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The main goal of this paper is to study the structure of the graded algebra associated to a valuation. More specifically, we prove that the associated graded algebra gr v (R) of a subring (R, m) of a valuation ring Ov, for which Kv := Ov/mv = R/m, is isomorphic to Kv t v(R) , where the multiplication is given by a twisting. We show that this twisted multiplication can be chosen to be the usual one in the cases where the value group is free or the residue field is closed by radicals. We also present an example that shows that the isomorphism (with the trivial twisting) does not have to exist.

Introduction

Let O v be the valuation ring of a valuation v on a field K. Let Kv = O v /m v be the residue field and Γ v the value group of v. For a ring R ⊆ O v let v(R) denote the image of R \ {0} in Γ v , m := R ∩ m v and consider the graded algebra gr v (R) = γ∈v(R)

P γ /P + γ ,
where

P γ = {x ∈ R | v(x)
≥ γ} and P + γ = {x ∈ R | v(x) > γ}. Graded algebras play an important role to understand extensions of valuations (see for instance, [START_REF] Herrera Govantes | Key polynomials for simple extensions of valued fields[END_REF] and [START_REF] Vaquié | Extension d'une valuation[END_REF]). Graded algebras are also central objects in the approach of Teissier for local uniformization (see [START_REF] Teissier | Overweight deformations of affine toric varieties and local uniformization, Valuation Theory in Interaction[END_REF] and [START_REF] Teissier | Valuations, deformations, and toric geometry[END_REF]). Key polynomials are defined to be elements whose natural images in the graded algebra are irreducible and have some additional properties.

The semigroup ring Kv t v(R) is the set of finite formal sums n i=1 a i • t γi , with a i ∈ Kv and

γ i ∈ v(R), 1 ≤ i ≤ n,
where

n i=1 a i • t γi + n i=1 b i • t γi = n i=1 (a i + b i ) • t γi and n i=1 a i • t γi ×   m j=1 b j • t γj   := i,j a i b j • t γi+γj .
In [START_REF] Cutkosky | On finite and nonfinite generation of associatedgraded rings of Abhyankar valuations[END_REF], it is stated that gr v (R) is isomorphic to Kv t v(R) . This is not in general true, as our Example 2.11 shows. However, the main result of this paper is that these objects are isomorphic if we consider a twisted multiplication on Kv t v(R) . We will call a choice function on v(R) any right inverse of v, i.e., a map : v(R) -→ R such that v( (γ)) = γ for every γ ∈ v(R). We will always consider choice functions for which (0) = 1. For each choice function, we can define a map (which we will call a twisting)

: v(R) × v(R) -→ Kv, by (γ, γ ) := (γ) (γ ) (γ + γ ) v.
Then we can define a map

× : Kv t v(R) × Kv t v(R) -→ Kv t v(R) , (a, b) → a × b,
by setting t γ × t γ := (γ, γ ) • t γ+γ and extending it to Kv t v(R) in the obvious way. We prove that this map satisfies the multiplication axioms, making Kv t v(R) into a commutative ring. This multiplication will be called the twisted multiplication induced by and we will denote this ring by Kv t v(R) .

Our first main theorem is the following.

Theorem 1.1. If Kv = R/m, then for every choice function we have that

gr v (R) Kv t v(R) .
Then we study whether there exists a choice function for which the twisted multiplication is the usual one, i.e., such that t γ × t γ = t γ+γ for every γ, γ ∈ v(R). Observe that this is the same as saying that ≡ 1v. We show the following.

Theorem 1.2. If Γ v is a free group or Kv is closed by radicals, then there exists a choice function for which ≡ 1v.

The condition of Γ v being a free group is satisfied for a large class of valuations. For instance, it is satisfied when v is Abhyankar, i.e., when the equality holds in the inequality rat.rk(v) + tr.deg R/m Kv ≤ dim R (see Abhyankar's Inequality [7, Appendix 5] for more details). We observe that this problem is similar to the one addressed by Kaplansky in [START_REF] Kaplansky | Maximal fields with valuations I[END_REF], where the main goal is to understand maximal fields. There it is studied whether the extension of a valued field to a maximal extension is unique. The concept of power set appearing there is very similar to the twistings appearing here.
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The isomorphism

We start by presenting some easy remarks about a given choice function .

Remark 2.1. (i) The map is symmetric and (0, α) = 1v, for every α ∈ v(R). (ii) Given three elements α, β, γ ∈ v(R), we have

(1) (α, β) • (α + β, γ) = (α) (β) (α + β) v • (α + β) (γ) (α + β + γ) v = (α) (β) (γ) (α + β + γ) v = (α) (β + γ) (α + β + γ) v • (β) (γ) (β + γ) v = (α, β + γ) • (β, γ).
We now show that the map × induces a structure of commutative ring on Kv t v(R) . Proposition 2.2. For each choice function , the set Kv t v(R) with the standard sum and the multiplication given by × is a commutative ring.

Proof. Under addition, Kv t v(R) is an abelian additive group by definition. For the multiplication, from the way that it is defined, it is enough to check the properties only for elements of the form

f = f α t α . Take f = f α •t α , g = g β •t β ∈ Kv t v(R) . Then f × g = (f α g β ) • t α × t β = (g β f α ) • t β × t α = g × f.
Hence × is commutative. Also, for 1 := (1v)

• t 0 ∈ Kv t v(R) we have 1 × f = f α (0, α) • t 0+α = f α • t α = f, so Kv t v(R) has a unit element.
To prove that × is distributive, we take h = h β • t β and observe that

f × (g + h) = f α • t α × (g β + h β ) • t β = f α (g β + h β ) • t α × t β = (f α g β ) • t α × t β + (f α h β ) • t α × t β = f × g + f × h.
Lastly, in order to prove that × is associative it is enough to prove it for elements of the form f = t α , g = t β and h = t γ . In this case, we have

(f × g) × h = (α, β) • t α+β × t γ = (α, β) (α + β, γ) • t α+β+γ (1) = (α, β + γ) (β, γ) • t α+β+γ = (β, γ) • t α × t β+γ = f × (g × h).
This concludes the proof.

Definition 2.3. We will denote by Kv t v(R) the ring (Kv t v(R) , +, × ) and by Kv t v(R) the ring (Kv t v(R) , +, ×), where × denotes the usual product.

For any element x ∈ R with v(x) = γ, the natural image of x in P γ /P + γ is a homogeneous element of gr v (R) of degree γ, which we will denote by in v (x). Note that, for x, y ∈ R, we have in v (x) = in v (y) if and only if v(x -y) > v(x).

For x ∈ R \ {0} we define

ψ(in v (x)) = x D(x) v • t v(x)
,

where D = • v. Extend ψ to gr v (R) by setting ψ α∈∆ in v (x α ) = α∈∆ ψ(in v (x α )) and ψ(0) = 0,
where ∆ is a finite subset of v(R) and v(x α ) = α.

Remark 2.4. Note that

t v(x) × t v(y) = D(x)D(y) D(xy) v • t v(xy)
for all x, y ∈ K.

Theorem 1.1 will follow from the following proposition.

Proposition 2.5. The map ψ is an injective ring homomorphism from gr v (R) to Kv t v(R) . Moreover, if (R, m) is a local ring dominated by O v such that R/m = Kv, then this map is an isomorphism.

Proof. We will prove first that ψ is injective and well-defined, i.e., that

(2) in v (x) = in v (y) ⇔ ψ(in v (x)) = ψ(in v (y)), for every x, y ∈ R. For x, y ∈ R we have in v (x) = in v (y) if and only if v(x) = v(y) and v(x -y) > v(x). Since v(x) = v(D(x)), this is equivalent to v(x) = v(y) and v x -y D(x) > 0, which is equivalent to v(x) = v(y) and x -y D(x) v = 0.
This happens if and only if ψ(in v (x)) = ψ(in v (y)).

To prove that ψ is an additive group homomorphism it is enough to show that if v(x) = v(y), then

ψ(in v (x) + in v (y)) = ψ(in v (x)) + ψ(in v (y)).
To verify this property we have to consider two possibilities: v(x + y) > v(x) or v(x + y) = v(x) = v(y). In the first case we have

ψ(in v (x) + in v (y)) = 0 = x + y D(x) v = ψ(in v (x)) + ψ(in v (y)).
In the second case,

ψ(in v (x) + in v (y)) = ψ(in v (x + y)) = x + y D(x + y) v • t v(x+y) = x D(x) v • t v(x) + y D(y) v • t v(y) = ψ(in v (x)) + ψ(in v (y)).
To show that ψ is multiplicative, it is enough to show that for x, y ∈ R we have

ψ(in v (x)in v (y)) = ψ(in v (x)) × ψ(in v (y)).
Since

t v(xy) = t v(x)+v(y) = D(xy) D(x)D(y) v • t v(x) × t v(y)
we have

ψ(in v (x)in v (y)) = ψ(in v (xy)) = xy D(xy) v • t v(xy) = xy D(xy) D(xy) D(x)D(y) v • t v(x) × t v(y) = x D(x) v • t v(x) × y D(y) v • t v(y) = ψ(in v (x)) × ψ(in v (y)).
This proves that ψ is an injective ring homomorphism. Assume now that R/m = Kv and take any element x • t α ∈ Kv t v(R) . Choose any z ∈ R such that z v = x. It is easy to verify that for z = (α)z we have

ψ (in v z) = x • t α .
Therefore ψ is surjective.

Remark 2.6. We observe that the map ψ is graded ring homomorphism, i.e., for every

x ∈ R we have deg(in v (x)) = deg(ψ(in v (x))).
Here, deg is the map that associates each homogeneous element to the corresponding element in the grading semigroup.

We will now study when we can choose such that the multiplication × is the usual one, i.e., when the map is constant and equal to 1. We start with the following easy remark.

Remark 2.7. The map is constant and equal to 1 if and only if in v • is a semigroup homomorphism between v(R) and the multiplicative semigroup of gr v (R). Indeed, for α, β ∈ v(R) we have

(α, β) = 1v ⇐⇒ (α) (β) (α + β) v = 1v ⇐⇒ v (α) (β) (α + β) -1 > 0 ⇐⇒ v ( (α) (β) -(α + β)) > v( (α + β)) ⇐⇒ in v • (α + β) = (in v • (α)) • (in v • (β))
We will prove the two parts of Theorem 1.2 -the case when Γ v is free and the case when K v is closed by radicals -as two separate theorems.

Theorem 2.8. Assume that Γ v is a free group. Then there exists a choice function

: Γ v → K such that ≡ 1v. Proof. Write Γ v = i∈I γ i Z for some γ i ∈ Γ v . For each γ i we choose z i ∈ K such that v(z i ) = γ i . For each α ∈ Γ v , we write (3) α = n 1 γ i1 + • • • + n r γ ir ∈ Γ v , for some n i ∈ Z. Define (α) := z n1 i1 • • • z nr ir
Since the expression in (3) is unique, this map is well-defined. Moreover, is a choice function because v( (α)) = α, for every α ∈ v(R). Take α, β ∈ Γ v and write (adding n i 's or m j 's equal to zero, if necessary)

α = n 1 γ i1 + • • • + n r γ ir and β = m 1 γ i1 + • • • + m r γ ir . Then (α) (β) = z n1 i1 • • • z nr ir • z m1 i1 • • • z mr ir = z n1+m1 i1 • • • z nr+mr ir = (α + β). Therefore, (α, β) = (α) (β) (α + β) v = 1v,
which is what we wanted to prove.

Remark 2.9. Observe that for every (R, m) as in Theorem 1.2, the map constructed above would induce a choice function on v(R) that satisfies the required properties.

We will now prove the second part of Theorem 1.2.

Theorem 2.10. If Kv is closed by radicals, then there exists a choice function : Γ v → K such that ≡ 1v.

Proof. Consider the set

P := {(Φ, Φ ) | Φ ⊆ Γ v is a subgroup and Φ : Φ -→ K is a choice function with Φ ≡ 1v} .
We define a partial order on P by setting

(Φ 1 , Φ1 ) ≺ (Φ 2 , Φ2 ) ⇐⇒ Φ 1 ⊆ Φ 2 and Φ2 extends Φ1 .
For any fixed nonzero α ∈ Γ v let

α := {nα | n ∈ Z}
be the subgroup of Γ v generated α. We pick z ∈ K such that v(z) = α and define

α : α -→ K by α (nα) = z n .
It is easy to check that α , α ∈ P, so P is not empty.

Let Q = {(Φ i , Φi )} i∈I be a totally ordered subset of P. Set Φ Q := i∈I Φ i . For each α ∈ Φ we choose i ∈ I such that α ∈ Φ i and set Φ Q (α) = Φi (α). Since Q is totally ordered, this map is well-defined. It is straightforward to check that (Φ Q , Φ Q ) ∈ P and that (Φ Q , Φ Q
) is an upper bound for Q. Hence, we can apply Zorn's Lemma to obtain a maximal element (Φ, Φ ) of P.

We will show that Φ = Γ v and this will conclude our proof. Suppose, aiming for contradiction, that Φ = Γ v and take γ ∈ Γ v \ Φ. We have two possibilities:

γ ∩ Φ = ∅ or γ ∩ Φ = ∅.
In the first case we take x γ ∈ K with v(x γ ) = γ and define Ψ := Φ + γ and

Ψ : Ψ → K by Ψ (α + nγ) := Φ (α) • x n
γ , for α ∈ Φ and n ∈ Z. Since nγ / ∈ Φ for every n ∈ Z, we have that for α, β ∈ Φ and n, m ∈ Z

α + nγ = β + mγ =⇒ α = β and n = m.
Therefore, Ψ is well-defined and one can check that (Ψ, Ψ ) ∈ P. Now, if γ ∩ Φ = ∅, we define

n 0 = min{n ≥ 2 | nγ ∈ Φ}. Let x 0 = Φ (n 0 γ) ∈ K and choose x γ ∈ K such that v(x γ ) = γ. Since Kv is closed by radicals, there exists a ∈ K such that (4) x 0 x n0 γ v = (a n0 )v.
Every element in Ψ := Φ + γ is of the form α + nγ, for a uniquely determined α ∈ Φ and n, 0

≤ n < n 0 . Indeed, if α + nγ = α + mγ, 0 ≤ m ≤ n < n 0 , then (n -m)γ = α -α ∈ Φ.
Then, n = m and α = α and this gives us the uniqueness. For the existence, every element in Ψ is of the form α + rγ for some r ∈ Z. Using Euclidean division, we write r = n 0 l + n with 0 ≤ n < n 0 and l ∈ Z.

Then α := α + n 0 γ ∈ Φ which is what we needed. Define Ψ : Ψ -→ K by Ψ (α + nγ) = Φ (α) • (ax γ ) n ,
where α + nγ ∈ Ψ, with α ∈ Φ and 0 ≤ n ≤ n 0 . Then Ψ is well-defined.

We will show that (Ψ, Ψ ) ∈ P and since (Φ, Φ ) ≺ (Ψ, Ψ ) we obtain a contradiction with the maximality of (Φ, Φ ) in P. Let α + n 1 γ and β + n 2 γ be two elements in Ψ, where 0 ≤ n 1 , n 2 < n 0 . We will consider two cases. Case 1: If n 1 + n 2 < n 0 , then

Ψ (α + n 1 γ, β + n 2 γ) = Ψ (α + n 1 γ) Ψ (β + n 2 γ) Ψ (α + β + (n 1 + n 2 )γ) v = Φ (α) (ax γ ) n1 Φ (β) (ax γ ) n2 Φ (α + β) (ax γ ) n1+n2 v = Φ (α) Φ (β) Φ (α + β) v • (ax γ ) n1 (ax γ ) n2 (ax γ ) n1+n2 v = Φ (α, β) • 1v = 1v Case 2: If n 1 + n 2 ≥ n 0 , then n 0 ≤ n 1 + n 2 < 2n 0 and (α + n 1 γ) + (β + n 2 γ) = (α + β + n 0 γ) + (n 1 + n 2 -n 0 )γ. Since 0 ≤ n 1 + n 2 -n 0 < n 0 , we have Ψ ((α + n 1 γ) + (β + n 2 γ)) = Φ (α + β + n 0 γ) • (ax γ ) n1+n2-n0 .
Then

Ψ (α + n 1 γ, β + n 2 γ) = Ψ (α + n 1 γ) Ψ (β + n 2 γ) Ψ ((α + n 1 γ) + (β + n 2 γ)) v = Φ (α) (ax γ ) n1 Φ (β) (ax γ ) n2 Φ (α + β + n 0 γ) (ax γ ) n1+n2-n0 v = Φ (α) Φ (β) (ax γ ) n0 Φ (α + β + n 0 γ) v Since Φ (n 0 γ) (ax γ ) n0 v = 1v
, we multiply on the right side of the above equation by it to obtain

Ψ (α + n 1 γ, β + n 2 γ) = Φ (α) Φ (β)(ax γ ) n0 Φ (α + β + n 0 γ) v • Φ (n 0 γ) (ax γ ) n0 v = Φ (α) Φ (β) Φ (n 0 γ) Φ (α + β + n 0 γ) v = 1v.
This completes the proof. We now present an example where we have to use a non-trivial twisting to obtain the isomorphism in our main theorem.

Example 2.11. Consider P ⊆ N the set of all prime numbers and Q = {x p | p ∈ P} a set of independent variables. Consider

K := Q(x p | x p ∈ Q) and Γ := p∈P 1 p Z ⊂ Q.
We will construct a valuation v : K × -→ Γ. Start by defining v(x p ) := 1/p for every p ∈ P and v(a) = 0 for every a ∈ Q. This defines v on every monomial

aQ λ ∈ K, because v aQ λ = v   a λ(p) =0 x λ(p) p   = λ(p) =0 v(a) + λ(p)v(x p ) = λ(p) =0 λ(p) p .
We extend v to K monomialy, i.e., by setting

v n i=1 a i Q λi = min ai =0 v a i Q λi , in Q[x p | x p ∈ Q] and v(P/Q) = v(P ) -v(Q) in K.
Definition 2.12. For any polynomial

P = n i=1 a i Q λi ∈ Q[x p | x p ∈ Q]
we define the initial part of P with respect to v by ip v (P ) := v(aiQ λ i )=v(P )

a i Q λi .
A polynomial P is said to be initial if ip v (P ) = P .

Remark 2.13. It is easy to verify that for P, Q

∈ Q[x p | x p ∈ Q] we have (i): in v (ip v (P )) = in v (P ); and (ii): in v (P ) = in v (Q) ⇐⇒ ip v (P ) = ip v (Q).
In particular, if P and Q are initial polynomials, then

in v (P ) = in v (Q) ⇐⇒ P = Q.
Definition 2.14. We will say that the choice function : Γ -→ K is initial, if for every α ∈ Γ, (α) = P Q where both P and Q are initial.

Claim 2.15. If is a choice function such that ≡ 1v, then there exists an initial choice function such that ≡ 1v.

Proof. For each α ∈ Γ we write (α) = Pα Qα ∈ K. Set (α) := ip v (Pα) ip v (Qα) . Then

α = v( (α)) = v P α Q α = v(P α ) -v(Q α ) = v(ip v (P α )) -v(ip v (Q α )) = v( (α)),
hence is a right inverse for v. Moreover, by Remark 2.7, (α, β) = 1v ⇐⇒ in v ( (α)) • in v ( (β)) = in v ( (α + β))

⇐⇒ in v P α Q α • in v P β Q β = in v P α+β Q α+β ⇐⇒ in v ip v (P α ) ip v (Q α ) • in v ip v (P β ) ip v (Q β ) = in v ip v (P α+β ) ip v (Q α+β ) ⇐⇒ (α, β) = 1v.
In view of Claim 2.15, we can assume that is an initial choice function.

Claim 2.16. For an initial choice function : Γ -→ K, if ≡ 1v, then (nα) = (α) n for every n ∈ N and α ∈ Γ.

Proof. Take arbitrary α ∈ Γ and n ∈ N. Set (α) = P Q and (nα) = P Q .

Our assumption guarantees that (α) n (nα) v = 1v. This gives us

0 < v (α) n (nα) -1 = v P n Q Q n P -1 = v P n Q -Q n P Q n P .
Hence

v (P n Q -Q n P ) > v (Q n P ) .
By Remark 2.13 (ii), we have P n Q = Q n P and consequently

(α) n = P n Q n = P Q = (nα).
As a consequence of Claim 2.16, we obtain This implies that deg( (1)) = 0 and consequently (1) ∈ Q. Hence v( (1)) = 0, which is a contradiction to our assumption that is a right inverse for v.

  p ∈ P.For an element R = P/Q ∈ K we set deg(R) := max{deg Q (P ), deg Q (Q)}. Then deg(R n ) = n deg(R) for every R ∈ K and n ∈ N.From (5), we have p | deg( (1)) for every p ∈ P.
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