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Abstract Nowadays, authentication is required for both physical access to
buildings and internal access to computers and systems. Biometrics are one
of the emerging technologies used to protect these highly sensitive structures.
However, biometric systems based on a single trait enclose several problems
such as noise sensitivity and vulnerability to spoof attacks. In this regard, we
present in this paper a fully unobtrusive and robust multimodal authentica-
tion system that automatically authenticates a user by the way he/she answers
his/her phone, after extracting ear and arm gesture biometric modalities from
this single action. To deal the challenges facing ear and arm gesture authenti-
cation systems in real-world applications, we propose a new method based on
image fragmentation that makes the ear recognition more robust in relation to
occlusion. The ear feature extraction process has been made locally using Lo-
cal Phase Quantization (LPQ) in order to get robustness with respect to pose
and illumination variation. We also propose a set of four statistical metrics to
extract features from arm gesture signals. The two modalities are combined
on score-level using a weighted sum. In order to evaluate our contribution, we
conducted a set of experiments to demonstrate the contribution of each of the
two biometrics and the advantage of their fusion on the overall performance
of the system. The multimodal biometric system achieves an equal error rate
(EER) of 5.15%.
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1 Introduction

Nowadays, smartphones are used for various purposes, such as store sensitive
personal data, banking transactions, etc. The safety of these devices is there-
fore fundamental. Security systems based on passwords, PINs and schemas
are vulnerable to multiple attacks and cumbersome to remember. To remedy
these problems, biometrics are gradually becoming part of our daily life as
an alternative to ensure the security of the connected systems. Indeed, mod-
ern connected objects and especially smartphones offer a plethora of sensors
embedded in a single omnipresent device (cameras, magnetometer, gyroscope,
accelerometer, touch screen, microphones, proximity detector, etc.) that pro-
motes the development of biometric authentication systems in real-world ap-
plications.

Biometrics are based on natural and innate characteristics of each individ-
ual. These characteristics can be physical, such as fingerprints, iris and face, or
behavioral, such as gait and voice. However, biometric systems using a single
biometric modality, called unimodal biometric systems, suffer from intraclass
variability, interclass similarity, data quality, non-universality, sensitivity to
noise, and other factors [1]. These problems can be reduced by implementing
multimodal biometric systems using and combining several biometric traits
which makes it possible to evaluate the system more precisely and signifi-
cantly improves its performances. Indeed, the major challenge in designing
secure, large-scale real-world deployable and marketable biometric systems is
the unavailability of high quality data. This data are highly variable depend-
ing on different lighting conditions, distance to the camera, equipment, etc.
Multimodality solves these problems by providing the system with more data
to rely on. Note that, in order to take the full advantage of the multimodal ap-
proach, it is essential to implement a good method for fusing different sources
of biometric information [2]. Indeed, authors of [2] , [3] and [4] have demon-
strated that a multimodal system can be fooled by spoofing only a subset of
the biometric traits.

In recent years, arm gesture and ear biometrics gained considerable atten-
tion and are regarded as promising biometric traits, but both of them have
their strengths and weaknesses when used for unimodal biometric systems.
Arm gesture signals are generated from sophisticated human body functions
very difficult to counterfeit. In addition, unlike physiological biometric features
such as face, they can only be captured in a living individual. Ear recognition
is one of the active fields of biometric authentication that received much more
attention. The ear has a rich and stable structure that is permanent with
increasing age and does not suffer from facial expression variations at the
same time [5]. Most of the proposed arm gesture and ear recognition tech-
niques in literature obtained satisfactory recognition results under controlled



Title Suppressed Due to Excessive Length 3

conditions. Though, their performances deteriorate in uncontrolled conditions.
In real-world applications, arm gesture signals are affected by noise and ear
images are affected by scaling, rotation, illumination and occlusions by hair
strains or accessories and some of the proposed techniques need user interac-
tion. Therefore, arm gesture and ear authentication systems for mobile devices
in uncontrolled conditions still a challenging problem. Indeed, mobile devices
degrade the biometric data quality, which reduces the accuracy of identifica-
tion and limits their security applications. Consequently, efficient and robust
authentication systems in real-world applications for both arm gesture and ear
are still a challenging problem and need to be improved.

In this paper, we present an efficient and robust multimodal biometric
authentication system based on the combination of ear as a physical biometric
and arm gesture as a behavioral one both captured through user smartphone
to restrict smartphone access only to the legitimate user. The proposed system
is non-intrusive, the arm gesture signals and ear images can be collected in the
same action of responding to a call. First, the two biometric traits (ear and
arm gesture) are separately evaluated. Next, we combine them using score-
level fusion to arrive at the final decision. In ear biometric, we first apply a
pre-processing step which corrects non uniform illumination, suppresses noise
and enhances contrast. The feature extraction process has been made locally
using Local Phase Quantization (LPQ) [6], so that the system gets robust
with respect to pose and illumination variations. In this work we propose a
new method based on image fragmentation that is quite robust with respect
to ear partial occlusions. This step allows us to ensure the robustness of the
proposed system as the ear image is taken under relaxed and unconstrained
settings. Indeed, occlusion is one of the biggest problems of ear recognition
[7]. For a real application, the users cannot be asked to remove their earrings,
piercings and hair each time they authenticate themselves. The classification
of ear images is done using Euclidean distance. For arm gesture, we propose
the use of a set of four statistical features to identify a user. The classification
is done using random forest classifier. Fusion was done on score-level using
weighted-sum which has many advantages with respect to implementation,
computation and recognition performances. We evaluated the performance
of the proposed system on our proprietary database comprising arm gesture
signals and ear images collected under uncontrolled conditions collected from
7 volunteers. To enlarge the set of ear images we also used the Annotated
Web Ears (AWE) database [8]. Also to enlarge the set of arm gesture we used
the Hand Movement, Orientation, and Grasp (HMOG) database [9]. AWE
and HMOG collect data from 100 subjects under uncontrolled conditions. In
order to carry out the experiments on a larger database than ours, AWE and
HMOG were mixed to create a virtual biometric database which makes a
total of 107 subjects (100 from AWE and HMOG and 7 from ours). In this
paper, we also did a comparative study with [10] which proposes a multimodal
biometric system that uses the same biometric traits as ours. Experimental
results confirm the effectiveness and robustness of the proposed system.

The significant specific contributions of this paper are as follows:
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1. Proposal of an efficient, robust and non-intrusive multimodal authentica-
tion system combining arm gesture and ear to authenticate smartphone
users.

2. Proposal of a new method based on image fragmentation to solve the oc-
clusion problem in ear recognition systems.

3. Proposal of the use of four statistical metrics for feature extraction from
inertial sensor signals.

All in all, the proposed multimodal biometric system successfully over-
comes real-word application challenge and has advantages such as non-intrusive,
low recognition error rates and strong security, even if under uncontrolled en-
vironments.

The rest of this paper is organized as follows. Section 2 is a review of
previous works related to multimodal biometric systems. Section 3 describes
the proposed system in detail, while Section 4 provides the results of the
experiments conducted on the multibiometric database. Finally, conclusion
and future directions of research are drawn up in Section 5.

2 Related work

The various sensors existing on intelligent mobile devices have enabled the
implementation of different biometric authentication systems that have made
it possible to circumvent the problems of traditional systems (PINs, passwords,
etc.). However, the acquisition of biometric data in real environments exposes
the data to degradation and presents challenges to the security community. To
minimize the weaknesses of different biometric methods while enhancing the
advantages of them, several multimodal systems combining different biometric
features in mobile devices, especially for smartphones, were proposed in the
literature. We will present some of them in this section.

To authenticate a smartphone user, Akhtar et al. [11] proposed a multi-
modal biometric system that combines face, hand micro-movements and touch-
stroke patterns of the user while he/she is entering a text-independent PIN
of fixed length which achieves 3% EER obtained with 10 training samples. In
[12], the authors combined electrocardiogram (ECG) signals and fingerprint
that can be applied for airport traveler authentication at border controls. They
achieve an EER equal to 0.46% and a FAR equal to 2.96 %. Face and voice
were fused together in order to enhance access security to user’s mobile device
by Memon et al. [13] with an EER = 11.87%. The iris has also been combined
with other biometric features on smartphone to overcome the challenges pre-
sented by this platform. Zhang et al. [14] have combined iris with periocular
region which can be obtained simultaneously with the irises when using mo-
bile devices. The results show an EER = 0.6%. Sequeira et al. [15] have been
motivated by the raising interest in mobile biometrics applications. Moreover,
by the increasing interest in multimodal biometrics to develop MobBIO, a
multimodal database comprising face, iris and voice samples acquired in un-
constrained conditions from 105 volunteers. Gofman et al. [16] have studied
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the effects of face and voice sample quality on recognition accuracy in mo-
bile devices. They have developed a multimodal biometrics, which integrate
information from the face and voice using a novel score-level fusion scheme
driven by the quality of the captured biometric samples. The experimental
results have shown that the approach increases accuracy by 4.14% and 7.86%
compared to using face and voice recognition individually, respectively. Face
and voice were fused by Abozaid et al.[17] to enhance the Wireless Body Area
Network (WBAN) security. Mahmoud et al. [18] have presented a multimodal
biometric authentication method to confirm the identity of a person based on
his face and iris features. Wu et al. [19] proposed LVID, a multimodal biomet-
rics authentication system for smartphones, which combines the advantages of
lip movements and voice.

Dhvani et al. [20] have used the Raspberry Pi as a low-cost, wireless and re-
mote enrollment node to develop a multimodal authentication system combin-
ing fingerprints and facial images. The authentication was done by biometric
service hosted on the cloud as a Software-as-a Service. To secure the transmis-
sion, the authors have applied the modified AES-256 (Advanced Encryption
Standard). To develop an authentication system for the IoT in eHealth, Habib
et al. [21] have proposed to combine: patient’s physiological biometric, pa-
tient’s behavioral biometric and patient’s smart phone radio fingerprint. They
have bound together the biometric modalities and radio fingerprinting tech-
nique as a unique identifier to not only authenticate the patient but also the
device transmitting health parameters. Face and iris biometric traits, collected
by a single high quality camera, were used by Macek et al. [22]. The image
of the face was used to identify the user and the image of the iris was fur-
ther used to verify the identity. Olazabal et al. [23] have used discriminant
correlation analysis (DCA) to fuse features from face and voice and used the
K-nearest neighbors (KNN) algorithm to classify the features. The approach
was implemented on the Raspberry Pi IoT device. The results show that fu-
sion increased recognition accuracy by 52.45% compared to using face alone
and 81.62% compared to using voice alone. To authenticate a mobile device
user, Gofman et al. [24] have proposed feature-level fusion of face and voice.
They applied Discriminant Correlation Analysis (DCA) to the fusion of in-
compatible features and compared the identification accuracy and execution
times of several classifiers. The experimental results have shown that the mul-
timodal approach outperformed the unimodal face and voice approaches for
all classifiers. The greatest improvement was achieved using the Support Vec-
tor Machines (SVMs). Teeth image and voice collected from smartphone were
used by Kim et al. [25] to develop a multimodal biometric system. The perfor-
mance evaluation was conducted using a database acquired in smartphone for
40 subjects. The experimental result have shown 8.59% of EER in case of teeth
verification, 11.73% in case of voice verification and the multimodal speaker
authentication result presented the 4.05% of EER. The authors of [26] have
presented a multimodal biometric system for mobile authentication combining
voice, face and chirography-based. The fusion strategy is based on modality
score level fusion that takes into account a voice quality measure. An EER of
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0.1% has been obtained for use in a quiet office, and an EER of 0.3-0.6% for
use in a noisy cafeteria. The authors of [27] have shown the potential of mul-
timodal biometrics for protecting consumer mobile devices from unauthorized
access. They have implemented Proteus based on face and voice biometrics.
They have compared Proteus recognition accuracy to unimodal systems based
on face and voice biometrics (In both cases: score-level fusion and feature-
level fusion.). For their experiments, they created a CSUF-SG5 homegrown
multimodal database of face and voice samples collected from University of
California, collected in a variety of real-world settings.

Arm gesture is a new biometric trait that has attracted the attention of re-
searchers in recent years. Ear contour has been investigated for several decades
as a biometrics trait, however it is still an open field of study due to the num-
ber of unresolved challenges. It presents such as a tendency of ears to continue
growing linearly as we age and partial or total occlusion by hair, earrings, etc.
This is why researchers have thought of combining the ear with other biomet-
ric modalities to compensate for these disadvantages. In [28], a study was pre-
sented on a multimodal biometrics, fusing ear and speech biometrics approach
to authenticate smartphone users. Abate et al. [10] have presented a multibio-
metric system based on the ear and arm gesture when a smartphone user is
responding to a phone call. The ear feature extraction was done using Local
Binary Patterns (LBPs) algorithm [29] and they used Euclidean distance and
Dynamic Time Warping (DTW) for features matching. A score-level weighted
data fusion was exploited to fuse the two biometrics. They achieved 10.04%
equal error rate (EER).

Table 1 summarizes the work presented in the related work. We have taken
the best accuracy rates obtained by the authors in their tests. Note that the
works are not directly comparable as the biometric traits and the datasets
used by the authors are different.

3 Proposed method

Each time a user answers a call or makes a call, the sensors of the mobile
device could record both the movement associated with the arm holding the
device and the image of the ear. We propose to combine these two features
to create a real-time multimodal biometric authentication system consisting
essentially of three elements: ear subsystem; arm gesture subsystem; and the
fusion subsystem. As shown in Figure 1, initially the two biometric traits are
evaluated separately. The two authentication techniques are then combined.

In Table 2, we present the important notations used in this paper. In the
following subsections, we detail each subsystem.
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Table 1 Summary of the surveyed work on multimodal biometric authentication for mobile
devices.

Reference Biometric trait Dataset size Accuracy

[17] Face and voice 100 subjects EER = 0.62 %

[18] Face and iris 106 subjects Accuracy = 99 %

[19] Lip movements and voice 104 subjects Accuracy = 95%

[11] Touch-stroke, phone-movement and face 95 subjects EER = 3 %

[12] ECG and fingerprint 73 subjects EER = 0.46 %

[13] Face and voice 54 subjects EER = 11.87 %

[14] Iris and periocular 630 subjects EER = 0.6 %

[16] Face and voice 54 subjects EER = 14.56 %

[20] Face and voice Not stated Not stated

[22] Face and iris 500 subjects FRR = 1 %

[23] Face and voice 80 subjects EER = 8.04 %

[24] Face and voice Not stated EER = 20.59 %

[25] Teeth image and voice 50 subjects EER = 2.13 %

[26] Chirography, face and voice 100 subjects EER = 0.5%

[27] Face and voice 54 subjects EER = 2.14%

[28] Ear and voice 50 subjects Accuracy = 93.5 %

[10] Ear and arm gesture 100 subjects EER = 0.1 %

Fig. 1 Architecture of the proposed multimodal biometric authentication system based on
ear images and arm gesture signals.

3.1 Ear subsystem

3.1.1 Ear acquisition and feature extraction

Ear image capture can be performed either contextually to a call, or deliber-
ately for authentication purposes. To acquire the ear image, we record a video
that is triggered when a call is received. The videos were recorded using the
volunteers’ smartphones, each volunteer used his/her own smartphone (e. g.
Huawei GR3 2017, Sony Xperia P). We preferred to record a video instead of
taking a single picture directly, because of the difficulty of choosing the ideal
time to trigger the camera when answering a call. To detect the images that
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Table 2 Notations.

Notation Description
−→
A,
−→
G Acceleration and angular velocity vectors

‖
−→
U ‖ Magnitude of vector

−→
U

X Mean of the sequence X
σX Standard deviation of the sequence X

MedX Median of the sequence X
KX Kurtosis of the sequence X
d(p, q) Euclidean distance between p and q
scoreear Matching score of ear system
scorearm Matching score of arm gesture system

MULTIfusion Final fused score
C Accuracy of the system

contain the ear and to choose the image with the highest quality for feature
extraction, we followed the same method proposed by [10].

In any biometric authentication system, the feature extraction phase is
very important. Errors in this phase will propagate through the next phases
which will cause the authentication system to fail. Many studies on ear feature
extraction approaches have been suggested. For a detailed review of the 2D ear
feature extraction approaches, we cordially refer the reader to [8]. However,
their applications are restricted to controlled environments in laboratories,
which slow down the deployment of ear-based authentication systems. Their
performances deteriorate as soon as the images are affected by scaling, rota-
tion, illumination and occlusions by hair strains or accessories. Ear recognition
in unconstrained settings is still an unsolved problem and a challenging task.
To meet this challenge, we first carry out a pretreatment on the original image
to improve its quality before moving on to feature extraction. The pretreat-
ment improves the visibility of image characteristics and details by enhancing
image contrast and dynamics and also reduces noise, which mainly comes from
the acquisition phase. First, the original image is normalized and converted
into a gray level image, this will allow us to reduce the cost of memory and
calculation. Then, the gray level image is filtered by a median filter to reduce
noise. The histogram of the image is then equalized to improve contrast. Once
the pretreatment is done, we apply feature extraction phase. In [8] the authors
have presented an overview of the field of automatic ear recognition. They in-
troduced to the research community a new, fully unconstrained dataset of
ear images gathered ”in the wild” called Annotated Web Ears (AWE). They
also conducted an objective ranking between 8 different techniques (LBP [29],
LPQ [29], BSIF [30], POEM [31], HOG [32], Dense SIFT [33], RILPQ [34] and
Gabor [35] features) for ear feature extraction made on 3 different databases
(IITD II [36], USTB II [37] and AWE [8]). To take into account the results
obtained on the various databases, we calculated the average of the EERs
obtained for each technique on each database. LPQ achieves the lowest EER
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= 14.8%. Based on these results we have chosen to use LPQ for ear feature
extraction.

We will first present the two techniques LPQ and LBP:

– Local Phase Quantization (LPQ): In [6] the authors have proposed a new
descriptor for texture classification that is robust to image blurring and
invariant to uniform illumination changes. LPQ operates in the Fourier
phase computed locally for a window in every image position. The LPQ
value is computed for every pixel. Next, local histograms with 256 bins are
computed within a sliding window. The window is moved with a certain
overlap between two neighboring windows, in the horizontal and vertical
directions over the image and concatenate the resulting local histograms
[38].

– Local Binary Pattern (LBP): It is a texture descriptor for images which
thresholds the neighboring pixels based on the value of the current pixel
[39]. The original LBP operator assigns a label to every pixel of an image
by thresholding the 3×3 neighborhoods of each pixel with the center pixel
value and considering the result as a binary number. Then, the histogram
of the labels can be used as a texture descriptor [40]. Recently, several LBP
variants have been developed in order to improve the texture description
[41].

To address the problem of occlusion, we propose a new, efficient and robust
process based on image fragmentation that is applied before the execution of
feature extraction algorithm (in our case LPQ) but the proposed fragmentation
method can be applied with any other feature extraction method. The main
steps of our method are:

– Step 1 : divide the images into 4 vertical sub-parts of equal size, as il-
lustrated in the figure 2. The vertical sub-parts can be perceived as the
internal and external parts of the ear.

– Step 2 : divide the images into 3 horizontal sub-parts of equal size. The
horizontal sub-parts can be perceived as the up, middle and down parts of
the ear. The number of sub-parts has been chosen to balance efficiency and
minimum calculation cost. Other configurations, with a higher number of
segments, generate a higher calculation cost. If we reduce the number of
segments the system becomes ineffective against occlusion.

– Step 3 : calculate independently for each subpart i/i ∈ {1, · · · , 7} the LPQ
feature vector vi.

– Step 4 : fuse the results obtained from each subpart in a single vector p
representing the biometric feature of the ear. The fusion is done according
to the following formula:

p = v1 ·v2 ·v3 ·v4 ·v5 ·v6 ·v7+v2 ·v3 ·v6+v2 ·v3 ·v4 ·v5 ·v6+v2 ·v3 ·v6 ·v7. (1)

The focus of this formula is to get the system robust with respect to hair
and ear occlusion. Indeed, by analyzing the ear images we noticed several
cases and explained below:
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Fig. 2 In the first step we split the ear image in 4 vertical sub-parts of equal size indexed
from 1 to 4. Image on top is a sample from our database, image on the bottom is a sample
from the AWE database [8].

Fig. 3 In the second step, we split the ear image in 3 horizontal sub-parts of equal size
indexed from 5 to 7.

1. In the case of hair occlusion, we have noticed that the subparts affected
by this occlusion are 1, 4 and 5. These subparts as they are hidden by
hair, their feature vectors v1, v4 and v5 are useless, hence v2 · v3 · v6 · v7,
where we take into consideration only the vi of the subparts that present
useful information from the ear.

2. In the case of earrings occlusion, we have noticed that the subparts
affected by this occlusion are 1 and 7. We therefore take into considera-
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tion that the feature vectors of subparts where the ear is clearly visible,
hence v2 · v3 · v4 · v5 · v6.

3. In case of earrings and hair occlusion, subparts 1, 4, 5 and 7 are com-
pletely hidden and the ear is invisible, hence v2 · v3 · v6.

4. Images have no occlusion. In this case we take into consideration the
characteristic vectors of all sub-parts, hence v1 · v2 · v3 · v4 · v5 · v6 · v7.

3.1.2 Ear classification

In classification phase, we perform a matching between the feature vector of
the input image with those of the template collected during the enrollment
phase. The classification is done by applying the Euclidean distance given by
the equation 2:

d(p, q) =

√√√√ n∑
i=0

(pi − qi)2, (2)

where p = (p1, · · · , pn) and q = (q1, · · · , qn) are the two n-dimensional
feature vectors. The matching score d(p, q) represents the number of matched
key-points between the two templates. The decision of acceptance or rejection
of a person depends on this score. Positive authentication is declared when
d(p, q) is below a threshold. The threshold was chosen based on the experi-
mental results presented in Section 4.1, the threshold chosen is the one that
performs the lowest EER. The Euclidean distance is very simple and does not
consume many resources so it is ideal for real-time applications.

3.2 Arm gesture subsystem

It has been reported in [10] and [42] that each user responses to a call in a
unique way. This uniqueness of movement pattern increases the authentication
accuracy on the one side and makes challenging for impostors to generate
exactly the same movement patterns [10]. We take advantage of this uniqueness
to authenticate the smartphone user. The proposed scheme collects data from
multiple 3-dimensional smartphone sensors in the background and matches
the query pattern with the pre-stored pattern to authenticate the smartphone
owner. First, we collect the sensory data from the accelerometer and gyroscope
sensors, then relevant features are extracted. The feature vectors are fed as
input to the classifier for testing.

3.2.1 Arm gesture acquisition

In order to collect the arm gesture data for our analysis, we developed an
Android application that collects the sensory data from the accelerometer and
gyroscope sensors of the smartphone denoting the user motion when he/she
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answers the phone. To ensure participants privacy, we did not collect any infor-
mation that can be used to identify them. When the user answers the phone,
the accelerometer and the gyroscope in the smartphone detect respectively,
the acceleration values in meter per second square (m/s2) and the change in
the orientations in radians per second (rad/s) along x, y and z axes. For each

sensory readings, we collect 3-dimensional values:
−→
A = (xacc, yacc, zacc) for

accelerometer data,
−→
G = (xg, yg, zg) for gyroscope, and their respective mag-

nitudes ||
−→
A || =

√
x2acc + y2acc + z2acc, ||

−→
G || =

√
x2g + y2g + z2g . The magnitude

has the advantage of making the inertial sensor data independent of device
orientation.

The accelerometer and gyroscope sensors on smartphones are extremely
sensitive and record not only minor hand shakes associated with hand move-
ment, but also interference such as noise which corrupts useful information.
Therefore, in order to be able to perform arm gesture recognition the removal
of unwanted noise from the raw collected data is necessary. Along these lines,
we clean the raw smartphone inertial sensor signals using an average smooth-
ing filter of size 1× 3.

3.2.2 Arm gesture feature extraction

Once the data has been filtered, the signals are segmented into fixed-size win-
dows. For each window Wn and for each signal (accelerometer and gyroscope),
we calculate separately for each axis (x, y, z and also for the magnitude) sta-
tistical features that can discriminate the legitimate user. We propose a set
of four different features from the time domain, namely the Mean, Standard
deviation, Median and Kurtosis. Table 3 provides the details of the selected
features. We chose time domain features instead of frequency domain ones
because their calculation is computationally cheaper and also for their perfor-
mance. So for each window Wn, we get a feature vector of size 32 (4 features
× 8 signals).

Table 3 List of the extracted features from all the dimensions of accelerometer and gyro-
scope.

Feature Formula

Mean: Wn
1
N

∑N
i=1Wn(i)

Standard deviation: σWn

√
1
N

∑N
i=1(Wn(i)−Wn)2

Median: MedWn midpoint of Wn

Kurtosis: KWn

m4

(σ2)2 , where m4 is the fourth moment

To illustrate the process of feature extraction, we present in the figure
4 a sample data collected from the accelerometer in x, y and z direction,
composed of 400 points. As a first step of the feature extraction process, we
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segment the signal into fixed size windows (in the example we have 8 windows
of one second). The next step consists to compute for each window Wn (in the
exemple n ∈ 1..8 ) the statistical features: Mean, Standard deviation, Median
and Kurtosis for the x, y and z directions. The same steps are applied on the
gyroscope data.

Fig. 4 Sample data of 500 points with a window of 1s.

3.2.3 Arm gesture classification

For the purpose of user recognition based on his/her arm gesture, we use
Random Forest (RF) classifier. The fundamental idea behind a random forest
is to combine many decision trees into a single model which makes it more
robust overall predictions. The main reason for the selection of this classifier
is its accuracy shown in the previous study [43]. Moreover, RF classifier is
extremely quick and does not overfit and it is equally good for small and large
databases.

3.3 Fusion

The combination of several biometric systems can be done at four different
levels [44]: raw data-level fusion, feature-level fusion, score-level fusion, and
decision-level fusion. Raw data and feature level fusion pose a number of con-
straints, such as data homogeneity that can only be met in very specific appli-
cations [44]. In our proposed system, we apply fusion at the score-level that can
be applied to all types of systems. It is a simple and effective method. So, after
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both ear and arm distances, scoreear and scorearm have been computed, we
perform score normalization to transform the scores of the individual match-
ers into a common domain before combining them. Then, a weighted score
MULTIfusion is estimated as follows:

MULTIfusion = α · scoreear + β · scorearm, (3)

where α and β are the weights that characterize the contribution of each
unimodal biometric system, ear and arm gesture in the performances of the
overall multimodal system. Their values are estimated according to the exper-
iment results expounded in Section 4.

The pseudo code 1 (Algorithm 1) summarizes all steps of our proposition.

Algorithm 1 Biometric authentication using ear and arm gesture

input: Ear image, Arm gesture signal
// I- Ear subsystem
// I-1- Ear image pre-processing
Image normalization;
Convert the image into gray level image;
Apply the median filter;
Histogram equalization.
// I-2- feature extraction LPQ
Divide the image into 4 verticale segments;
Divide the image into 3 horizontal segments;
Apply LPQ for each segment;
Fuse all segments.
// I-3- classification
Features classification using the Euclidean distance.
// II- Arm gesture subsystem

Data collection from accelerometer
−→
M , gyroscope

−→
G in X, Y and Z direc-

tions; the collected data are of the form {mx,my,mz, gx, gy, gz} ∈ R6.
// II-1- Arm gesture signal pre-processing

Add the magnitude ‖
−→
U ‖ as a fourth dimension to all of these sensors;

Apply average smoothing filter;
For each dimension X, Y , Z and magnitude, segment the collected signal
into fixed-size sliding window of size h.
// II-2- Arm gesture signal feature extraction
For each window, compute separately the Mean, Standard deviation, Median
and Kurtosis.
// II-3- Arm gesture signal classification
Features classification using the Random Forest classifier.
// III- Fusion subsystem
MULTIfusion = α · scoreear + β · scorearm.
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4 Experiments and results

In this section we describe the experiments accomplished to evaluate and mea-
sure the effectiveness of the proposed bimodal biometric authentication sys-
tem. First, we present, separately, the evaluations of each biometric trait (arm
gesture and ear), then we present the results of the fusion of these two traits
to show and highlight the contribution of the multimodality in improving
recognition rates. In our work, we measure the performance of our proposition
using mainly Equal Error Rate (EER) which indicates that the proportion of
false acceptances rate (FAR) is equal to the proportion of false rejections rate
(FRR). The lower the EER value, the higher the accuracy of the biometric
system.

4.1 Ear

To conduct our ear experimental tests we use our collected database in uncon-
strained conditions where we collect 10 images of 7 volunteers within an age
ranging from 19 to 56 years. We also use the freely available unconstrained
database of the Annotated Web Ears (AWE) proposed in [8] and downloaded
from http://awe.fri.uni-lj.si. AWE contains a total of 1,000 annotated images
from 100 distinct subjects. To demonstrate the robustness of the proposed
method against occlusions we performed two kinds of experiments. In the first
experiment we have split the database into two sub-sets the first sub-set (sub-
set 1) contains only images that include occlusion either by accessories, hair,
hearing aids etc. The second sub-set (sub-set 2) contains only images that do
not have any occlusion, but the images contain blur, variations in rotation and
illumination. Sample images of these subsets are presented in Figure 5. This
experiment allows us to evaluate the real performances of the proposed system
and know how good the recognition performance is when occlusions occur on
ear images. The performances presented by the state of the art works are ob-
tained on databases which are composed of images collected under controlled
conditions and few images have occlusion, therefore the results obtained do
not evaluate the true performances of these works and their robustness in the
case of occlusions and real world applications.

The second experiment consisted of evaluating our proposed method, based
on image fragmentation, on the two sub-sets (sub-set 1 and sub-set 2). In this
experiment, we compared the performance achieved by LPQ that we adopted
for feature extraction and LBP used by [10], in both cases: case 1: the extrac-
tion of the features directly from the ear image without applying the proposed
image fragmentation. case 2: the application of the proposed image fragmenta-
tion method before feature extraction. We will first present the experimental
results carried out in sub-set 1. As reported in Figure 6, LPQ achieves lower
EERs than those achieved by LBP where we note in case 1, i.e. the case where
we do not apply our image fragmentation method, an EER = 78% achieved
by LPQ (illustrated in Figure 6(a)) and EER = 80% achieved by LBP (illus-
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Fig. 5 Images from our database marked with (*) and AWE marked with (#). The first
two lines show ear images with occlusion (from sub-set 1), the last line shows ear images
without occlusion (from sub-set 2).

trated in Figure 6(c)). As shown in Figure 6(b) and 6(d), the application of
our image fragmentation method significantly improves the performances of
the ear recognition system. Indeed, the EER rate achieved by LPQ decreased
from 78% to 71.2%, i.e., an improvement of 6.8%. For LBP EER goes from
80% to 69.1%, so there is an improvement of 10.9%. We explain this by the
fact that the proposed method takes into account only the parts that are not
occluded, thanks to the formula (1) described in the Section 3.1.1.

It should be noted that since the sub-set 1 contains images that all have
occlusions, blur, variations in illumination and rotation, EERs are quite high
and reflect the true performance of feature extraction methods when used on
images collected under uncontrolled conditions.

Figure 7 shows the results obtained when applying LPQ and LBP on the
sub-set 2. In this case too, LPQ (EER = 28.8%, pictured in Figure 6(a))
achieves better results than LBP (EER = 30.5%, pictured in Figure 6(c)). The
proposed segmentation method also improves the results when it is applied to
the sub-set 2. As shown in Figure 7(b), EER = 20.8% when applying LPQ for
feature extraction and EER = 25.3 % for LBP (pictured in Figure 6(d)). It
can be seen in this case that the obtained EERs are lower than those obtained
in sub-set 1. It is therefore concluded how much the occlusion deteriorates the
performance of the authentication system.

4.2 Arm gesture

In order to evaluate the performances of our proposed arm gesture authentica-
tion system we implemented a real time Android application on a smartphone
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Fig. 6 FAR/FRR curve performed by LPQ and LBP applied to ear images with occlusions
(sub-set 1) in both cases without/with application of the proposed image fragmentation.

to collect the arm gesture data simultaneously from the accelerometer and gy-
roscope. The data collection was done in unconstrained conditions without any
user interaction. We have set the sampling frequency to 50Hz and we did not
collect any information that can be used to identify the volunteers to preserve
their privacy. The data were collected from 7 volunteers within an age ranging
from 19 to 56 years recorded from three different sessions spanning over one
week. To extend the data set for the tests we used the public database HMOG
(downloadable on: http://www.cs.wm.edu/qyang/hmog.html) that contains
the record of touch, sensor and key press data invoked by 100 users during
document reading, text production and navigation on a map to locate a des-
tination.

In our implementation, we set the number of trees in the forest to 100. To
evaluate the performance of our system, we divided the initial database into
three sub-sections: 60% for training, 20% for testing and 20% for verification.
To have credible results, the three subparts are disjoined and for the verifica-
tion, we included data from users who did not participate in the classifier’s
learning to test its robustness. Table 4 shows the results obtained in terms
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Fig. 7 FAR/FRR curve performed by LPQ and LBP applied to ear images without occlu-
sions (sub-set 2) in both cases without/with application of the proposed image fragmenta-
tion.

of EER and FAR in the case where 1) the verification section contains only
data belonging to users who have participated in the classifier’s learning but
belonging to different and separate sessions (case 1 in Table 4); and 2) the
verification section contains only data belonging to users who have not par-
ticipated in the classifier’s learning (case 2 in Table 4). This test allows us to
test the robustness and effectiveness of the system in recognizing impostors.
As shown in Table 4, FAR and EER are higher in case 2. This is because the
set used for the verification contains only users who have not participated in
classifier learning, however the obtained rates remain acceptable.

Table 4 Summary of EER and FAR achieved by arm gesture classifier.

Case FAR (%) EER (%)

1 6 9.66
2 28.33 20.83
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To behold the impact of the fusion of the accelerometer and gyroscope data
we have trained our classifier according to several cases:

1. The application of raw feature vector V 1, where each element of this vector
represents one of the features considered and presented in Section 3.2.2
calculated for each sensor:

V 1 = (Xacc, σacc,Medacc,Kacc, Xgyro, σgyro,Medgyro,Kgyro).

2. The fusion of the features obtained from the accelerometer (Xacc, σacc,Medacc,Kacc)
by applying the weighted sum with equal weights for each feature:

V 2 = (0.25·Xacc+0.25·σacc+0.25·Medacc+0.25·Kacc, Xgyro, σgyro,Medgyro,Kgyro).

3. The fusion of the features obtained from the gyroscope (Xgyro, σgyro,Medgyro,Kgyro)
by applying the weighted sum with equal weights for each feature:

V 3 = (Xacc, σacc,Medacc,Kacc, 0.25·Xgyro+0.25·σgyro+0.25·Medgyro+0.25·Kgyro).

4. The fusion of both of the accelerometer and gyroscope features

V 4 = 0.25·(Xacc+σacc+Medacc+Kacc, Xgyro+σgyro+Medgyro+Kgyro).

Table 5 summarizes the accuracy results achieved according to the different
cases. The accuracy C is calculated as described in equation 4.

C =

∑n
i=1 ai
n

, (4)

where n is the user number and ai is the accuracy obtained for each user.
As can be seen on the table, the highest accuracy is C = 92.65, which is
obtained in the case of gyroscope data fusion.

Table 5 Accuracy according to different features vectors.

Feature vector Accuracy (%)

Raw feature vector (V 1) 89.92
Fusion of accelerometer features (V 2) 86.40
Fusion of gyroscope features (V 3) 92.65
Fusion of accelerometer and gyroscope features (V 4) 83.92

We also evaluated our system in terms of EER. Table 6 presents the ob-
tained results. As can be seen in the table, the fusion of the gyroscope features
produces the best EERs, which is consistent with the previous obtained results.

Based on the obtained results, we have adopted the case 3 for our arm
gesture authentication system, i.e., the classifier training is done using the
fused data from the gyroscope, as described in V3.
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Table 6 EER according to different features vectors.

Feature vector EER (%)

Raw feature vector (V 1) 23.74
Fusion of accelerometer features (V 2) 14.72
Fusion of gyroscope features (V 3) 10.60
Fusion of accelerometer and gyroscope features (V 4) 15.16

4.3 Fusion

To investigate the advantage in fusing ear and arm gesture biometrics we im-
plement a score-level fusion. The score weights vary from Ear·0.9/Arm·0.1 to
Ear·0.1/Arm·0.9. The results are listed in Table 7. The weights Ear·0.1/Arm·0.9
achieve the best results in both sub-set 1 and 2. We therefore conclude that
arm gesture is the feature that contributes most to the performance of the
multimodal system. It comes down to the fact that ear images can be affected
with high rotation and illumination variation and sometimes the ear is com-
pletely hidden with accessories such as caps, scarves, hair bands or long hair.
In this case where the ear is completely hidden, the system makes decisions
based only on arm gesture. However, the ear still provides additional informa-
tion that significantly improves recognition rates and remains a very promising
new biometric feature that could replace facial authentication as it does not
suffer from the problem of aging and expression variation.

Table 7 ear and arm gesture biometrics fusion results.

Fusion EER (%) for subset 1 EER (%) for subset 2

score-level fusion (ear 0.1 / arm 0.9) 7.77 5.15
score-level fusion (ear 0.2 / arm 0.8) 15.6 10.3
score-level fusion (ear 0.3 / arm 0.7) 23.2 15.4
score-level fusion (ear 0.4 / arm 0.6) 31.1 20.7
score-level fusion (ear 0.5 / arm 0.5) 38.8 25.6
score-level fusion (ear 0.6 / arm 0.4) 46.6 31
score-level fusion (ear 0.7 / arm 0.3) 54.9 36.4
score-level fusion (ear 0.8 / arm 0.2) 62.1 40.8
score-level fusion (ear 0.9 / arm 0.1) 70.2 47

Table 8 lists the average EERs and testing times from the unimodal and
multimodal schemes. As the results show, multimodal systems achieved sig-
nificantly higher authentication accuracy than unimodal systems.

4.3.1 Comparison results with Abate et al. [10]

By using the same dataset, Table 9 reports the final results obtained of the
EERs achieved by our scheme, by our competitor scheme proposed by Abate
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Table 8 EER and testing time results.

Modality EER (%) Testing time (sec.)

Ear 20.8 1.713
Arm gesture 10.60 0.165

Score-level fusion 5.15 0.858

et al. [10] and the rates with which our proposal improves those of [10] in both
cases of the use of images with and without occlusion. As can be seen on the
table, our proposal improves the performance of arm gesture authentication
by 2.55% and for the ear we achieve an improvement of 10.9 %.

Table 9 Comparative results with Abate et al. [10] in terms of EER.

Our scheme Abate et al. [10] enhancement

ear arm gesture fusion ear arm gesture fusion ear arm gesture fusion
subset 2 20.8 10.60 5.15 25.3 13.15 12.29 4.5 2.55 7.14
subset 1 69.1 10.60 7.77 80 13.15 14.05 10.9 2.55 6.28

5 Conclusion

In this work, we have developed an efficient, unobtrusive and robust multi-
biometric system to authenticate smartphone user when he/she is responding
a call. Our system combines ear shape features-set and arm gesture features-
set based on score-level fusion strategy. The arm gesture achieved EER values
of 0.1060. To address the problem of occlusion in ear images, we have proposed
an image fragmentation method for calculating ear features that significantly
improve the performance of the authentication system. Experiments carried
out on images collected under totally uncontrolled conditions which all contain
occlusion show very encouraging results, where an improvement in EER of
almost 11% is achieved. The multimodal biometric system achieves an EER of
5.15%. For future work, we plan to explore new architectures of deep learning
to improve our method. We also plan to exploit other databases.
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