope of
this work.
The major objective in this area is to compile a given target

unitary, U, into one that consists exclusively of operations available
to the native hardware of the quantum computer in question. For
example, in the case of Rigetti’s Aspen QPU, the native gates are
{Rx(±π/2), Rz(θ), CZ}

57,60, and any unitary which a user wishes to
implement must be compiled into a unitary V that contains only
these ingredients.
Potential solutions to this problem60,61 involve approximating

the target unitary by assuming that V is a parametric circuit built

from the native gates, which can be trained by some optimisation
strategy. We adopt a similar view here, but we do not require any
extra quantum resources to perform the compilation. With this
limitation, we make a trade-off in that we are not guaranteed to
apply the same target unitary, only that the output distribution
will be close to that produced by the target. Clearly this is a much
weaker constraint than the task of direct compilation, since many
unitaries may give rise to the same distribution, but it is much
closer to the capabilities of near term devices. To illustrate this
application, we train an QCIBM to learn the output distribution of
a random IQP circuit when restricted to a QAOA architecture itself
using LSHD as a cost function. The process is illustrated in Eq. (43),
where we try to determine suitable QAOA parameters,
fJQAOAij ; bQAOAk g, which reproduce the distribution observed from
a set of random IQP parameters, fJIQPij ; bIQPk g.
QCIBM JQAOAij ; bQAOAk

n o
; Γk ¼ π

4


 �
; 0; 0

� 

!Compile
QCIBM JIQPij ; bIQPk

n o
; Γk ¼ π

2
ffiffi
2
p

n o
; 0; Σk ¼ π

2
ffiffi
2
p

n o� 
:

(43)

The measurement unitary at the end of the circuit makes this
process non-trivial, since this will give rise to significantly different
distributions, even given the same parameters in Uz. We illustrate
this in Fig. 6 using the Rigetti 2q–qvm and for three qubits in
Supplementary Material Section V. We find that, even though the
learned parameter values are different from the target, the
resulting distributions are quite similar, as expected.

DISCUSSION
Providing provable guarantees of the superior performance of
near term quantum computers relative to any classical device for
some particular non-trivial application is an important milestone
of the field. We have shown one potential route towards this goal

Fig. 6 Automatic compilation of IQP circuit to a p= 1 QAOA circuit with two qubits using Lϵ
SHD with ϵ ¼ 0:1. Five hundred data samples

were used with 400 used for a training set and 100 used as a test set. QCIBM circuit is able to mimic the target distribution well, even though
actual parameter values and circuit families are different. Error bars represent mean, maximum, and minimum values achieved over five
independent training runs on the same data set. a Initial (cyan) and trained (grey) QAOA circuit parameters for two qubits. Target IQP circuit
parameters (green). Parameter values scaled by a factor of 10 for readability. b Final learned probabilities of QCIBM (QAOA) (blue) circuit vs.
‘data’ probabilities (IQP) (black). c Total variation distance and d Sinkhorn divergence for 400 training samples and 100 test samples, using a
Hamming optimal transport cost.

Fig. 5 Quantum learning supremacy in distribution learning. a Illustration of a learning procedure using a Generator. The algorithm A is
given access to GEND, which provides samples, x~D, and must output a Generator for a distribution that is close to the original. We allow the
target generator to be classical, hence it may take as input a string of random bits of size polynomial in n, r(n), if not able to generate its own
randomness. b Crude illustration of quantum learning supremacy. No classical algorithm, Ci, should be able to achieve the required closeness
in total variation to the target distribution, but the QCIBM (or similar) should be able to, for some class of target distributions. There should be
some path in the parameter space of the QCIBM, θ, which achieves this.
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by combining complexity–theoretic arguments4,7,9, with an
application in generative machine learning14–16,62, and improved
training methods of generative models. Specifically, we intro-
duced the Ising Born machine, a restricted form of a quantum
circuit Born machine. These models utilise the Born rule of
quantum mechanics to train a parameterised quantum circuit as a
generative machine learning model, in a hybrid manner.
We proved that the model cannot be simulated efficiently by

any classical algorithm up to a multiplicative error in the output
probabilities, which holds for many circuit families that may be
encountered during gradient-based training. As such, this type of
model is a good candidate for a provable quantum advantage in
QML using NISQ devices. To formalise this intuition, we defined a
notion of QLS to rigorously define what such an advantage would
look like, in the context of machine learning.
We adapted novel training methods for generative modelling in

two ways. First, by introducing quantum kernels to be evaluated
on the quantum hardware and, second, by proposing and
adapting new cost functions. In the case of SHD, we discussed
its sample complexity and used this to define a somewhat optimal
cost function through a judicious choice of the regularisation
parameter. It is possible to choose this parameter such that the
cost is efficiently computable even as the number of qubits grows.
We showed numerically that these methods have the ability to
outperform previous methods in the random data set we used as
a test case.
Finally, we demonstrated an application of the model as a

heuristic compiler to compile one quantum circuit into another via
classical optimisation techniques, which has the advantage of
requiring minimal quantum overhead. These techniques could
potentially be adapted into methods to benchmark and verify
near term quantum devices.
The major question that this work raises is whether or not a

provable notion of quantum learning could be achievable for a
particular data set, thereby solidifying a use case for quantum
computers in the near term with provable advantage. The best
prospect for this is the quantum supremacy distributions we know
of (for example, IQP), but they are not efficiently testable63. Owing
to this, they are also likely to not be efficiently learnable either,
given the close relationship between distribution testing and
learning64. Furthermore, we can see from the exponential scaling
required in Eq. (38) for regularised OT to upper bound TV that
other techniques are necessary to achieve QLS, since the methods
we present here are not suited to this particular task, despite
achieving our goal of being stronger than the MMD for generative
modelling. However, this assumes that we have access only to
classical samples from the distribution, and the possibility of
gaining an advantage using quantum samples38,58 is unexplored
in the context of distribution learning.

METHODS
In this section, we detail the methods used to train the QCIBM to
reproduce a given probability distribution. The target distribution is the
one given by Eq. (44), which is used in both refs 65,66 to train versions of the
quantum Boltzmann machine:

πðyÞ :¼ 1
T

XT
k¼1

pn�dHðsk ;yÞð1� pÞdHðsk ;yÞ: (44)

To generate this data, T binary strings of length n, written sk and called
‘modes’, are chosen randomly. A sample y is then produced with a
probability that depends on its Hamming distance dH(sk, y) to each mode.
In all of the above, the Adam67 optimiser was applied, using the suggested
hyperparameters, i.e. β1 ¼ 0:9; β2 ¼ 0:999; ϵ ¼ 1 ´ 10�8; and initial learn-
ing rate, ηinit. This was chosen since it was found to be more robust to
sampling noise14.
In all of the numerical results, we used a QAOA structure as the

underlying circuit in the QCIBM. Specifically, the parameters in Uf were

chosen such that ∀k, Γk= π/4, Δk= 0, and Σk= 0. The Ising parameters {Jij,
bk} were initialised randomly.
For the SD, we used 3 Nyström eigenvectors to approximate the Spectral

score in Fig. 3 for 3 qubits, and 6 eigenvectors for 4 qubits. In all cases
when using the MMD with a Gaussian kernel, we chose the bandwidth
parameters, σ= [0.25, 10, 1000]14. Note that this article was previously
published as a preprint68.
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