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Abstract
A micromechanical model for quantifying the simultaneous influence of irradiation hardening and swelling 
on the mechanical stiffness and strength of neutron-irradiated austenitic stainless steels is proposed. The 
material is regarded as an aggregate of equiaxed crystalline grains containing a random dispersion of pores 
(large voids due to large irradiation levels) and exhibiting elastic isotropy but viscoplastic anisotropy. The 

overall properties are obtained via a judicious combination of various bounds and estimates for the elastic 
energy and viscoplastic dissipation of voided crystals and polycrystals. Reference results are generated 
with full-field numerical simulations for dense and voided polycrystals with periodic microstructures and 
crystal plasticity laws accounting for the evolution of dislocation and Frank loop densities. These results are 
calibrated with experimental data available from the literature and are employed to assess the capabilities 
of the proposed model to describe the evolution of mechanical properties of highly irradiated Solution 
Annealed 304L steels at 330oC. The agreement between model predictions and simulations is seen to be 
quite satisfactory over the entire range of porosities and loadings investigated. The expected decrease of 
overall elastic properties and strength for porosities observed at large irradiation levels is reported. The 
mathematical simplicity of the proposed model makes it particularly apt for implementation into finite- 
element codes for structural safety analyses.

Keywords: crystal plasticity, irradiation hardening, void swelling, Fast Fourier Transforms simulations, 
austenitic stainless steel, micromechanics of porous media

1. Introduction

Many structural components within the vessel of Pressurized Water Reactors (PWR) are made of 

austenitic stainless steels. These so-called “internals” are found, for instance, in subsystems associated 
with many safety functions in western-type PWR, such as for core support, reactivity control, core cooling, 
and instrumentation availability [1]. In French 1300 MWe nuclear power plants operating under normal 
conditions, internals are subject to temperatures ranging from 286oC to 370oC [1] and to neutron irradi
ation doses producing up to a hundred displacements per atoms (dpa) over the reactor lifetime [2]. Such 

operating environments can induce significant changes in the microstructure and microchemistry of the steel 
that degrade its mechanical properties [3]. However, the operating environment and ensuing degradation 

of a particular internal depends on its location relative to the core. This has motivated the development of 
engineering models to assess the influence of prolonged irradiation periods on the mechanical properties of 
internals as a function of environmental conditions.
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Recent models proposed in [4, 5] rely on finite-element descriptions wherein bulk steel is represented as 
a periodic aggregate of single crystals and the elastoplastic deformations within the crystals are described 
by constitutive laws that account for the evolution of dislocation and Frank loop densities [6, 7]. These 
micromechanical models are able to reproduce the increase in macroscopic tensile strength along with the 
significant reduction of strain hardening typically observed in irradiated steels, and therefore serve to quantify 
the degradation of mechanical properties due to irradiation. However, a basic assumption of these models 
is that the crystals are fully dense. Now, some microscopic analyses of internals of PWR have revealed the 
occasional presence of intragranular voids or cavities that could be associated with incipient swelling [8, 9]. 
Many observations of macroscopic void swelling in Fast Breeder Reactors (FBR) have also been reported 
in the open literature [9]. Swelling normally exhibits an incubation period followed by a steady growth 
rate in the range of 1% per dpa [9]; it is sensitive to several parameters including chemical composition, 
heat treatment and mechanical processing of the material, irradiation temperature, dpa and dpa rate, and 
irradiation spectrum. The presence of such intragranular porosity levels is expected to further degrade 
the mechanical properties. Motivated by these observations, the purpose of this work is to propose a 
micromechanical model for quantifying the simultaneous influence of irradiation hardening and swelling 
on the mechanical stiffness and strength of austenitic steels subject to general stress states. The model 
regards bulk steel as a polycrystalline aggregate of equiaxed grains containing a random dispersion of voids 
and exhibiting an elasto-viscoplastic microscopic response. The focus is on large irradiation doses whereby 
the microscopic response no longer evolves with irradiation damage. The macroscopic elasto-viscoplastic 
response for a given degree of swelling is then obtained via a judicious combination of various bounds and 
estimates for the elastic energy and viscoplastic dissipation of voided crystals and polycrystals. Reference 
results are also generated with full-field numerical simulations for dense and voided polycrystals with periodic 
microstructures and the crystal plasticity laws of [6, 7]. These results are calibrated with experimental data 
available from the literature and employed to assess the capabilities of the proposed micromechanical model 
to describe the evolution of mechanical properties of highly irradiated Solution Annealed 304L steels at 
330o C. The proposed model provides the elasto-viscoplastic deformation rate in terms of the stress, the 
stress rate, and the degree of swelling, as required by common phenomenological models for irradiated 
stainless steels [10].

2. Analytical model

2.1. Microstructure
Austenitic stainless steels are regarded as random aggregates of perfectly bonded single crystals, or 

grains, containing a dispersion of microvoids or pores whose level depends on the irradiation dose. Only 
large voids due to large irradiation levels are considered in this study. Individual grains are assumed to be 
of similar size, much smaller than the size of the aggregate and the scale of variation of the applied loads, 
while the voids are assumed to be much smaller than the grains. Furthermore, the aggregates are assumed 
to have statistically uniform and ergodic microstructures. For simplicity, the model assumes that aggregates 
are untextured and porosity dispersion is isotropic. This is motivated by an observation reported in [11] 
on an irradiated SA304L stainless steel, in which the spatial distribution of the cavities was found to be 
homogeneous.

2.2. Microscopic response
The local deformation of the grains is assumed to be the additive composition of an elastic part and a vis- 

coplastic part due to slip along the standard twelve slip systems of face-centered cubic crystals (|111}(110)). 
The total strain rate is thus written as

è = èel + ^ y (sV(s)

S = 1
(1)
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with each term characterized by

èel = S : & and y(s) Y 0
& : ^(s)

T0

n
sign & : ^s) (2)

where &, e, ee1, and ^(s) denote the local stress, total infinitesimal strain, elastic strain, and Schmid 
tensors, respectively, y(s) denotes the slip rate along the system s, and a dot over a variable denotes its time 
derivative. The inner product & : ^(s) of the two second-order tensors & and ^(s) is defined as <7j p^. The 
Schmid tensor ^(s) is obtained from the symmetrized dyadic product of the two unit vectors n(s), normal 
to the slip plane, and m(s), along the slip direction of the sth system. They are specified in Appendix A 
for face-centered cubic crystals. The elastic compliance tensor is taken of the form

S
1

3k
J + —K

2p
(3)

where J and K denote the standard fourth-order isotropic projection tensors [12]. The microscopic response 
is therefore fully characterized by the bulk and shear moduli k and p, the creep exponent n, the flow stress 
t0 , and the reference strain rate y0. Thus, the description neglects elastic anisotropy, plastic hardening, 
and variability of flow stress amongst slip systems, allowing for analytical treatment. These simplifications 
are introduced in order to get an analytical model together with few parameters to be identified. The 
comparisons provided in Section 4 suggest that this simplified description of the local deformation does not 
compromise the capabilities of the model.

2.3. Macroscopie response
The macroscopic response is characterized by the relation between the macroscopic stress S and strain E 

tensors, which are identified with the volume averages of their local counterparts over a representative volume 
element of the voided polycrystal. The proposed model neglects any elastoplastic coupling at this level, so 
that the macroscopic strain rate E is the additive composition of an elastic part Eel and a viscoplastic part
Evp :

E = Eel + Evp. (4)

The dependence of each term on the macroscopic stress tensor S is obtained by a judicious combination 
of various bounds and estimates for the elastic energy and viscoplastic dissipation of voided crystals and 
polycrystals. Mathematical derivations and definitions of the model are provided in Appendix A. The 
resulting constitutive relations are

Eh el § : S and Evp = y0

Ç (l - n—1 h-2 (Em/A)) h (Em/A) i + 3(Sd/A)
3 V n +1 J p

( n — i \ 2f * 1--------T h-2 (Em/A) h' (Em/A) (Em/A) + -(Eeq/A)2
n + 1 p

sign(A),

(5)

n

where i and Sd denote the identity and stress deviator tensors, respectively, Em = trS/3 and Eeq = 
V(3/2)Sd : Sd are the macroscopic hydrostatic and von Mises equivalent stresses, f is the total porosity of 
the aggregate for the irradiation level considered —henceforth simply referred to as porosity—, f * = qf is 
a modified porosity by a fixed parameter q, the overall compliance tensor is given by

§ = i J + K 
3k 2p

(6)

with

k§ = k - f
k

1 - (1 - f) k p — p f
k + k*

1 - (1 - f ) 7+A
i * *k = 3 p, pp p 9k + 8p 

6 k + 2p ,
(7)
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n 1 2 3 5 10 15
a 0.651 1.165 1.397 1.597 1.743 1.789
P 1.502 2.732 3.586 4.541 5.457 5.793

Table 1: Values of a and fi entering the gauge surface (8) for some values of exponent n.

Porosity (f ) Number 
of voids

Mean number 
of voids per grain

Approximate number 
of voxels per void

0 0 0 -
0.02 2048 4 1310
0.04 4096 8 1310
0.06 6144 12 1310
0.08 8192 16 1310

Table 2: Description of the microstructures.

the gauge factor À is solution to the nonlinear équation

hseq/À)2 + f* fh(Em/À) + h-1(£m/À)) = 1 + f*2,
P y n +1 J n+1

and the function h, with derivative h', is given by

(8)

h w=(1+ttq ". (9)

y an J

The coefficients a and P in these expressions depend on the creep exponent n and local plastic anisotropy 
as discussed in Appendix A. Table 1 specifies numerical values for common creep exponents and the local 
plastic anisotropy assumed by (1)-(2) for face-centered cubic crystals. This set of expressions serves to fully 
characterize the elasto-viscoplastic response of the porous polycrystalline aggregate for any multiaxial loading 
history. As irradiation dose progresses, the porosity f —and eventually some local material parameters— 
will evolve. The resulting stiffness is dictated by expressions (7) —the Young’s modulus following from 
E = 9A:/x/(/x + 3fc)—, while the resulting strength is identified with the flow stress deep in the plastic range.

3. Numerical model

3.1. Microstructure
In contrast to the analytical model considered above, the numerical model idealizes stainless steels as 

periodic aggregates of grains describing a Voronoi tessellation and containing an isotropic distribution of 
spherical voids. Figure 1 shows the various unit cells employed in this study. These cells contain 512 grains 
and a varying number of intragranular mono-sized voids. The same Voronoi tessellation is used for all these 
microstructures. For porosity levels of 0.02 or 0.04, three distinct sets of positions of the centers of the voids 
are considered. For each of these microstructures, the porosity over the whole volume and the number of 
voids in the total volume is prescribed. It is noted that the voids are always of the same size, and are located 
entirely inside the grains, even though numerous voids may fall in areas close to the grain boundaries. The 
centers of the voids are supposed to be randomly distributed inside the grains. The precise number of 
grains and voids employed follows from the parametric study reported in Appendix B. A summary of these 
microstructural parameters is provided in Table 2.

3.2. Microscopie response
The local deformation of the grains is assumed to follow a physically-based crystal plasticity law recently 

developed by [6, 7] specifically for irradiated SA304L steels at 330oC. This crystal plasticity law was used

4



0%

2% micr. (a)

4% micr. (a)

6%

2% micr. (b)

4% micr. (b)

8%

2% micr. (c)

4% micr. (c)

Figure 1: Microstructures employed in numerical model for various porosity levels and number of voids. Three different void 
distributions are considered in microstructures with porosity levels 2% and 4%.

105 by [4] for studying the intergranular stress distribution in irradiated stainless steels, by [13] for studying
106 the void growth and coalescence of voids in irradiated face-centered cubic single crystals, and by [14] for
107 a comparison between finite element and Fast Fourier transforms-based methods simulations. This law
108 assumes the same additive form (1)-(2) for the local deformation but with the slip rates given by

7(s)
|^ : M(s) | - Tc(s)

K

n

sign(CT : M(s)), (10)

109

110 
111

112
113

where K0 is a Norton parameter and {•} denote the Macaulay brackets. In turn, the material parameters
(s)Tc ) represent critical resolved shear stresses that evolve with plastic deformation according to a hardening 

law of the form

-(s) _= To + Ta exp -
|7(s) |

+ fi 
7o

12

»y y asUrd + aL l7
u=1

t r(P),

P= 1
C (11)

where the internal variables r(D>) and r(p) represent, respectively, normalized densities of dislocations moving 
along the twelve crystalographic directions {111 }(110) and densities of Frank loops defined on the four
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crystalographic planes {111}, which in turn evolve with plastic deformation according to

and

•(s)
rD A

12
ë bsu rD] + K

u= 1 \
Kü £ ’L - Gc r-D> | |-, (s)|

P= 1

(S) 1 |Y (s)l

rLP) = -al (rLP) - riat) I X) |Y(s)| )( XI rDs)

^ sGplane p i sGplanep

1
(12)

(13)

Unlike the law employed in the analytical model, this law accounts for elastic anisotropy and plastic 
hardening. Elastic anisotropy is accounted for by assuming a cubic elasticity tensor C = S-1; plastic 
hardening is accounted for via twelve dislocation densities and four Frank loop densities. The critical 
resolved stresses are coupled with the dislocation densities via a twelve by twelve dislocation interaction 
matrix asu with six independent parameters (general form specified in Appendix A), while the various 
dislocation densities are themselves coupled via a twelve by twelve matrix bsu indicated in Table 3. Initially, 
the normalized dislocation densities are assumed to take the same value rD in all slip systems, and the 
normalized Frank loop densities are assumed to take the same value r° for all slip planes. To account for 
a dislocation unlock mechanism, a reference slip denoted by 70 has been introduced to adjust the speed 
of avalanche after unlocking the dislocations. For a detailed description of the physical basis behind this 
description the reader is referred to [6, 7, 4].

3.3. Macroscopie response
As in the analytical model, the macroscopic response is identified with the relation between the volume 

averages of the stress and strain fields over a representative volume element. To compute these fields for given 
loading conditions, the above constitutive equations were implemented in the software CraFT [15] which 
solves the mechanical field equations by means of a Fast-Fourier Transform (FFT) algorithm proposed by 
[16] and [17] to determine the effective properties of periodic composites, and integrates the response in 
time with a fully implicit scheme [18]. Following the work of [19] on porous viscoplastic crystals, we adopt 
the FFT algorithm often referred to as the “basic scheme” which ensures strain compatibility. The scheme 
discretizes the unit cell with a regular grid composed of voxels. Based on the parametric study reported in 
Appendix B we adopt a grid of 5123 voxels so that there are 643 voxels per grain on average and about 
1310 voxels per void.

Results are generated by imposing mixed loading conditions [20]: the direction of the overall stress (So) 
is prescribed together with the strain-rate in this direction. At each iteration j of the general algorithm, 
two errors are computed to check convergence. One is relative to the local equilibrium condition,

err1(j)

^ ||div a(j) ||2 )V2 

|| {a(j)) || (14)

while the other is relative to the prescribed direction of the macroscopic stress:

err2(j)
{a(j)) - 7S° 

||7£o|| (15)

Here, 7 indicates the unknown level of overall stress, {a(j)) is the volume average of the stress at iteration j 
(with the following notation {•) = 1/|Q| fQ •dû, where Q is the entire domain) and y.y denotes the Euclidean 
norm squared. The iterative procedure is stopped when the errors err1 and err2 are respectively smaller 
than 10-2 and 10-4.

In the sequel, predictions for a tensile loading are obtained by fixing a macroscopic stress direction with 
only one non-vanishing component £33 > 0, applying a strain rate E33 = 3 x 10-4 s-1, and stopping when

6
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175

C11 C12 C44 p, K0 Ta
199 GPa 136 GPa 105 GPa 65.5 GPa 10 MPa s1/n 61.2 MPa

n Gc f Û1 Û2 «3 a4 as a6

15 10.4 42.8 0.124 0.124 0.070 0.625 0.137 0.122

bii bij y = j r0
rD r°L Kdl o.l Al

«sat
rL

01 1.03 10-11 4.9 10-6 2.50 10-7 0.57 5.548 108 3.234 10

Table 3: Model parameters for SA304L stainless steel at 330oC and irradiated to 13 dpa, taken from [6]. Top row: parameters 
in absolute units. Middle and bottom row: normalized parameters.

E33 reaches 3 x 10-2. In turn, prédictions for a purely hydrostatic loading are obtained by fixing S“ equal 
to the identity tensor, applying a hydrostatic strain rate Em = (En + E22 + E33)/3 = 3 x 10-4 s-1, and 
stopping when Em reaches 3 x 10-2. Finally, mixed stress states are obtained by fixing

( S?1 0 0 \
S° = I 0 E°1 0 I with 0 < E°1 < 1, (16)

v0 0 1 y

applying the rate S^E 11 + S°1i?22 + E33 = 9 x 10-4 s-1, and stopping when that combination reaches 
9 x 10-2. Another stress state including simple shear is tested by fixing

( 1 SÏ2 0 \
S° = I S°2 1 0 I with 0 < S°2 < 1.732, (17)

v0 0 1 y

applying the rate E11 + E22 + E33 + 2£°2E 12 = 9 x 10-4 s-1, and stopping when that combination reaches 
9 x 10-2.

4. Results

4.1. Numerical model versus experimental observations
We begin by calibrating the numerical model of Section 3 with available experimental observations for 

fully dense steels. To that end, we adopt all material parameters from reference [6] with the exception 
of 70 and fo. The various numerical values are given in Table 3 with the elastic constants reported in 
Voigt notation. A relatively high creep exponent is employed to represent a low strain-rate sensitivity. The 
remaining parameters f0 and f0 are then used to fit various tensile curves of irradiated SA304L steels at 
about 300oC and high exposure levels —at least 10 dpa— reported by [6, 4, 21]. Figure 2 shows comparisons 
between those measurements and numerical predictions obtained with y0 = 0.5 and f0 = 58 MPa. These 
values are seen to reproduce the experimental measurements with reasonable accuracy. In this connection, 
it is observed that the experimental curves exhibit a slight softening just after the maximal stress. In line 
with [6], we understand that this softening is not due to the stretching of the tensile specimen or to the 
ductile damage, but rather due to the specific dislocation dynamics. The crystal plasticity laws of Section 
3.2 can reproduce such a peak with a suitable choice of parameters. Indeed, y0 adjusts the speed of avalanche 
after unlocking the dislocations, and therefore decreasing its value enhances the peak on the overall stress- 
strain curve of the polycrystal —often called ”yield point” phenomenon—, while f0 adjusts the maximum 
stress level. However, numerical results for material responses with well-defined peaks were found to exhibit 
pronounced dependences on the grid size. For this reason, we have opted for a description that identifies 
maximum stress levels with those developed deep in the plastic range.

The calibrated model is now used to generate results for porous materials. Figure 3 shows the tensile 
curves obtained with the various microstructures presented in Section 3. As expected, intragranular porosity

7
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reduces the overall Young’s modulus and the maximal overall stress. It is seen that the three microstructures 
with 2% porosity —microstructures (a), (b) and (c) in Figure 1— lead to similar tensile curves: the full-line, 
dashed and dotted curves in Figure 3 are visually indistinguishable. A similar conclusion is reached for 
4% porosity. This confirms the appropriate representativeness of the distribution voids within the unit cell. 
Thus, we can extract from these curves representative results for the evolution of Young’s modulus and 
maximal stress with swelling, and compare them with experimental measurements.

E33

Figure 2: Tensile response. Comparison between experiments and numerical model.

E33

Figure 3: Numerical predictions for the tensile response of porous polycrystals with the microstructures of Figure 1.

The evolution of the overall Young’s modulus E as a function of swelling is reported in Figure 4, along 
with experimental measurements of [22] and [23] on a Russian cold-worked austenitic steel. Here, the swelling 
is defined in terms of the porosity f as f/(1 — f ), and E0 denotes the Young’s modulus for the fully dense 
material. The tested samples were cut from fuel element cladding tubes that had been irradiated in the 
BN-600 fast reactor. The numerical model is found to be in reasonable accord with experiments. According 
to the model, a porosity level of 8% causes a 15% reduction in Young’s modulus.

8
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Figure 4: Overall Young’s modulus as a function of swelling.

iss The corresponding évolution of overall maximal stress Rm in simulations and experiments is reported in
189 Figure 5, along with experimental measurements of [24] on a Russian Kh18H10T annealed austenitic stainless
190 steel. The tested samples come from a duct irradiated in the BOR-60 fast reactor. In this connection, it is
191 recalled that the Kh18H10T steel is the primary construction material of internals in Russian water-cooled,
192 water-moderated energy reactors, and that the closest Western analog of this material is the 321 stainless
193 steel [24]. Results reported in Figure 5 correspond to tests conducted at or near the irradiation temperature,
194 from 360oC to 430oC. Once again, the numerical model is found to be in reasonable accord with experiments.
195 According to the model, a porosity level of 8% causes a 20% reduction in maximal stress.
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Figure 5: Overall maximal stress as a function of swelling.
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196

197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221

k p n Yo To a fi q
156.7 GPa 65.7 GPa 15 f!— 498 MPa 1789 5/793 2

Table 4: Parameters of the analytical model.

4-2. Analytical versus numerical models
The above numerical model is now used to assess the capabilities of the simple analytical model presented 

in Section 2.3 to reproduce the response of a SA304L at 330oC. We begin by calibrating the analytical model 
with the tensile response of a fully dense material predicted by the numerical model. To that end, analytical 
predictions are obtained by integrating in time equations (4) and (5) using an explicit Runge-Kutta 3(2) 
method with adaptative time step. At each iteration, the value of |A| is obtained by solving the non-linear 
equation (8) with a Newton method. Following [6], the local elastic moduli are set to k = 156.7 GPa and 
p = 65.7 GPa. In turn, the creep exponent n is set to the same value as in the numerical model, i.e. n = 15, 
and the reference strain-rate is set to y0 = 1 s-1. For that creep exponent, the coefficients a and fi are given 
by 1.789 and 5.793, respectively. Finally, a suitable value for the flow stress t0 is identified by confronting 
the analytical and numerical responses. The comparison shown in Figure 6 corresponds to To = 498 MPa, 
which is deemed suitable. The complete set of material parameters is summerized in Table 4.

E33

Figure 6: Tensile curves: comparison between analytical and numerical predictions for the choice to = 498 MPa.

Having calibrated the analytical model with the response for fully dense materials, we can confront the 
analytical and numerical predictions for porous materials. Figures 8 and 9 show comparisons for the overall 
Young’s modulus and bulk modulus versus porosity. It is recalled that, in view of the overall isotropy, these 
two parameters completely characterize the elastic response. The agreement between the models is seen to 
be quite satisfactory over the entire range of porosity levels considered. This is in line with the observations 
of [25] and theoretical predictions of [26]. Note that the numerical predictions for the bulk modulus are 
obtained from the purely hydrostatic loading case presented in 3.3 and reported in Figure 7.

The analytical description of the viscoplastic response contains an additional parameter q in the definition 
of the modified porosity f *. This parameter has been introduced following the experience of [27] with the 
so-called standard GTN model for isotropic porous plasticity to adjust the porosity percolation threshold 
at which the material is expected to completely loose its load carrying capacity [28]. A suitable value for 
q is identified by comparing the analytical and numerical predictions for the overall maximal stress under 
uniaxial tension. Figure 10 shows a comparison for q = 2. Based on the good agreement observed, this value 
is deemed suitable. In this connection, it should be noted that the analytical model does not account for
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Figure 7: Porous polycrystals under purely hydrostatic loading. Numerical simulations performed on the microstructures of 
Figure 1.

Porosity

Figure 8: Evolution of the overall Young modulus with respect to the porosity: micromechanical model and FFT-based 
numerical full-field simulations.

plastic softening and therefore does not exhibit a rigorous maximal stress. The maximal stress reported in 
this figure corresponds to the stress level deep in the plastic range. Given the large creep exponent employed, 
this stress level is relatively insensitive to the strain rate, at least within the range of strain rates of interested 
in applications. Having fixed this last parameter, no further fitting is required. The analytical model now 
provides a predictive tool for the material response under general loading conditions. Figure 11 shows a 
comparison between the analytical and numerical estimates for the overall maximal stress under hydrostatic 
tension. Analytical predictions are seen to remain accurate for this loading condition in the entire range 
of porosity levels considered. To confirm the accuracy of the model for more general loading conditions, 
further comparisons are reported for the multiaxial stress states defined in Section 3.3. The macroscopic 
hydrostatic and equivalent stresses obtained at the end of the simulations of a specimen with moderate
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Porosity

Figure 9: Evolution of the overall bulk modulus with respect to the porosity: micromechanical model and FFT-based numerical 
full-field simulations.

232 porosity level are plotted in Figures 12 and 13. Once again, the agreement is seen to be satisfactory over the
233 whole range of stress states investigated despite the fact that some of these stress states induce a different
234 plastic anisotropy from that induced by the uniaxial loading employed in the calibration of the model.

1.0
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C3
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0.0 
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Porosity

Figure 10: Overall maximal stress under uniaxial tension versus porosity: comparison between analytical and numerical models.

? • «
) • i
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Tensile tests
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O FFT simulations: SA304L stainless steel 
512 grains, discretization: 5123 voxels

235 5. Conclusions

236 A micromechanical model for quantifying the simultaneous influence of irradiation hardening and swelling
237 on the mechanical stiffness and strength of neutron-irradiated austenitic stainless steels has been proposed.
238 The model makes use of several simplifying assumptions allowing for a fully explicit elasto-viscoplastic
239 description. In turn, reference results were generated with full-field numerical simulations for dense and
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Porosity

Figure 11: Overall maximal stress under hydrostatic tension versus porosity: comparison between the analytical and numerical 
models.

[GPa]

Figure 12: Axisymmetric direction of macroscopic stress Xo as specified in (16). Macroscopic hydrostatic and equivalent 
stresses obtained at the end of the simulations. Comparison between the micromechanical model and the FFT simulations. 
FFT simulations performed on the microstructure (a) with 4% porosity of Figure 1.

voided polycrystals with periodic microstructures and crystal plasticity laws accounting for the évolution of 
dislocation and Frank loop densities. These results were calibrated with experimental data available from 
the literature and were employed to assess the capabilities of the proposed model to describe the evolution of 
mechanical properties of highly irradiated Solution Annealed 304L steels at 330oC. The agreement between 
analytical and numerical predictions for stiffness and mechanical strength was found to be quite satisfactory 
over the entire range of porosities and loadings investigated. The expected decrease of these properties for 
porosities observed at large irradiation levels has been reported for porosity levels up to 8%. The simplicity 
of the analytical model comes at the expense of neglecting the influence of local elastic anisotropy and 
plastic hardening on the overall response. While the former is indeed negligible, the latter may be non-
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stresses obtained at the end of the simulations. Comparison between the micromechanical model and the FFT simulations. 
FFT simulations performed on the microstructure (a) with 4% porosity of Figure 1.

249 negligible at least for some aspects of the overall response not considered in this work, such as strain to
250 failure. Fortunately, the multiscale nature of the analytical model could be exploited to incorporate plastic
251 hardening through appropriate evolution laws for the local flow stress. In terms of the mechanical properties
252 considered in this work, however, the analytical model seems suitable. Furthermore, in view of its capabilities
253 and mathematical simplicity, the model is considered particularly apt for implementation into finite-element
254 codes for structural safety analyses.
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Appendix A. Analytical model: dérivations

Micromechanical models for the elastic properties of austenitic stainless steels subjected to radiation 
swelling are proposed in [25]. In their work, the voids due to irradiation are considered as randomly located, 
spherical in shape and embedded in an isotropic elastic matrix. In [25], the most widely used mean-field 
methods in micromechanics are implemented to calculate the effective elastic properties, such as the non- 
interaction approximation (often called dilute limit approximation), the Hashin-Shtrikman upper bound [26] 
with the matrix as the reference medium (which coincides with the Mori-Tanaka scheme [29] in the present 
case), the differential scheme, the self-consistent scheme (see [30] among others for a description of these 
models). The results are compared with the experimental data of [22]. It is shown that, for the effective 
Young modulus, all the schemes give reasonable approximation and none can be called preferential. Here, 
following [25], we make use of the Hashin and Shtrikman upper bound to estimate the effect of voids on the 
elastic properties of irradiated SA304L austenitic stainless steel. The overall compliance tensor is given in 
(6).

The macroscopic viscoplastic strain-rate is estimated through a recent model proposed by [18] which is 
based on the definition of a gauge surface for a porous FCC polycrystal with intragranular voids.

Appendix A.1. A model for porous media with isotropic viscoplastic matrix
First, let us recall a result from [31] in the case of an isotropic porous material with an isotropic vis

coplastic matrix described by a simple Norton law of exponent n and spherical voids. In this work, the local 
behavior of the matrix is governed by a stress potential

évp
du
m w with u(o)

/ \ n+1
80 &0 / & eq \

n + 1 V &0 ) ’
(A.1)

where e0 
potential

and a0 are constants. The macroscopic response can be characterized by an effective dissipation 
U such that [32]

E vp dU
(S), (A.2)

where U, 
following

in the present case, is a homogeneous function of degree n +1 which can be written under the 
form

U(S)
£0^0 nx (S) on+1

n + 1 V a0 J (A.3)

X (S) is a homogeneous function of degree 1 in S. Gauge surfaces are equipotential surfaces used to 
characterize the domain of statically admissible stresses. They completely characterizes the effective response 
and they correspond to the yield surfaces in rate-independent plasticity [31]. The effective gauge surface is 
defined as

S = {X: u (S) = &n+0}. A4)

[31] proposed an estimate for the gauge surface under the form of equations (8) and (9). These equations 
give the value of the function X (S) for any tensor S, since the normalized tensor S = S/X (S) belongs to 
the effective gauge surface.
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Appendix A.2. A model for porous FCC polycrystals with intragranular voids
Then, the case of a porous FCC polycrystal with intragranular spherical voids (isotropie distribution) is 

considered following [18]. In each grain of the polycrystal, the material surrounding the voids is governed 
by this stress potential (n > 1)

évp
du
d-(a) with u(a)

12
Y o To
n +1 A—-f

I- : ^(s)h 
To J

(A.5)

where y0 and t0 are two constants. It corresponds to a simple power law function without hardening and 
the corresponding viscoplastic strain rate is specified in equation (2). Since the potential u in (A.5) is still a 
positively homogeneous function of degree n + 1 in a (as in the previous subsection), the effective dissipation 
potential U can be written under the following form

U(E)
Y o to f|A (S) h ”+1 

n + 1 V To J ’
(A.6)

where A (S) is still a homogeneous function of degree 1 in S. As previously, the gauge surface is defined as

—n •
S = {S : u (S) = Tn+r}’ (A.7)

and, again, en estimate of the gauge surface (A.7) leads to an estimate of the effective potential (A.6). 
The model proposed in [18] is based on a double up-scaling process. First, an estimate is derived for 
porous FCC single crystals. In this first up-scaling process, the voided single crystal is idealized as a hollow 
sphere assemblage (the representative volume element is idealized as an assemblage of an infinite number of 
homothetic hollow spheres filling up the entire volume). Then, this estimate for a porous single crystal is 
used together with a Voigt-type assumption (homogeneous strain rate in the polycrystal) to derive a model 
for the overall behavior of the polycrystal. For a purely hydrostatic loading, this model predicts that the 
orientation of the cubic crystal has no influence: the obtained estimate is equivalent to the estimate for the 
porous monocrystal under hydrostatic loading. A fully analytical gauge surface of [31] type is then derived 
from this result (equations (8), (9)). a is adjusted in order to match with the hydrostatic stress obtained 
in [19], in which the porous monocrystal was idealized as a sequential laminate of infinite rank obeying an 
isotropic lamination sequence. This estimate based on sequential laminates was found to be superior to 
more classical estimates based on hollow sphere assemblages. Then, Y is adjusted in order to match with 
the equivalent stress obtained with the model of [33] in the case of a dense polycrystal (f = 0). The two 
up-scaling processes are presented hereafter.

Appendix A.2.1. First up-scaling: porous FCC monocrystal
Let us consider a representative volume element (RVE) made with a statistically uniform distribution 

of voids and a crystalline matrix with FCC structure. Matrix is identified as phase r = 1 and voids are 
collectively identified as phase r = 2. The behavior of the crystalline matrix is purely viscoplastic. The 
domains occupied by the crystalline matrix, the voids, and the RVE are respectively denoted by Q(1), Q(2), 
and Q. The viscoplastic response of the matrix is characterized by a convex potential u such that the stress 
and strain rate tensors are related by (A.5). The potential u can be written under the following form

u(a)
12To Y o

n +1 A—J
- : ^(s) ® ^(s) : -
To To

(n+1)/2

(A.8)

where (g> denotes the tensor product. Alternatively, the viscoplastic behavior of the matrix can be derived 
from the dissipation potential w (which is the Legendre transform of u):

w(evp) = sup {a : evp — u(a)}
&

(A.9)
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The macroscopie response (defined as the relation between the volume averages of the stress and strain-rate) 
can be characterized by an effective dissipation potential w such that (e.g. [32])

S = dW (È vp),
d È vp ’

(A.10)

W(Èvp) = (1 - f ) min / w (£vp(x)) dQ.
êvpeJc(Evp) |Q(1) Un(i)

(A.11)

Introducing the following notation for the average over Q(1), it reads

W(Èvp) = (1 - f ) min <w(êvp)>n(1) , (A.12)
évPeK(Evp)

where f = |Q(2)|/|Q| is the volume fraction occupied by the voids. K ^ÈvpJ is the set of kinematically 

admissible strain-rate fields

K (Èvp évp eTj £vp(x) V Gs ii(x) in Q A u = Èvp • x on dQ j , (A.l3)

where Gs denotes the symmetric part of the tensor product, dQ is the boundary of Q, T is the set of 
symmetric second-order tensors.
An estimate of the effective dissipation potential w can be obtained from (A.12) following the the approach 
initiated by Gurson [34]. Let us introduce the following fourth-order tensor

M
1

T0

12

^^(s) G ^(s).

s=1

(A.14)

Using the following general property for a convex function ^>(x) such that ^K=1 Ak^(xk) > ^(^K=1 Akxk)

for Y, fc=i Ak = 1, the convex potential u can be bounded by

u(a) > u_(a) 12 to 7 o 1
n +1 y 12 to

When deriving this expression with respect to a, one gets

-a : M : a
(n+1)/2

£vp = 70
1

12 to
a : M : a

(n-1)/2

M : a.

Introducing L the pseudo-inverse of M such that M : L : M = M, one gets

èvp : L : èvp = 12 to^2 1
12 to

-a : M : a

and
1

12 to
a : M : a

1
revp : L : £vp

1/n

(A.15)

(A.16)

(A.17)

(A.18),12 to7 2

The potential u_ is homogeneous of degree n +1 in a. Thus, one can write a : dCTu_(a) = (n + 1)u_(a) and 
a : £vp = (n + 1)u_(a). Taking into account the incompressibility of the matix together with expressions 
(A.18) and (A.15), the dissipation potential can be bounded by

w(£vp) < w+(£vp)
( i2raio 7 1^2£vp : L : £vp)

< m+1 y 12 ToY0 J
y +to

(m+1)/2

if tr(£vp) = 0 
otherwise

(A.19)

n
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where m = 1/n. The fourth-order tensor M is cubic and can be expressed in closed-form, considering the 
following fourth-order tensors I, J, S with components

lijki = 1/2 (Sikàji + Suôjk) (A.20)

J ijki = 1/3Sij Ski (A.21)

Sijkl — Sri Srj Srk Srh (A.22)

where S is the Kronecker symbol. I is the usual fourth-order identity tensor and J is the usual fourth-order 
projector on hydrostatic symmetric tensors of order 2. Two additional fourth-order tensors are introduced 
Ka = S — J and Kb = I — S, so that each fourth-order cubic tensor can be decomposed into J, Ka, and Kb. 
Some direct algebra leads to the following expressions for M and L

M = - Ka + -  ̂Kb, L = T Ka + 3T0 Kb. 
tq 3to 2 2

(A.23)

Note that potential w+ in (A.19) together with this closed form expression for L is no longer explicitly 
dependent on the Schmid tensors. The present model follows an approach initiated in the seminal work 
of [34]. It consists in using the non-linear variational principle (A.11) with suitably chosen velocity fields 
leading to an upper bound for the effective potential. The representative volume element is considered as 
an assemblage of an infinite number of homothetic hollow spheres filling up the entire volume. The effective 
potential is bounded by using the following velocity field in any given sphere

• b3
rîi(x) = Em —£ + Ed • x, (A.24)

where b is the radius of the sphere, — = |x|, £ = x/|x|, and x is the position vector relative to the center of 
the sphere. For clarity, Evp is replaced here by E. Em is the hydrostatic component of E, Em = 1/3 tri?, 
and Ed its deviatoric part Ed = E — Emi. The strain rate writes

b3
—3Em —3£ £ + Ed. (A.25)

(A.26)

The effective potential is then bounded by

. 1 — f
W(E) - (4/3)n-3 - a3) Js

where S is the unit sphere and a is the void radius so that f = (a/b)3. Using inequality (A.19), one gets

1

b b3w I —3Em —3 £ £ + Ed) —2 d—dS (£),

W(E) — (4/3)nb3 /s

b b3w+ ( — 3Ém —3£ ®d £ + Ed) —2 d—dS(£) (A.27)

w(E) — 1 12 Toy q 1
ré : L : è

(m+l)/2
—2 d— dS(£). (A.28)

(4/3)nb3 J S Ja m +1 V12 TO^O 
This right hand expression is then bounded by applying the Cauchy-Schwarz inequality to this surface 
integral

w(E) — 1 (4n)(1- -m)/2 12 toYo 1
(4/3)nb3 Ja m +^V J S 12 TOÎo

By using the velocity field (A.25), in this expression, one gets

r, è. : L : è dS(£)
(m+1)/2

—2 d—.

w(E) — 12 tqŸ q f 
m + 1 Jf

K9E2-----+9Em o +
1

12 tq^02 m y2 12 To7 0

(m+1)/2
ISd : L : Ed ) dy,

(A.29)

(A.30)

where k = (11/15)tq.

or
b

1
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Appendix A.2.2. Second up-scaling: polycrystal
In the second transition of scales, the domain il consists of the polycrystal idealized as an heterogeneous 

material with N phases (domains Q(r), volume fractions c(r)) described by the overall behavior of a porous 
single crystal. Random orientation is considered for each phase of the polycrystal. The local potential w(r) 
in each phase r is obtained by the first scale transition and corresponds to the right hand side in expression 
(A.30). As before, the effective strain rate potential reads

W(È)
N

min c(r)
éeK(Ê)

w(r) (è)\ 
v Vn(r) (A.31)

Using a Voigt-type assumption (homogeneous strain rate in the whole volume), one gets

N

w(È) < ^c(r) (w(r)(È)^
r = l

Q(r)
(A.32)

Note that, in this expression, the tensor È has to be expressed in the local basis of each phase r. For any 
phase r, there is a second order tensor Q(r) such that

w(r)(È) = w(0)(Q(r) • È • (Q(r))T),

where

w(0)(è) 12 toYo 1 „ .9 K 1
--- Qa — + .èd : L:è

(m+1)/2

d' dy.

(A.33)

(A.34)m +1 Jf V12 toYo m y2 12 toY2

For a statistically uniform distribution of grains and for an infinity number of grains, the representative 
volume element can be considered as a spherical in shape volume in which each point corresponds to a 
grain. Then (A.32) can be evaluated by an integration over the unit sphere S such that

w(È) < (w(0)(Q • È • Qt^ , (A.35)

where the following notation is used (x)S = 1/(4n) fS xdS. One gets

1 nA2 , 1 ir 1 / / 1 * ^ \ (m+i)/2'W(È) < ( (49Em^ + Y2Èd(Q) : L* : Èd(Q)
m + w f \ Vyo y2 Yo

dy, (A.36)

where k* = (12(1 m)/(m+1)/r0)k and L* = (12(1 m)/(m+1)/r0)L. Then the Cauchy-Schwarz inequality i 
applied

is

w(È) < 1 K* 1 /729È^^ + 77 (Èd(Q) : L* : i?d(Q)to Y o ,
m + U/ YYiT“my2 ' "Yo

(m+1)/2

dy. (A.37)

Then, considering Èd(Q) : L* : Èd(Q) = Èd : L*(Q) : Èd together with a result from [35] to get the
orientation average of a fourth order tensor, one gets

/Èd : L*(Q) : Èd) = 3312(1-m)/(m+1)^0o, 
\ /s 20 eq

(A.38)

where Èeq = y/2/3Èd : Èd. Then (A.37) writes

• /» 1 / \ (m+1)/2W(È) < ^ I ( 729i?mKy + vyq*È2q) dy,
m +1jf \Y 0 m y2 Y o

(A.39)

where q* = (33/20)12(1-m)/(m+1).

1

S

S
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Appendix A.2.3. Dérivation of a gauge surface
In the case of perfect plasticity (m ^ 0), the inequality (A.39) writes

r 1 f k* \ 1/2
W(J5) < t„ y yâ + dy. (A.40)

The yield surface associated with this effective strain-rate potential writes

± f ^\ + 2fcosh f—= ^\ - 1 - f2 =0. (A.41)
qM, T0 J \VK* T0 J

This result can be found directly by using a lemma given in [36] (Appendix A). By analogy with the 
work of [31] it is then proposed to extend this yield surface in plasticity to the following gauge surface in 
viscoplasticity

q* A2
+ f h*

yym
~\ +

n — 1
n + 1

(h*)-1 yym 1
n - 1 f 2 

n + 1
0, (A.42)

where
h* (x) 1 + 11 

n

n
(A.43)

Accurate homogenization estimates are already available for two particular cases: fully dense polycrystals 
under pure shear loadings [33], and porous polycrystals under pure hydrostatic loadings [19]. As it stands, 
the above gauge surface does not recover those accurate estimates, but it can be easily modified to do so. 
First, the coefficient k* entering h* is adjusted in order to match with the hydrostatic stress predicted by 
the homogenization estimate of [19], in which the porous monocrystal was idealized as a sequential laminate 
of infinite rank obeying an isotropic lamination sequence. This estimate based on sequential laminates was 
found to be superior to more classical estimates based on hollow sphere assemblages. Second, q* is adjusted 
in order to match with the shear stress predicted by the linear-comparison homogenization model of [33] for 
fully dense polycrystals (f = 0). In conclusion, the gauge surface is expressed as

2 n/(n+1) y2
yeq

~A2 +f h** ym— +
n - 1 
n + 1

(h**)”1 ym~Y 1
n - 1 f 2 
n + 1

0, (A.44)

where
h** (x) = 1 + -

n aLAM/to
|x| 1+n n1 (A.45)

For simplicity, aLAM/to and (à0/r0)2n/(n+1) are respectively denoted by a and P in equations (8) and (9). 
Thus function h** coincides with function h (equation (9)). Equations (A.2) and (A.6) give

Evp = yo(H) sign(A)JA. (A.46)

The definition of the gauge surface (A.7) together with this relation

lead to the following equality

Thus, equation (A.46) writes

dS d A 
dA dA

dA _ A dS
dA = A : dS dA.

oX,

IS v Y 0
1 d S

sign(A).
n

(A.47)

(A.48)

(A.49)
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By writing
dS 1 dS (Smi) . dS (sd)

dS 3 i + d S d

and
dS ( = f (h**' ( Ëm) - ^-1 (h**)-2 ( Ëm) h**' ( Ëm)

B S m n +1

dS (Sd) 3 f 1 Yn/(n+1} _
dS d V ïo/ro) d’

h** (x) 1 n +1
aLAM/t0 n 1+

1
aLAM/t0 n

1 |x| 1+1 n—1
i i |x|1 sign(x),

(A.50)

(A.51)

(A.52)

(A.53)

it leads to equation (5).

Appendix A.3. Time-integration of the micromechanical model 
In closed form, the analytical model presented in 2.3 writes

/
S = C :

1

E — Y o

f (1-n -1 
n ~ l 13 n + 1

h-2 (Sm/A)) |h' (Sm/A) | sign(Sm) i + 3(Sd/|A|)N

V
f (1 - n-!h-2 (Sm/A^ |h' (Sm/A) | |Sm/A| + 2(S eq/A)2 y

(A.54)

with C = § . This equation can be written under the form Y = F [Y, EJ where Y is a vector containing
the stress S. For a time increment AT, vector Y is updated by a Runge-Kutta (3)2 FSAL (First Same As 
Last) method. Tolerance factor e is set to 10—5. General algorithm writes

• Initialization kpsAL = F(Yo), St = AT, At = 0, p = 0

• While At < AT do

1. Evaluate Yp+1 by a Runge-Kutta method with order 3
k1 = kpsAL

k2 = F (Yp + Ô21k1 St)
k3 = F (Yp + a^^St + a32k2St)
Yp+1 = Yp + (61k! + l>2k2 + &3k3 )St

2. Evaluate Yp+1 by a Runge-Kutta method with order 2
kFSAL = F (Yp+1)
"Yp+1 = Yp + (d1k1 + £^2 + <?3k3 + (4 kpSAL)St

3. Evaluate the relative error n between the 2 methods
n = max ( yY — Yp+Jl/lYp+J + 10 20h where Y(i} denotes the i-th component for YAi} Ai}

4. Convergence criterion
if n < e then

Yp := Yp+1
At := At + St
p := p +1

endif
5. Evaluate the optimal time step St

if n < e then
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Stopt = min ^2, (e/n)1/3) St

else
Stopt = max ^1/2,0.9 (e/n)1/3 j St 

endif
St = min (Stopt, AT — At)

• end

where coefficients «j, bj and dj are defined as a21 = 1/2, a31 = 0, a32 = 3/4, b1 = 2/9, b2 = 1/3, b3 = 4/9,
d1 = 7/24, d2 = 1/4, d3 = 1/3 and d4 = 1/8. During the algorithm, when function F needs to be evaluated, 
the scalar |A| is obtained by solving the non linear equation (8) by a Newton method. Particular care must 
be taken when initializing the Newton algorithm. Equation (8) can be written under the following form

1(Se,/A)2 + f n — 1
n + 1

h(Sm/A) +
n1

n1
n + 1

h-1 (Sm/A) 1
n — 1 f 2 

n + 1
0. (A.55)

The inequality x + 1/x > 2 when x > 0 allows to write the following inequality (fi > 0)

|A| > |A0|
Se

v? i1—fÆï r
(A.56)

Newton algorithm is initialized using this lower bound for |A|. Note also that the purely hydrostatic case 
(Seq = 0) leads to the straightforward solution for |A|

/ / M \\-n/(n+1)|A| = (anf-1/n — 1JJ |Sm|. (A.57)

Similarly, the purely deviatoric case (Sm = 0) leads to the straightforward solution for |A|

S|A| = eq =. (A.58)
\fi (l + S f2)

To the end, Newton algorithm writes

• From Y, compute the absolute value of the stress triaxiality Xs = |Sm|/Seq, compute |A0| with 
equation (A.56)

• if Xs > 105 then evaluate |A| from the purely hydrostatic solution (A.57), endif and exit.

• if Xs < 10-5 then evaluate |A| from the purely deviatoric solution (A.58), endif and exit.

• while q < 1000, do

Aq : = Aq+1

Aq+1 = Aq — S (Aq) /^S (Aq)
Convergence criterion

if |Aq+1 — Aq| — TOL < 0 then |A| = |Aq+11 exit 
else q := q +1 endif

end

The derivative cfiS (A) writes

dS
d\

(A)
2 (Seq)2
fi A3

Sr SmfÂ^ h'(Sm/A) — h-2(Sm/A)h'(Sm/A)
n +1

(A.59)
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(111) (111) (111) (111)
m(s) [011] [101] [110] [011] [101] [110] [011] [101] [110] [011] [101] [110]

Table A.5: Slip systems for face-centered cubic crystals with Schmid and Boas notations.

k 1 2 3 4 5 6 7 8 9 10 11 12
1 ai a2 a2 a4 a5 a5 a5 a6 a3 a5 a3 a6
2 a2 ai a2 a5 a3 a6 a4 a5 a5 a5 a6 a3
3 a2 a2 ai a5 a6 a3 a5 a3 a6 a4 a5 a5
4 ai a5 a5 ai a2 a2 a6 a5 a3 a6 a3 a5
5 a5 a3 a6 a2 ai a2 a3 a5 a6 a5 a5 a4
6 a5 a6 a3 a2 a2 ai a5 a4 a5 a3 a6 a5
7 0,5 a4 a5 a6 a3 a5 ai a2 a2 a6 a5 a3
8 a6 a5 a3 a5 a5 a4 a2 ai a2 a3 a3 a6
9 a3 a5 a6 a3 a6 a5 a3 a2 ai a5 a4 a5
10 a5 a5 a4 a6 a5 a3 a6 a3 a5 ai a2 a3
11 a3 a6 a5 a3 a5 a6 a5 a5 a4 a2 ai a2
12 a6 a3 a5 a5 a4 a5 a3 a6 a5 a2 a2 ai

Table A.6: General form of the dislocation interaction matrix a.

Appendix A.4. Slip systems
Unit vectors n(s) and m(s) used to define the Schmid tensors n,(s) are recalled in Table A.5.

Appendix A.5. Dislocation interaction matrix a
The dislocation interaction matrix a writes under the form specified in Table A.6.

Appendix B. Numerical model: parametric studies 

Appendix B.1. Statistical representativeness
A parametric study has been carried out in order to determine the number of grains within a unit cell 

required for statistical representativeness. This is a difficult issue that cannot be addessed thoroughly. First, 
it is clear that the notion of representativeness is an asymptotic notion (the exact representativeness can only 
be reached for an infinite medium) and secondly, it depends on the “quantity of interest”. Here, stationarity 
is only studied for the effective tensile curve, and particularly for the maximal overall stress. Computations 
are performed on cells with 643, 1283, 2563 and 5123 voxels. The mean number of voxels per grain is fixed to 
323. By doing so, a cell with 8 grains contains 643 voxels, 64 grains leads to 1283 voxels, 512 grains leads to 
2563 voxels, 4096 grains leads to 5123 voxels. For each case, 10 realizations of microstructures are drawn as 
depicted on Figure B.14, B.15, and B.16, except for the case with 4096 grains (5123 voxels), for which only 
one microstructure is considered (Figure B.17). The tensile curves obtained from these microstructures are 
shown in Figure B.18: only one case per volume size is reported here, as the same trend has been observed 
with the other realizations. The simulations are performed using the parameters reported in Table 3 along 
with the values 70 = 0.5 and 70 = 58 MPa determined in Section 4. The overall maximal stress Rm versus 
the number of grains in the cells is plotted in Figure B.19. One can observe that dispersion is low when 512 
grains are considered. Thus, these figures tend to indicate that a single realization with 512 grains in the 
aggregate seems to be a good compromise between size and accuracy.
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Figure B.14: 10 different microstructures considered for the statistical representativeness study. 8 grains in each cell.

Figure B.15: 10 different microstructures considered for the statistical representativeness study. 64 grains in each cell.

Figure B.16: 10 different microstructures considered for the statistical representativeness study. 512 grains in each cell.

Figure B.17: Microstructure with 4096 grains considered for the statistical representativeness study.

577 Appendix B.2. Spatial resolution
578 A second parametric study has been carried out in order to determine a suitable spatial discretization
579 (in voxels) of the microstructures. This parameter is closely related to the number of voxels which should
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0.8

Figure B.18: Simulated tensile curves. Effect of the number of grains in the cell. Simulations performed on the top left 
microstructures of Figure B.14 with 8 grains, Figure B.15 with 64 grains, Figure B.16 with 512 grains and the microstructure 
of Figure B.17 with 4096 grains.
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Figure B.19: Maximal overall stress obtained from the simulated tensile curves. Effect of the number of grains in the cell. 
Simulations performed on the microstructures of Figure B.14 with 8 grains, Figure B.15 with 64 grains, Figure B.16 with 512 
grains and the microstructure of Figure B.17 with 4096 grains.

580 be used for each grain of the aggregate in order to capture the field fluctuations in each grain leading to
581 an accurate overall response of the aggregate. A specific microstructure with 100 grains is considered. The
582 number of voxels used in its spatial discretization is increasing as shown in Figure B.20. Once again, the
583 simulations are performed using the set of parameters reported in Table 3 along with 70 = 0.5 and r0 = 58
584 MPa.
585 The simulated tensile curves are shown in Figure B.21. A very good agreement between the different
586 cases is observed: all curves superimpose almost perfectly. Then, the question of spatial discretization of the
587 microstructures in the porous case is addressed. The question is closely related to the number of voxels which
588 should be used for each intragranular void inside the aggregate. As explained in [37], this question should
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Figure B.20: For the same microstructure, increase of the number of voxels used for the spatial discretization: (a) 323 voxels, 
(b) 643 voxels, (c) 1283 voxels, (d) 2563 voxels, (e) 5123 voxels.

E33

Figure B.21: Simulated tensile curves. Effect of the number of voxels (discretization). Simulations performed on the mi
crostructures of Figure B.20 with 100 grains.

be addressed, ideally, realization by realization, by conducting parametric studies in which the number of 
voxels is increased until stationarity of the quantities of interest (here the maximal overall stress) is reached. 
Following this procedure would require a formidable computational effort in the porous polycrystal case 
where we want to put as many as possible of the smallest possible voids inside the grains with respect to the 
available RAM memory. To fix ideas, a simulation with 5123 voxels already requires 140 GB RAM. Instead 
of that, we followed a procedure already implemented in past studies [37, 38, 28] which consists in examining 
a cubic unit-cell with a single void at its center and determining how many voxels are required to achieve 
a reasonable compromise for a single void. The porosity is set to 4% and a study relative to the spatial 
discretization is performed. The microstructures are plotted on Figure B.22. The crystal surrounding the 
void is oriented along the laboratory basis (Euler angles (^>1, $, ^2) = (0,0,0)). For each discretization, the 
obtained tensile curve is plotted in Figure B.23. This figure tends to indicate that the discretization with 
323 voxels is a good compromise between size and accuracy. It corresponds to a number of 1310 voxels per 
void. In Section 3 we adopt a discretization with 5123 voxels so as not to increase too much the amount of 
required memory. For each porous microstructure, the porosity and the number of voids are specified to get 
approximately 1310 voxels per void.
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(a) (b) (c) (d)

Figure B.22: For the same microstructure, increase of the number of voxels used for the spatial discretization (porous case, 
single void): (a) 163 voxels, (b) 323 voxels, (c) 643 voxels, (d) 1283 voxels.

E33

Figure B.23: Simulated tensile curves for porous monocrystal with the microstructures displayed in Figure B.22. Effect of the 
number of voxels (discretization).
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