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Abstract. Variable ordering heuristics are one of the key settings for
an efficient constraint solver. During the last two decades, a considerable
effort has been spent for designing dynamic heuristics that iteratively
change the order of variables as search progresses. At the same time,
restart and randomization methods have been devised for alleviating
heavy-tailed phenomena that typically arise in backtrack search. Despite
restart methods are now well-understood, choosing how and when to ran-
domize a given heuristic remains an open issue in the design of modern
solvers. In this paper, we present several conceptually simple pertur-
bation strategies for incorporating random choices in constraint solving
with restarts. The amount of perturbation is controlled and learned in
a bandit-driven framework under various stationary and non-stationary
exploration policies, during successive restarts. Our experimental eval-
uation shows significant performance improvements for the perturbed
heuristics compared to their classic counterpart, establishing the need
for incorporating perturbation in modern constraint solvers.

1 Introduction

For decades now, researchers in Constraint Programming (CP) have put a treme-
ndous effort in designing constraint solvers and advancing their internal compo-
nents. Many mechanisms have been combined, leading to a technology that is
now widely used to solve combinatorial problems. A constraint solver is typically
composed of a backtracking search algorithm, a branching heuristic for guiding
search, a filtering procedure for pruning the search space, and no-good recording.

Since the very beginning, the order in which variables are selected (assigned)
by the branching heuristic holds a central place. It is referred to as the variable
ordering heuristic. Choosing the appropriate variable ordering heuristic for solv-
ing a given constraint satisfaction problem is quite important since the solving
time may vary by orders of magnitude from one heuristic to the other. Recent
heuristics are more stable [15,36].

Backtrack search is also vulnerable to unstable behavior because of its in-
herent combinatorial nature. In the early ’00s, the exponential time differences
have been investigated under the phase-transition phenomena [19] and the heavy-
tailed distributions of solving time [12]. We can decrease such undesired differ-
ences by introducing restart policies, randomization [6] and no-goods recording
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during search. While restarts and no-goods are well established in CP solvers
[11,18,24,27], randomization remains limited to ad-hoc techniques that have been
found to work well in practice.

In this work, we use randomization to perturb the variable selection process.
These perturbations are designed to keep a good and controlled balance between
exploitation and exploration. We introduce conceptually simple perturbation
strategies for incorporating random choices in constraint solving with restarts.
Most of strategies that we present are adaptive, meaning that the amount of
perturbation is learned during successive restarts. We exploit the restart mech-
anism that exists in all modern solvers to control the application of random
choices. We deploy a reinforcement learning technique that determines at each
run (i.e., at the beginning of the restart), if it will apply the standard heuristic,
embedded in the constraint solver, or a procedure that makes random branching
choices. This is a sequential decision problem and as such, it can be modeled
as a multi-armed bandit problem (MAB) [3], precisely, as a double-armed. In
reinforcement learning, the proportion between exploration and exploitation is
specified by various policies. We tried several of them, such as Epsilon-greedy
[31], EXP3 [4], Thompson Sampling [32], the upper confidence bound UCB1 [4] and
MOSS [2]. The learning comes from the feedback taken after each run that reflects
the efficiency of the run under a given choice, referred to as a reward function.
We also propose a static strategy that perturbs a given heuristic with a fixed
probability, found empirically. We evaluate the static and adaptive strategies for
several well known heuristics, showing significant performance improvements in
favor of the perturbed solver independently of the underlying heuristic used. A
perturbed strategy always outperforms its baseline counterpart both in time and
number of solved instances. We have also run experiments allowing the use of no-
goods, an integral component of solvers nowadays, showing that perturbations
still dominate the standard setting, as the no-goods obtained during random
runs do not disorientate search.

Many useful observations are derived from this study. The more inefficient
a heuristic is, the more effective the perturbation. A perturbed solver can com-
pensate for a potentially bad heuristic choice done by the user, as it permits to
automatically improve its performance by visiting unknown parts of the search
space. This is due to the random runs, during which the heuristic acquires ex-
tra knowledge, other than what obtained when running alone. We show that
adaptive strategies always outperform the static ones, as they can adjust their
behavior to the instance to be solved and to the heuristic setting. Overall, the
results show the benefits of establishing perturbation in CP solvers for improving
their overall performance whatever their default setting is.

2 Related Work

Introducing a touch of randomization for better diversifying the search of local
and complete procedures has been shown to be quite effective for both SAT
(Satisfiability Testing) and CP (Constraint Programming). A stochastic local
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search requires the right setting of the “noise” parameter so as to optimize its
performance. This parameter determines the likelihood of escaping from local
minima by making non-optimal moves. In GSAT [30], it is referred as the random
walk parameter and in walkSAT [29], simply as the “noise”. Large Neighborhood
Search uses randomization to perform jumps in the search space while freezing
a fragment of the best solution obtained so far [26].

In complete CP solvers, the first evidence that diversification can boost search
dates back to Harvey and Ginsberg research [17]. Harvey and Ginsberg proposed
a deterministic backtracking search algorithm that differs from the heuristic
path by a small number of decision points, or “discrepancies”. Then, Gomes
et al. [13,12] showed that a controlled form of randomization eliminates the
phenomenon of “heavy-tailed cost distribution” (i.e., a non-negligible probability
that a problem instance requires exponentially more time to be solved than any
previously solved instances). Randomization was applied as a tie-breaking step:
if several choices are ranked equally, choose among them at random. However,
if the heuristic function is powerful, it rarely assigns more than one choice the
highest score. Hence, the authors introduced a “heuristic equivalence” parameter
in order to expand the choice set for random tie-breaking.

More recently, Grimes and Wallace [14] proposed a way to improve the clas-
sical dom/wdeg heuristic (based on constraint weighting) by using random prob-
ing, namely a pre-processing sampling procedure. The main idea is to generate
the weights of the variables with numerous but very short runs (i.e., restarts)
prior search, in order to make better branching decisions at the beginning of the
search. Once the weights are initialized, a complete search is performed during
which weights either remain frozen or continue updating.

3 Preliminaries

A Constraint Network P consists in a finite set of variables vars(P ), and a finite
set of constraints ctrs(P ). We use n to denote the number of variables. Each
variable x takes values from a finite domain, denoted by dom(x). Each constraint
c represents a mathematical relation over a set of variables, called the scope of
c. A solution to P is the assignment of a value to each variable in vars(P ) such
that all constraints in ctrs(P ) are satisfied. A constraint network is satisfiable
if it admits at least one solution, and the corresponding Constraint Satisfaction
Problem (CSP) is to determine whether a given constraint network is satisfiable,
or not. A classical procedure for solving this NP-complete problem is to perform
a backtrack search on the space of partial solutions, and to enforce a property
called generalized arc consistency [23] on each decision node, called Maintaining
Arc Consistency (MAC) [28]. The MAC procedure selects the next variable to
assign according to a variable ordering heuristic, denoted H. Then, the selected
variable is assigned to a value according to its value ordering heuristic, which is
usually the lexicographic order over dom(x).

As mentioned in Section 2, backtrack search algorithms that rely on deter-
ministic variable ordering heuristics have been shown to exhibit heavy-tailed
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behavior on both random and real-world CSP instances [12]. This issue can be
alleviated using randomization and restart strategies, which incorporate some
random choices in the search process, and iteratively restart the computation
from the beginning, with a different variable ordering [6]. Since our randomiza-
tion method will be discussed in Section 4, we focus here on restart strategies.

Conceptually, a restart strategy is a mapping res : N → N, where res(t)
is the maximal number of “steps” which can be performed by the backtrack-
ing search algorithm at run, or trial, t. A constraint solver, equipped with the
MAC procedure and a restart strategy res, builds a sequence of search trees
〈T (1), T (2), . . .〉, where T (t) is the search tree explored by MAC at run t. After
each run, the solver can memorize some relevant information about the sequence
〈T (1), T (2), . . . , T (t−1)〉, like the number of constraint checks in the previous runs,
the no-goods that have appeared frequently in the search trees explored so far
[20]. The cutoff, res(t), which is the number of allowed steps, may be defined by
the number of nodes, the number of wrong decisions [8], the number of seconds,
or any other relevant measure. In a fixed cutoff restart strategy, the number T
of trials is fixed in advance, and res(t) is constant for each trial t, excepted for
the T th trial which allows an unlimited number of steps (in order to maintain
a complete algorithm). This strategy is known to be effective in practice [13],
but a good cutoff value res(t) has to be found by trial and error. Alternatively,
in a dynamic cutoff restart strategy, the number T of trials is unknown, but
res increases geometrically, which guarantees that the whole space of partial
solutions is explored after O(n) runs [33]. A commonly used cutoff strategy is
driven by the Luby sequence [22].

4 Perturbation strategies

As indicated in Section 3, the process of constraint solving with a restart pol-
icy may be viewed as a sequence 〈1, 2, · · · , T 〉 of runs. For the aforementioned
restart functions, the sequence of runs is finite, but the horizon T is not neces-
sarily known in advance. During each run t, the solver calls the MAC algorithm
for building a search tree Tt, whose size is determined by the cutoff of the restart
policy. If the solver has only access to a single variable ordering heuristic, say H,
it will run MAC with H after each restart. Yet, if the solver is also allowed to
randomize its variable orderings, it is faced with a fundamental choice at each
run t: either call MAC with the heuristic H in order to “exploit” previous com-
putations made with this heuristic, or call MAC with a random variable ordering
U so as to “explore” new search trees, and potentially better variable orderings.
Here, U is any variable ordering drawn at random according to a uniform dis-
tribution over the permutation group of vars(P ). We need to highlight here,
that the intermediate random runs of U perturb the involved classic heuristic H
by updating its parameters, which ultimately affects the behavior/performance
of H. In other words, the subsequent heuristic runs, will not produce the same
orderings as in the traditional solving process, allowing thus the solver to (po-
tentially) tackle instances that neither H nor U would solve stand-alone.
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Algorithm 1: Bandit-Driven Perturbations

Input: constraint network P , heuristic H, policy B

1 initArmsB(H,U) // Initialize the arms and the bandit policy

2 for each run t = 1, · · · , T do
3 at ← selectArmB() // Select an arm according to the bandit policy
4 rt(at)←MAC(P, at) // Execute the solver and compute the reward
5 updateArmsB

(
rt(at)

)
// Update the bandit policy

The task of incorporating perturbations into constraint solving with restarts
can be viewed as a double-armed bandit problem: during each run t, we have to
decide whether the MAC algorithm should be called using H (exploitation arm)
or U (exploration arm). Once MAC has built a search tree Tt, the performance
of the chosen arm can be assessed using a reward function defined according
to Tt. The overall goal is to find a policy mapping each run t to a probability
distribution over {H,U} so as to maximize cumulative rewards.

Multi-armed bandit algorithms have recently been exploited in CP in differ-
ent contexts, i.e. for guiding search [21], for learning the right level of propagation
[5] or the right variable ordering heuristic [34,35,37]. In the framework of Xia
and Yap [37], a single search tree is explored (i.e., no restarts), and the bandit
algorithm is called at each node of the tree to decide which heuristic to select.
The trial is associated with explored subtrees, while in our approach, trials are
mapped to runs using a restart mechanism. Our framework makes use of restarts
in the same way as the ones of [34,35], as it was shown in [35] that such a frame-
work offers greater improvements compared to the one of [37]. In our case, we
utilise a double-armed framework in order to construct our bandit-driven pertur-
bation given by Algorithm 1. The algorithm, takes as input a constraint network
P , a variable ordering heuristic H, and a bandit policy B. As indicated above,
the bandit policy has access to two arms, H and U , where U is the random vari-
able ordering generated on the fly, during execution. The three main procedures
used by the bandit policy are initArmsB for initializing the distribution over
{H,U} according to policy B, selectArmB for choosing the arm at ∈ {H,U}
that will be used to guide the search all along the tth run, and updateArmsB for
updating the distribution over {H,U} according to the observed reward rt(at)
at the end of the tth run.

4.1 Reward function

The feedback rt(at) supplied at the end of each run captures the performance
of the MAC algorithm, when it is called using at ∈ {H,U}. To this end, the
reward function rt maps the search tree Tt built by MAC(at) to a numeric value
in [0, 1] that reflects the quality of backtracking search when guided by at.

As a reward function, we introduce the measure of the explored sub-tree de-
noted as esb. esb is given by the number of visited nodes during a run, divided
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(a) esb(Tleft) = log(16)

log(26)
≈ 0.67 (b) esb(Tright) = log(16)

log(25)
≈ 0.80

Fig. 1: Comparison of two runs with a restart cutoff fixed to 16 nodes.

by the size of the complete sub-tree defined over the variables selected during
this run. The later is simply the size of the Cartesian product of the domains
of the variables selected during the run. As selected variables, we consider those
ones that have been chosen at least once by the arm in question. esb repre-
sents the search space covered by the solver, under a certain setting of a run,
compared to the total possible space on the selected variables. The intuition
is that an exploration that discovers failures deeply in the tree (meaning that,
many variables are instantiated) will be penalized (due to the big denominator)
against an exploration that discovers failures at the top branches.

In formal terms, given a search tree T generated by the MAC algorithm,
let vars(T ) be the set of variables that have been selected at least once during
exploration of T and nodes(T ) the number of visited nodes. Then,

rt(at) = esb(Tt) =
log(nodes(Tt))

log
(∏

x∈vars(Tt) |dom(x)|
)

A logarithmic scaling is needed to obtain a better discrimination between the
arms as the numerator is usually significantly smaller than the denominator of
the fraction. The reward values belong to [0, 1]. The higher the ratio/reward is,
the better the performance of at is.

Figure 1, shows a motivating example for the reward function. It displays an
example of tree explorations done by two different runs. For simplicity, domains
are binary and at each level the variable to be instantiated is fixed per run
(namely left and right branches are on the same variable). Empty nodes represent
non-visited or pruned nodes, solid black nodes are the visited ones, solid red
ones denote failures. Below red nodes, there are the pruned sub-trees in dashed
style while the non-visited sub-trees are slightly transparent. For both runs we
consider the same number of node visits, i.e. 16. At the left run (Figure 1a),
the solver goes until level 6 (selecting 6 variables) while the solver at the right
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run (Figure 1b) goes until level 5. The left run will take the score of 0.67 and
the right one 0.80. Our bandit will prefer the arm that produced the right tree,
namely a search that goes faster at the right branches than deeper in the tree
(which implies that more search is required). Early failures is a desired effect
that many heuristics consider explicitly on implicitly in order to explore smaller
search spaces until the solution or unsatisfiability.

4.2 Perturbation rate

As indicated in Algorithm 1, the perturbation framework is conceptually simple:
based on a restart mechanism, the solver performs each run by first selecting an
arm in {H,U}, next, observing a reward for that arm, and then, updating its
bandit policy according to the observed reward. This simple framework, allows
us to use a variety of computationally efficient bandit policies to adapt/control
the amount of perturbation applied during search. From this perspective, we
have opted for five well-studied “adaptive” policies for the double-armed bandit
problem, and one “static” (or stationary) policy which serves as reference for
our perturbation methods.

ε-Greedy. Arguably, this is the simplest adaptive bandit policy that interleaves
exploitation and exploration using a parameter ε. The policy maintains the em-
pirical means r̂ of observed rewards for H and U . Initially, both r̂1(H) and r̂1(U)
are set to 0. On each run t, the function selectArmεG returns with probability
(1− ε) the arm at that maximizes r̂t(at), and returns with probability ε any arm
at drawn uniformly at random. Finally, based on the observed reward rt(at), the
procedure updateArmsεG updates the empirical mean of at according to

r̂t+1(at) =
t

t+ 1
r̂t(at) +

1

t+ 1
rt(at)

EXP3. The EXPonentially weighted forecaster for EXPloration and EXPloitation
(EXP3) is the baseline bandit policy operating in “non-stochastic” environments,
for which no statistical assumption is made about the reward functions [4]. Sev-
eral variants of EXP3 have been proposed in the literature, but we use here the
simplest version defined in [10]. Here, the procedure initArmsEXP3 sets the initial
distribution π1 of arms to the uniform distribution (1/2, 1/2). During each trial t,
the procedure selectArmEXP3 simply draws an arm at according to the distri-
bution πt. Based on the observed reward rt(at), the procedure updateArmsEXP3
updates the distribution πt according to the multiplicative weight-update rule:

πt+1(a) =
exp(ηtRt(a))

exp(ηtRt(H)) + exp(ηtRt(U))

ηt corresponds to the learning rate (usually set to 1√
t
),

Rt(a) =

t∑
s=1

rs(a)

πs(a)
1a∼πs

and 1a∼πs
indicates whether a was the arm picked at trial s, or not.
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UCB1. Upper Confidence Bound (UCB) policies are commonly used in “stochas-
tic” environments, where it is assumed that the reward value rt(a) of each arm
a is drawn according to a fixed, but unknown, probability distribution. UCB1 is
the simplest policy in the Upper Confidence Bound family [3]. In the setting
of our framework, this algorithm maintains two 2-dimensional vectors, namely,
nt(a) is the number of times the policy has selected arm a on the first t runs,
and r̂t(a) is the empirical mean of rt(a) during the nt(a) steps. initArmsUCB1
sets both vectors to zero and, at each run t, selectArmUCB1 selects the arm at
that maximizes

r̂t(a) +

√
2 ln(t)

nt(a)

Finally, updateArmsUCB1 updates the vectors nt and r̂t according to at and
rt(at), respectively.

MOSS. The Minimax Optimal Strategy in the Stochastic case (MOSS) algorithm
is an instance of the UCB family. The only difference with UCB1 lies in the confi-
dence level which not only takes into account the number of plays of individual
arms, but also the number of arms (2) and the number of runs (t). Specifically,
selectArmMOSS chooses the arm at that maximizes

r̂t(a) +

√
4

nt(a)
ln+

(
t

2nt(a)

)
where ln+(x) = ln max{1, x}.

TS. The Thompson Sampling algorithm is another well-known policy used in
stochastic environments [1,32]. In essence, the TS algorithm maintains a beta
distribution for the rewards of each arm. initArmsTS sets α1(a) and β1(a) to
1 for a ∈ {H,U}. On each run t, selectArmTS selects the arm at that max-
imizes Beta(αt(a), βt(a)), and updateArmsTS uses rt(at) to update the beta
distribution as follows:

αt+1(a) = αt(a) + 1a=atrt(at)

βt+1(a) = βt(a) + 1a=at(1− rt(at))

SP. Finally, in addition to the aforementioned adaptive bandit policies which
learn a distribution on {H,U} according to observed rewards, we shall consider
the following Static Policy (SP): on each round t, selectArmSP chooses H with
probability (1− ε), and U with probability ε. Although this policy shares some
similarities with the ε-greedy algorithm, there is one important difference: the
distribution over {H,U} is fixed in advance, and hence, SP does not take into ac-
count the empirical means of observed rewards. In other words, updateArmsSP
is a dummy procedure that always returns (1− ε, ε). This stationary policy will
serve as reference for the adaptive policies in the experiments.
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5 Experimental Evaluation

We have conducted experiments on a large dataset to demonstrate the perfor-
mance of the proposed perturbations. The set includes all instances (612 in total)
from the 2017’s XCSP3 competition1 coming from 60 different problem classes.
The experiments have been launched on an 2.66 GHz Intel Xeon and 32 GB
RAM nodes. We have used the AbsCon2 solver in which we integrated our per-
turbation strategies and the strategies of [13] and [14]. We used 2-way branching,
generalized arc consistency as the level of consistency, Luby progression based
on node visits as restart policy (the constant is fixed to 100 in AbsCon) and the
timeout set to 1, 200 seconds. We have chosen a big variety of variable ordering
heuristics, including recent, efficient and state-of-the-art ones: dom [16], dom/ddeg
[7], activity [25], dom/wdeg [9], CHS [15], wdegca.cd [36] and finally rand which
chooses uniformly randomly a variable order. Among these, dom and dom/ddeg

do not record/learn anything between two runs (dom and ddeg are re-initialized
at the root), while all the others learn during each (random) run and maintain
this knowledge all along the solving process, which might change/improve their
behavior. We have run all these original heuristics separately for a baseline com-
parison. Note that in our first experiments no-goods recording are switched off
in the solver to avoid biasing the results of heuristics and strategies.

Regarding our perturbation strategies, we denote by SP the static perturba-
tion and by e-greedy, UCB1, MOSS, TS and EXP3 the various adaptive perturba-
tion (AP) strategies. Epsilon of SP and e-greedy are fixed to 0.1. This value has
been fixed offline after a linear search of the best value. Apart from comparing to
the default solver settings (i.e., original heuristics), we compare to three other
perturbation strategies from the bibliography. The one is the sampling algo-
rithm of [14] that corresponds to the sampling pre-processing step which is fixed
to 40 restarts with a cutoff of n nodes corresponding to the number of variables
of each instance. When the probing phase finishes, we continue updating the
variable scoring as it produces better results . The second is the equiv-30 that
corresponds to the criterion of equivalence of [13]. This equivalence parameter is
set to 30% as authors proposed. Last, we compare to the standard tie-breaking
denoted equiv-0, where a random choice is done among the top ranked variables
scored equally by the underlying heuristic. Note that there are no ties, equiv-0
has no effect on the heuristic, as opposed to equiv-30.

Table 1 displays the results of the aforementioned settings and strategies on
the XCSP’17 competition dataset. The comparison is given on the number of
solved instances (#inst), within 1, 200 seconds, the cumulative CPU time (time)
computed from instances solved by at least one method and the percentage of
perturbation (%perturbation) which is the mean perturbation of the solved in-
stances, computed by the number of runs with the arm U divided by the total of
runs. Each time a setting has not solved an instance that another setting solved,
it is penalized by the timeout time. Numbers in bold indicate that a strategy

1 See http://www.cril.univ-artois.fr/XCSP17
2 See http://www.cril.fr/∼lecoutre/#/softwares

http://www.cril.univ-artois.fr/XCSP17
http://www.cril.fr/~lecoutre/#/softwares
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Table 1: Comparison of original, sampling, equiv-30 and the proposed per-
turbed strategies for the XCSP’17 dataset.

original sampling equiv-0 equiv-30 SP
AP

e-greedy UCB1 MOSS TS EXP3

dom

#inst 287 321 312 308 315 314 323 322 318 323
time (359) 101, 589 58,496 74,064 75,992 72,460 75,474 59,527 61,171 63,856 61,842
%perturb. 0 - - - 10 7.7 32.8 21.0 24.9 44.1

dom/ddeg

#inst 307 321 319 324 343 337 345 346 342 343
time (365) 85, 131 61,071 67,537 66,005 46,179 51,371 41,404 43,280 44,981 40,260
%perturb. 0 - - - 10 8.1 34.3 21.4 26.5 45.3

activity

#inst 342 311 334 329 356 356 352 353 350 351
time (372) 52, 989 82, 041 60, 304 64, 619 36,688 36,125 39,552 37,463 40,306 39,371
%perturb. 0 - - - 10 7.6 33.5 20.7 26.0 44.4

dom/wdeg

#inst 347 342 349 349 358 346 358 354 356 363
time (381) 55, 599 56, 038 54,276 53,263 45,615 58, 888 43,726 49,052 46,896 39,277
%perturb. 0 - - - 10 11.6 34.3 23.9 28.6 45.2

wdegca.cd
#inst 366 354 368 361 370 368 371 372 367 369

time (389) 42, 565 52, 344 43, 944 49, 717 38,966 39,292 41,745 40,433 44, 941 42, 661
%perturb. 0 - - - 10 7.8 32.1 19.9 24.8 42.9

CHS

#inst 370 343 371 361 371 372 367 373 367 367
time (389) 41, 462 64, 779 42, 025 56, 639 37,699 38,158 43, 869 38,190 46, 597 42, 444
%perturb. 0 - - - 10 7.3 32.6 19.9 25.7 44.5

rand
#inst 291

time (291) 12, 921
%perturb. 100

outperformed her corresponding default setting of the solver (i.e., original).
Underlined numbers show the winning strategy. dom and dom/ddeg, the unaf-
fected heuristics, appear at the top of the table as they cannot be perturbed
by randomized runs. After each run their parameters are reinitialized and not
accumulated as for the rest of the heuristics (perturbed ones). Hence, for dom

and dom/ddeg, any additional instance that perturbation strategies are able to
solve comes from an intervening run of U .

The existing perturbation techniques, sampling, equiv-30 and equiv-0,
solve more instances than their respective baseline heuristic for the case of dom
and dom/ddeg. However, this never happens for sampling and equiv-30 on the
more sophisticated heuristics (except from dom/wdeg), where we see that the
perturbation they apply disorientates totally the search, solving constantly less
instances than the original heuristics (e.g., sampling missed 31 instances for
activity). equiv-0 just marginally outperforms pure heuristics by one or two
instances while it is far inferior to APs (e.g., it missed 22 instances compared
to e-greedy on activity). equiv-30 is superior to sampling on the perturbed
heuristics but still far inferior to all proposed strategies. Among the proposed
perturbation strategies, we observe that both SP and AP strategies constantly
outperform the default setting of the solver, while for many heuristics they have
close performance (e.g., activity). MOSS is the best strategy in terms of solved
instances and time results, except for activity and dom/wdeg heuristics, where
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SP (e-greedy too) and EXP3 dominate respectively. UCB1 and MOSS are the best
strategies for dom and dom/ddeg, with only one instance of difference, showing
that a perturbation rate between 20% and 30% is the best choice. On the other
side, TS with a similar rate seems not to select that well the right arm for all
runs. Similarly for equiv-30, which also applies a randomization of 30% on the
top ranked variables, it seems that the way it is applied (i.e., at every decision)
is not that efficient. SP and e-greedy, despite winning their original counter-
parts are less competitive due to their low perturbation rate. EXP3 is also a good
candidate policy for dom and dom/ddeg.

rand solved the less instances in total, i.e. 291, in 12, 921 seconds, which
means that many of them correspond to quite easy instances. As rand is the
“bad” arm, a small participation of 10% in SP is just enough to be beneficial
for the heuristics that are by themselves efficient (e.g., wdegca.cd, CHS), but as
SP is not adaptive, it is rarely better than the AP strategies; it cannot adjust its
behavior to heuristics that require more perturbation to improve (e.g., dom). AP
strategies, being adaptive, allow usually much more exploration of the U arm
that makes them win several instances. An exception is the CHS heuristic, where
a perturbation over 20% might be harmful (i.e., in UCB1, TS and EXP3 policies).
Each bandit policy follows a general trend that can vary between heuristics (e.g.,
UCB1 is around 30%, MOSS around 20% and e-greedy with EPX3 represent the
two extremities). EXP3 sets the initial distribution π1 of arms to (1/2, 1/2) such
that both arms have equal chances at the beginning. As it is a non-stochastic
bandit it needs more exploration than stochastic ones need to converge. Although
one would expect that this could deteriorate the solver, it seems that the bandit
utilizes the right arm at each run since it is efficient both in time and solved
instances. The high perturbation rates come from the mean, that smoothens the
high variance between instances. Also, many of the instances are solved fast and
EXP3 favorizes a lot U , being the best arm at the early (short) runs, while the
long runs at the end are done by H, which explains its good overall performance.
TS despite it is better than original heuristics and existing perturbation methods,
it is usually inferior to SP by small differences.

We distinguish the MOSS policy, which apart from being the best policy for
many heuristics, it never deteriorates the solver for any heuristic (as happens
for some strategies on CHS). It applies the exploration when and where needed
(more at the early runs) and converges faster to the best heuristic. Regarding
the time performance, all perturbation strategies are faster than their baseline
heuristic, even for the most efficient heuristics (i.e., CHS and wdegca.cd).

Figure 2, visualizes in a cactus plot the performance of the best AP strat-
egy, namely MOSS, for all heuristics compared to their corresponding original

heuristic. On x-axis we see the instances solved as time progresses. y-axis dis-
plays the allowed time given to the solver. Dashed lines display the performance
of original heuristics and solid lines the perturbed solver. The closer a line
is to the right bottom corner the more instances has solved in less time. In
general, MOSS policy perturbations appear always at the right side of their re-
spective default heuristic. We observe that for the less efficient heuristics, as dom
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and dom/ddeg, the performance gap between the original and the respective
perturbed version is big even for easy instance and increases significantly as
time passes, corresponding to more difficult instances. It worths noticing that,
dom/ddeg after being perturbed, becomes better than activity (solved 4 more
instances), that originally was much more efficient than dom/ddeg. domMOSS solved
in total 35 (resp. 39) more instances than dom (resp. dom/ddeg). For activity

and dom/wdeg, the curves are closer, though the gap is still significant especially
for harder instances. Even for the most efficient heuristics proposed the last two
years, namely CHS and wdegca.cd, MOSS is almost all the time the best setting for
the solver.
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Fig. 2: Comparison of original and MOSS strategies while increasing the allowed
time.

In the following, we do not present results for all adaptive strategies, but
only for the most stable and efficient ones. We omit presenting results for EXP3

because it failed for CHS, which is one of the two best heuristics in CP, and for
TS, because it is never the winning strategy.

Table 2 gives complementary information derived from Table 1 for the best
proposed strategies. We have calculated the number of instances solved exclu-
sively by rand (i.e., instances that the heuristic alone could not solve), denoted by
#random, and the number of instances, #perturb, that the solver solved due to
the perturbation rand caused to the corresponding heuristic. Instances in #per-
turb are those that are solved neither by the original heuristic nor the rand

heuristic, making thus the perturbed solver outperform even its corresponding
virtual best solver. As expected, dom and dom/ddeg do not win instances due to
perturbation, but only due to a good ordering during a random run (more than
30 instances for each policy). For other heuristics, we see a more balanced distri-
bution of instances in #random and #perturb. We observe that the most robust
heuristics (CHS and wdegca.cd) solve extra instances mainly by perturbation (for
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Table 2: Won instances by perturbation or random runs for SP, e-greedy, UCB1
and MOSS with nodes as cutoff for the XCSP’17 dataset

dom dom/ddeg activity dom/wdeg wdegca.cd CHS

SP
#perturb. 0 0 8 8 5 4
#random 28 36 12 10 3 3

e-greedy
#perturb. 0 0 8 5 5 6
#random 29 31 10 6 3 2

UCB1
#perturb. 0 0 5 7 8 7
#random 38 41 13 10 3 2

MOSS
#perturb. 0 0 6 7 7 10
#random 37 41 12 8 3 3

MOSS: 10 and 7 respectively) rather than by calling rand (3 and 3). Indeed, both
are so efficient that the majority of solved instances by rand are also solved by
them, which explains why their perturbations ’gain’ fewer instances than the
other heuristics do. In contrast, activity and dom/wdeg, that are less efficient
than CHS and wdegca.cd, gain more instances in total, most of which are gained
by rand.

Table 3: Comparison of original, SP, e-greedy and MOSS strategies on a subset
of families from the XCSP’17 dataset.

original SP e-greedy MOSS

CoveringArray
dom/ddeg 2 (4, 803s, 0%) 3 (4, 533s, 10%) 2 (4, 803s, 3%) 4 (2, 952s, 17%)

dom/wdeg 4 (2, 669s, 0%) 4 (3, 450s, 10%) 3 (3, 605s, 31%) 5 (2, 156s, 34%)

CHS 4 (2, 483s, 0%) 4 (2, 424s, 10%) 5 (1, 705s, 3%) 6 (1, 491s, 17%)

SuperSolutions
dom 2 (8, 404s, 0%) 4 (6, 972s, 10%) 6 (7, 471s, 6%) 6 (3, 912s, 24%)

wdegca.cd 5 (4, 968s, 0%) 7 (3, 101s, 10%) 6 (4, 467s, 9%) 7 (3, 821s, 23%)

CHS 7 (3, 507s, 0%) 6 (3, 788s, 10%) 6 (3, 812s, 6%) 8 (1, 689s, 20%)

KnightTour
dom/ddeg 5 (7, 220s, 0%) 9 (3, 276s, 10%) 9 (2, 623s, 34%) 9 (3, 092s, 37%)

activity 7 (4, 891s, 0%) 9 (3, 530s, 10%) 9 (2, 823s, 26%) 9 (2, 513s, 30%)

dom/wdeg 5 (7, 218s, 0%) 9 (4, 302s, 10%) 7 (5, 509s, 25%) 9 (3, 286s, 39%)

Blackhole
dom 6 (2, 609s, 0%) 6 (2, 489s, 10%) 6 (2, 503s, 4%) 6 (2, 423s, 16%)

dom/ddeg 8 (327s, 0%) 8 (44s, 10%) 8 (55s, 4%) 8 (25s, 20%)

activity 8 (897s, 0%) 7 (1, 618s, 10%) 8 (908s, 6%) 8 (816s, 17%)

LatinSquare
dom 8 (5, 841s, 0%) 8 (5, 840s, 10%) 8 (5, 928s, 2%) 8 (5, 813s, 13%)

dom/wdeg 10 (2, 481s, 0%) 12 (1, 143s, 10%) 10 (3, 262s, 44%) 10 (3, 351s, 40%)

CHS 11 (3, 031s, 0%) 9 (3, 947s, 10%) 9 (4, 469s, 3%) 8 (5, 866s, 13%)

As the results in Table 1 are quite condensed, in Table 3 we show how strate-
gies operate and adjust for certain problem classes. For each class and each
heuristic, we present the number of solved instances, the total time and the
perturbation rate. For CoveringArray, MOSS is the best strategy to apply the ap-
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Table 4: Comparison of original, sampling, equiv-30, SP, e-greedy and MOSS

with nodes as cutoff and no-goods activated.

original sampling equiv-0 equiv-30 SP
AP

e-greedy UCB1 MOSS

dom

#inst 309 321 306 316 338 334 342 340
time (359) 73, 367 57,279 74, 364 68,446 43,327 51,168 42,219 44,027
%perturb. 0 - - - 10 8.6 33.9 21.4

dom/ddeg

#inst 316 322 320 321 347 346 352 347
time (367) 71, 191 62,375 68,703 72,550 40,042 41,530 30,770 38,995
%perturb. 0 - - - 10 8.8 34.9 22.5

activity

#inst 352 319 349 346 356 357 356 355
time (373) 40, 601 74, 680 45, 590 46, 245 32,328 33,161 34,228 35,854
%perturb. 0 - - - 10 7.8 34.1 20.7

dom/wdeg

#inst 352 340 349 344 359 356 364 364
c.time (377) 41, 882 53, 238 48, 073 53, 841 34,253 40,100 29,559 30,995

%perturb. 0 - - - 10 11.9 34.7 23.9

wdegca.cd
#inst 373 356 373 361 373 375 371 377

time (388) 33, 887 50, 009 33, 053 53, 587 33,412 32,359 33, 772 28,614
%perturb. 0 - - - 10 7.8 32.8 19.8

CHS

#inst 375 348 372 366 373 373 375 376
time (387) 30, 990 58, 121 36, 829 47, 159 30,658 31, 547 31, 020 30,585
%perturb. 0 - - - 10 7.1 33.0 19.8

rand
#inst 293

time (293) 16,992
%perturb. 100

propriate perturbation rate, independently of the heuristic chosen, compared to
SP and e-greedy whose rate is too low. For SuperSolutions with dom as heuristic
method, we see that e-greedy and MOSS are both winners despite their totally
different rates. Though, it is notable that MOSS is twice faster than e-greedy

on the same instances. SP with a rate close to e-greedy wins the half instances
compared to it (and MOSS). Such observations are clear evidences, that not only
the amount of randomization counts but also the when it appears. Policies as
MOSS learn to discriminate on which run to apply H or U . Recall that, com-
pared to other policies, MOSS considers in selectArmMOSS more parameters, as
the number or arms and the number of runs. In KnightTour, all strategies are
efficient, but APs are always better than SP in terms of time. For Blackhole and
LatinSquare, perturbation is not fruitful and thus, both APs converge to very low
rates even when instances are easy (just few seconds per instance). Notice that,
in general dom/wdeg is helped a lot by perturbation, as in all classes rates are
higher compared to other heuristics (double percentages). Also, the percentage
of perturbation varies a lot depending on the heuristic and the problem class,
which is the reason of the success of APs.

As modern solvers exploit no-goods to improve their overall performance,
we repeated our experiments by activating no-goods in order to examine the
robustness of the proposed strategies and the interaction between no-goods and
perturbation. Table 4 displays the results sampling, equiv-0, equiv-30, SP and
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the best AP strategies, namely e-greedy, UCB1 and MOSS. As seen in Table 1,
sampling and equiv-30 make some improvements on the less efficient heuristics
as dom and dom/ddeg, but are still inferior to SP and MOSS, while they are ineffi-
cient on all other heuristics. Surprisingly, equiv-0, despite being still more effi-
cient than sampling and equiv-30, seems to interact badly with the presence of
no-goods, as it can no longer improve the solver for any heuristic (just marginally
dom/ddeg). SP, despite being static, it remains efficient apart from the case of
CHS. Regarding the AP strategies, e-greedy (resp. UCB1) wins almost always the
underlying heuristic except from the case of CHS (resp. wdegca.cd). MOSS is again
the most stable strategy, being able to improve all heuristics it perturbed. Note
that the presence of no-goods has improved the performance of both the de-
fault and the perturbed solver. Therefore, there are slightly smaller differences
between them compared to Table 1. The proposed perturbation strategies are
robust to this fundamental parameter for solvers compared to existing strategies
and adapt their behavior, especially MOSS.

6 Conclusion

We presented several strategies that significantly improve the performance and
robustness of the solver by perturbing the default branching heuristic. It is the
first time an approach tries to learn how and when to apply randomization in an
on-line and parameter-free fashion. Controlled random search runs help variable
ordering heuristics to acquire extra knowledge from parts of the search space that
they were not dedicated to explore. We summarize the benefits of our approach
which are manifold:

– Our perturbation techniques constantly improve the performance of the
solver independently of the heuristic used as baseline in the solver. A per-
turbed strategy always outperforms its baseline counterpart both in time
and solved instances.

– The presence of no-goods does not impact the efficacy of the perturbed
solver. The produced no-goods are still fruitful.

– Perturbed heuristics can compensate for a wrong heuristic choice done by
the user. Thanks to perturbation, the performance of the solver with a bad
initial heuristic can reach or even outperform the performance of the solver
with a better baseline heuristic. This is a step towards autonomous and
adaptive solving, where the solver learns and adjusts its behavior to the
instance being solved.

– Our approach is generic and easy to embed in any solver that exploits
restarts.
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