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Abstract

Multicellular organization is particularly vulnerable to conflicts between different cell

types when the body forms from initially isolated cells, as in aggregative multicellular

microbes. Like other functions of the multicellular phase, coordinated collective

movement can be undermined by conflicts between cells that spend energy in fuelling

motion and ’cheaters’ that get carried along. The evolutionary stability of collective

behaviours against such conflicts is typically addressed in populations that undergo

extrinsically imposed phases of aggregation and dispersal. Here, via a shift in

perspective, we propose that aggregative multicellular cycles may have emerged as a

way to temporally compartmentalize social conflicts. Through an eco-evolutionary

mathematical model that accounts for individual and collective strategies of resource

acquisition, we address regimes where different motility types coexist. Particularly

interesting is the oscillatory regime that, similarly to life cycles of aggregative

multicellular organisms, alternates on the timescale of several cell generations phases of

prevalent solitary living and starvation-triggered aggregation. Crucially, such
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self-organized oscillations emerge as a result of evolution of cell traits associated to

conflict escalation within multicellular aggregates.

Author summary

In aggregative multicellular life cycles, cells come together in heterogenous aggregates,

whose collective function benefits all the constituent cells. Current explanations for the

evolutionary stability of such organization presume that alternating phases of

aggregation and dispersal are already in place. Here we propose that, instead of being

externally driven, the temporal arrangement of aggregative life cycles may emerge from

the interplay between ecology and evolution in populations with differential motility. In

our model, cell motility underpins group formation and allows cells to forage

individually and collectively. Notably, slower cells can exploit the propulsion by faster

cells within multicellular groups. When the level of such exploitation is let evolve,

increasing social conflicts are associated to the evolutionary emergence of self-sustained

oscillations. Akin to aggregative life cycles, resource exhaustion triggers group

formation, whereas conflicts within multicellular groups restrain resource consumption,

thus paving the way for the subsequent unicellular phase. The evolutionary transition

from equilibrium coexistence to life cycles solves conflicts among heterogenous cell types

by integrating them on a timescale longer than cell division, that comes to be associated

to multicellular organization.

Introduction 1

Multicellular life cycles have evolved multiple times during the history of life. Their 2

emergence is thus believed to follow from general mechanistic principles, rather than 3

from rare fortuitous events that took place in a single lineage [1, 2]. In at least six 4

occasions, transitions to multicellularity gave rise to aggregative multicellular life 5

cycles [1, 3], where the multicellular body forms by aggregation of dispersed cells. Such 6

cells need not be genetically identical and can reproduce also in isolation. In aggregative 7

life cycles, thus, conflicts withing groups [4, 5], as well as between solitary and grouped 8

cells [6–8] appear unavoidable. Cell-level conflicts are thus predicted to hinder the 9
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evolutionary stability of collective functions – notably those achieved by division of 10

labour between different cell types – and ultimately to doom altogether this type of 11

multicellular organization [9]. 12

Traditionally, theoretical models for the evolution of multicellular organization focus 13

on such conflicts, that manifest whenever cells that invest more or less in a collective 14

function coexist within social groups. The contribution of different types of cells is 15

typically evaluated at the time of completion of multicellular development, after which 16

ensues a dispersal phase. In the amoeba D. discoideum, for instance, strains that 17

produce a disproportionately large amount of spores in chimeric fruiting bodies are 18

interpreted as ’cheaters’ that undermine cooperation within the multicellular 19

structure [10]. Evolutionary game theory offers solutions to the maintenance of 20

collective cooperative behaviour, under the assumption that groups form over and again 21

(e.g. in the famous trait-group model [11]). For D. discoideum, several options have been 22

proposed [12], that range from biasing the composition of the multicellular groups [4,13], 23

to modulating the individual investment in response to group composition [14,15]. 24

These game-theoretical explanations only focus on one specific phase of the life cycle, 25

while they disregard the mechanisms that enable such phase to occur repeatedly. The 26

effect of varying selective pressure that cells experience along a life cycle has instead be 27

taken into consideration in models and experiments exploring the evolution of life 28

cycles [16–18]. However, the time scale associated to the life cycle was extrinsically 29

imposed and thus requires an appropriate source of environmental variation – for 30

instance the day-night cycle – prior to the emergence of subsequent adaptations. 31

Here we address the emergence of a new time scale in the eco-evolutionary dynamics 32

of populations facing a trade-off between performance in the multicellular aggregates 33

and in isolation. Such a trade-off can occur when collective function is achieved through 34

traits that also affect the behaviour of isolated cells. We focus in particular on 35

differences in motility, that underpin both the benefits gained by group migration, and 36

the capacity of single cells to feed efficiently (other possible mechanisms will be touched 37

upon in the discussion). We show that, under selection for increased performance within 38

heterogeneous groups, evolution leads to the emergence of an intrinsic timescale 39

associated to the alternation of solitary and aggregated phases. 40

Cell motility, a widespread feature in aggregative multicellular species, is assumed 41
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here to be an ancestral trait that is heterogeneously represented in a cell population. In 42

D. discoideum, amoebae exploit their individual motility to feed on bacteria in the soil. 43

When they starve, they form multicellular slugs whose collective motility is essential to 44

ensuring dispersal of spores that seed the following generation [19]. Cells that have 45

lower motility before aggregation are more likely to become exploitative spores [20]. As 46

spores are positioned in the rear of the slug, they can benefit of the traction by more 47

motile cells present at the front [21]. 48

In itself, motility has the potential to drive cell-cell encounters and the consequent 49

clustering into aggregates. At sufficient density, spatial self-organization of motile 50

particles is known to give rise to aggregates [22]. By virtue of being part of a group, the 51

constituent cells can reap advantages of the collective organization, for instance 52

predation resistance and the opportunity of sharing public goods. Notably, individual 53

motility results in enhanced directional and tactic collective displacement, which allows 54

cells to escape the arena of local competition for space and resources [23, 24]. 55

Although it supports collective function on the ecological timescale, cell-level 56

motility may on the other hand destabilize cooperation within cellular collectives on 57

evolutionary times. Firstly, motility differences within aggregates can produce conflicts 58

for the exploitation of the benefits of collective displacement. Akin to what observed in 59

D. discoideum, cells that invest more energy in displacing the group, thus providing a 60

public good, may have a selective disadvantage. Secondly, cell motility enhances mixing 61

in group formation, thus opposing positive assortment mechanisms, such as kin 62

recognition, that are known to support cooperative behaviour [13]. One could therefore 63

expect that social conflicts within heterogeneous multicellular aggregates may lead to a 64

prevalence of slow cells, that would be unable to sustain efficient collective displacement, 65

a scenario captured by the so-called ’tragedy of the commons’ [25, 26]. 66

We show that the picture changes when feedbacks between cell behaviour and their 67

environment are also taken into account [27–30]. In our case, this requires considering 68

possible advantages that motility confers to cells both in isolation and as a consequence 69

of collective displacement. Eco-evolutionary cycles are now possible, where cells 70

alternate phases when they are found chiefly in isolation or aggregated. Alike 71

aggregative life cycles, grouping is triggered by depletion of environmental resources. 72

The resulting heterogenous aggregates experience social conflict, and are eventually 73
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superseded by individually dispersing cells. These oscillations are essentially related to 74

the population traits and have a typical timescale – longer than a cell’s generation – 75

that sets the pace of recurrence of the multicellular stage. We use adaptive dynamics to 76

show that such emergent timescale arises in the course of evolution as selection increases 77

the intensity of social conflicts. In the discussion, we address the possibility that cycles 78

of aggregation, coupled to the demography of cells of different motility, may act as a 79

scaffold to the evolution of aggregative life cycles. 80

Models and methods 81

Eco-evolutionary model for fast and slow cell types consuming a 82

shared resource. 83

We describe the ’ecological’ (resource-consumer) dynamics of a population of N cells, 84

coupled to the ’evolutionary’ variation of the frequencies of two types of cells, that differ 85

in a heritable motility trait: a fraction x of cells is fast-moving and a fraction (1� x) is 86

slow-moving. Both cell types forage on a shared resource of density R. The resource is 87

assumed to grow logistically in the absence of consumption, and is consumed at the 88

same rate by all cells. Instantaneous growth rates of each cell type depend on the 89

product of resource density and reproductive efficiency, as measured by ’payoffs’ pF and 90

pS – discussed below – that take into account the partition between the solitary and 91

aggregated phases of the fast and slow type respectively. The cell population size thus 92

changes at a rate equal to the the average payoff p̄ = x pF + (1� x) pS times the 93

resource density. Corresponding to these payoffs, the frequencies of cells with the two 94

motility traits change in time according to a replicator equation for the fraction x of 95

fast cells [30, 31]. 96

The time variation of the resource density, total cell population size and fraction of
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fast cells is thus described by the following set of ordinary differential equations:

dR

dt
= R


r

✓
1 � R

K

◆
� N

�

dN

dt
= N

⇥
p̄(x,R)R � d

⇤
(1)

dx

dt
= x ( 1 � x )R [ pF (x,R) � pS(x,R) ]

where r and K are the maximum growth rate and the carrying capacity of the resource, 97

respectively (rescaled so that the probability of encounter between the resource and the 98

cells is 1 in a time interval), and d is the mortality rate of cells (assumed to be identical 99

for every cell type). These equations can be equivalently formulated in terms of resource 100

density and the number of cells of slow and fast types, as shown in S1 Text. Contrary to 101

the sole replicator equation, they describe the dynamics of both cell population 102

composition and size, beside that of resource density. 103

We consider that payoffs of the two cell types (illustrated in Fig 1) depend on 104

environmental conditions [28] through the resource density R. Moreover, they depend 105

on the social context, reflecting differences in foraging efficiency and social investment 106

when cells are either in isolation or inside groups. 107

The payoffs represent the success of different motility types in competition inside or 108

outside groups. First of all, we consider that the partition of the population between 109

isolated cells and groups depends on resource availability. We suppose that when cells 110

are occupied in food acquisition and handling, they tend to keep feeding locally. We 111

model this by assuming that, at any point in time, the fraction of cells that is in a 112

group (whether fast or slow) is negatively correlated with resource density, so that all 113

cells are solitary when the resource is at carrying capacity, and that all cells are in 114

groups when the resource is completely depleted. We also assume for simplicity that 115

groups are formed by randomly drawing cells from the population. The average ratio of 116

cells between types within a group will thus be, independently of the group size, equal 117

to the proportion of the types in the population. Note that this proportion, as well as 118

the actual number of fast and slow cells inside and outside aggregates, can vary in time. 119

Then, we reason that while isolated cells compete locally for nutrients, cells inside 120

groups can take advantage of collective behaviour for escaping local overcrowding more 121
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Fig 1. Illustration of payoffs of slow (red) and fast (blue) cells in different
social contexts. The probability of cells to be found alone (left) or grouped (right)
depends on the resource density and is indicated on top. On the left, cells displace
individually in a patch of resource. Slow cells are disadvantaged with respect to fast
cells in local foraging, as indicated by the context-dependent payoffs below (explained in
detail in the main text). The right panel illustrates the alternative scenario, when cells
are grouped. Collective displacement toward new patches of resource is fuelled by fast
cells. Slow cells take now advantage of the new resource patch and thus exploit fast
cells, that instead reap no benefit, having spent all their energy in propulsion. Within
aggregates, thus, slow cells behave as social cheaters in a public goods game.

efficiently than individual cells. Formation of heterogenous aggregates at the same time 122

creates disruptive conflicts as to the contribution to collective displacement. 123

Computation of the average payoffs of cells of any type thus requires separately 124

evaluating performances in isolation and within groups. 125

Fast cells are efficient in looking for immediately available food, and outcompete in 126

this task slow cells. Whenever moving a short distance is sufficient to reach food items, 127

fast cells indeed thrive in isolation. We therefore assume that the probability that cells 128

remain outside aggregates is proportional to the amount of food available in the 129

environment. We consider for simplicity that this probability is R
K , that is cells are 130

always alone when the resource reaches its carrying capacity (when the proportionality 131

factor is different, the results are qualitatively the same, as discussed in S2 Text). The 132

payoff of isolated fast cells will thus be R
K�F , where �F measures how efficient they are 133

in solitary feeding. Within groups, instead, fast cells spend all their energy in propelling 134

the aggregate, including slow cells, so that they have a null payoff. 135
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Slow cells, conversely, cannot reproduce in isolation, because they are inefficient at 136

chasing local resource items. They can however benefit of the collective displacement of 137

the group, whose propulsion is sustained by fast cells. As in classical public goods 138

games that model social conflict, benefits of the multicellular organisation reaped by 139

slow cells are assumed to increase with the fraction of fast cells in the groups [32]. This 140

is the product of the fraction of fast cells in the population times the probability that a 141

fast cell is in a group (1� R
K ). The average payoff of slow cells is then x (1� R

K ) �S , 142

where the parameter �S measures the ability of slow cells to exploit fast cells within the 143

collective phase in order to enhance their own success. �S will be later considered as an 144

evolvable trait. 145

The average payoff in the population is then:

p̄(x,R) := pF x+ pS (1� x) =


(�F � �S)

R

K
+ �S

�
x�

✓
1� R

K

◆
�S x2. (2)

A summary of the parameters involved in the model is shown in Table 1. Our choice of

Table 1. List of the parameters used in the model.

Parameter Description
d Consumer death rate
K Resource carrying capacity
r Resource maximum growth rate
�F Fast cell payoff
�S Slow cell payoff

146

the payoffs is an extreme case of more realistic scenarios when fast cells can also 147

reproduce within groups, and slow cells in isolation. We have chosen this simple form 148

because it exemplifies the hardest possible social conflicts, those associated with the 149

death of one of the cell types, as observed in some extant species of Dictyostelids (e.g. 150

D. discoideum). It also allows for more straightforward analytical solution. However, 151

numerical simulations (not shown) indicate that qualitatively similar results hold when 152

both cell types reproduce both inside and outside groups, as long as a sufficiently 153

intense trade-off exists between the benefits of movement in isolation and those gained 154

by social displacement. 155

January 4, 2021 8/25



Results 156

Different motility types can coexist in equilibrium or organize 157

along aggregative cycles. 158

We first address how cell population partitioning in grouped and solitary components 159

and their composition in fast and slow types change in time, for a fixed set of 160

parameters. Among the possible eco-evolutionary regimes available to the cell 161

population, we are particularly interested in self-sustained oscillations and in their 162

associated timescale. Later, we will explore how such dynamics change when the 163

parameter defining the intensity of social conflicts can evolve. 164

The model described by Eqs. (1) has two qualitatively different dynamical regimes of 165

coexistence between fast and slow cells: a stable equilibrium and a stable limit cycle (a 166

detailed analysis of all the equilibria and their stability is provided in S1 Text). When 167

the coexistence equilibrium
⇣
R̂, N̂ , x̂

⌘
(present whenever

p
�F K/d > 1 + �F /�S) is 168

stable, slow and fast types are found in constant proportions both as free and 169

aggregated cells. The two cell types survive because of their respective advantages in 170

one or the other state of aggregation. Neither the total population size, nor resource 171

availability change in time, so that there is no timescale associated to demography or 172

cell type frequencies. 173

When the coexistence equilibrium becomes unstable, it is surrounded by a stable 174

limit cycle (Fig 2), that we call ’life-like cycle’. In the oscillating regime, indeed, the 175

eco-evolutionary dynamics has a temporal structure akin to the life cycle of aggregative 176

multicellular organisms, with an environmentally-triggered alternation of solitary and 177

grouped stages (Fig 2). The population size undergoes limit-cycle oscillations, where the 178

total number of cells has a phase delay with respect to the resource (as in classical 179

resource-consumer ecological models). At the meantime, the proportion of cells that are 180

found within groups and the composition of both grouped and solitary fractions change 181

in time (S1 Fig): when resources are abundant, a small percentage of cells is grouped 182

and fast cells grow in number by virtue of the advantages gained by feeding locally; as 183

resources are progressively exploited, more and more cells are found inside groups. Slow 184

cells can thus exploit the contribution of fast ones towards collective displacement, so 185
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that ’cheating’ increases in the population (S2 Fig). By overthrowing the collective 186

function, the ’tragedy of the commons’ causes the overall payoffs, thus the population 187

growth rate, to decline. Lower consumption now allows resources to build up again, 188

providing renewed opportunities for fast cells to multiply in isolation.

Fig 2. Eco-evolutionary cycle of cells of differential motility and their
resource. Representative oscillations of resource concentration, total population size
and fraction of fast cells. Dashed lines indicate the position of the unstable coexistence
equilibrium (analytically derived in S1 Text). The simulated trajectory illustrates the
temporal arrangement of cycles in the model, similar to that of aggregative life cycles:
aggregation is triggered by resource depletion; aggregates provide the collective function,
but offer to slow cells the opportunity for social exploitation; as group function is
degraded by the rising of ’cheaters’, resources can build up anew, restarting the cycle.
Parameter values are: r = 1, K = 1, d = 1, �F = 28, �S = 16.

189

Although consumer oscillations have a similar phase arrangement as predator-prey 190

ecological dynamics, they hinge upon the coupling of ecology and evolution. Purely 191

ecological equations can be obtained in the neutral case when both types have the same 192

payoff, so that the frequency of fast and slow cells is constant. The demographic 193

dynamics is then described by the first two equations, with the average payoff being 194
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evaluated for that fixed frequency (S3 Text). In this case, linear stability analysis shows 195

that the coexistence equilibrium is always asymptotically stable. 196

In order to determine in what circumstances equilibrium coexistence or non-steady 197

behaviour should be expected, we examine the dependence of the dynamic regimes of 198

Eqs. (1) on parameters, focusing in particular on those defining the payoffs of fast and 199

slow cells. In the plane (�S ,�F ), limit cycle oscillations (Fig 3A, inset) appear when the 200

coexistence equilibrium loses its stability as a result of a supercritical Hopf bifurcation. 201

We can use the bifurcation condition (implicitly defined as the solution of a third degree 202

polynomial, see S1 Text) to delimit the region in parameter space where the dynamics is 203

out-of-equilibrium. Fig 3 displays the amplitude (panel A) and period (panel B) of the 204

life-like cycle, respectively. The parameter-dependence of the dynamics is best 205

illustrated when one parameter at a time is let vary. The bifurcation diagram when the 206

level of exploitation �S is the control parameter, and the others are held constant, is 207

illustrated in S3 Fig. When exploitation is low, fast and slow cells coexist. Past the 208

bifurcation point, demographic oscillations become increasingly large and slow, but they 209

do not appear to approach, as exploitation becomes more severe, a global bifurcation 210

that would break down the oscillations (S4 Fig). Correspondingly, as social conflict 211

increases, grouping becomes more and more associated to a specific phase of the life-like 212

cycle. Oscillations in the fraction of fast cells remain instead bounded because their 213

success comes with their doom: the more numerous they are, the more they get 214

exploited by slow cells (S3 Fig). 215

A characteristic feature of aggregative life cycles, and more broadly of multicellular 216

organization, is that the duration of the higher-level cycle encompasses several cellular 217

generations. Therefore, we compared the period of the aggregation life-like cycle with 218

two timescales associated with cellular demography: the maximal and average growth 219

rate of the two cell types during population-level oscillations. In both cases (S5 Fig 220

and S6 Fig) the period of the cycle is longer than the duplication time of the cells, and 221

can thus be consistently interpreted as the duration of collective-level generations. The 222

time-scale separation is highest close to the onset of the oscillations (see S5 Fig and S6 223

Fig) . As the amplitude of the oscillations increases, the period of the life-like cycle 224

decreases, but it always remains larger than a cell generation. 225

We have seen that the feedback between ecology and population composition can 226
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Fig 3. Dynamical regimes and dependence on cell-level parameters.
Equations (1) display two main qualitatively different dynamics: limit cycle oscillations
(LC), where an unstable equilibrium coexists with a stable limit cycle, as illustrated in
the inset of panel A, and a stable coexistence equilibrium (SC). The bifurcation
diagrams in panels A and B recapitulate the dependence of the eco-evolutionary
dynamics on the two parameters determining the benefits at the cell level: strength of
social exploitation by slow cells �S , and advantage of solitary living for fast cells �F

(other parameters are as in Fig 2). The heatmaps reveal the variation of amplitude (A)
and period (B) of the oscillations. The white line (analytically derived in S1 Text)
indicates the Hopf bifurcation where the coexistence equilibrium changes stability. In
the oscillating region, the timescale associated to the life-like cycle is slower than those
associated to cell division (see S5 Fig and S6 Fig).

give rise to a temporal compartmentalization of cell behaviour along a cycle, with slow 227

and fast cells taking advantage alternatively of collective and individual motility. Next, 228

we examine whether such a life-like cycle can be expected to emerge and be maintained 229

when the key cell-level parameter responsible for social cheating – the level of 230

exploitation of the collective function by slow cells – is allowed to evolve. 231

Evolutionary increase of exploitation intensity drives the 232

emergence of life-like cycles. 233

In multicellular organisms, cheating by lower-level, independently reproducing cells is 234

expected to destabilize the collective function [25,26]. In the framework of our model, 235

cheating occurs when slow cells exploit fast cells for propulsion. If competition between 236

fast and slow cells occurred exclusively within social groups, then the slow type would 237

invade, and eventually cause the decline of collective movement. 238
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We consider now that the social exploitation parameter �S is a continuous trait 239

subjected to mutation and selection, and study its evolutionary changes in the 240

framework of adaptive dynamics [33]. Long-term variations in the exploitation level 241

occur as a resident population is repeatedly challenged by mutants with a different trait 242

value. If an infinitesimally small number of mutants grows in frequency (i.e. has 243

positive invasion fitness), the new trait is assumed to substitute the resident. Numerical 244

simulations in the oscillation region confirmed that such substitution actually occurs, 245

and coexistence of the mutant and the resident was never observed (not shown). 246

Invasion fitness of a mutant needs to be evaluated by considering that the total

population is composed of three components: fast cells, resident slow cells and mutant

slow cells that differ only in their value of �S . The dynamics is thus described by five

ODEs with the constraint that frequencies add to one (S4 Text). When the cell types

coexist at equilibrium, computation of the growth rate of a rare mutant of trait �S into

a resident population with parameter �⇤
S yields:

S(�S ,�
⇤
S) = d

�S � �⇤
S

�⇤
S

. (3)

The invasion fitness S thus has the same sign as the difference in exploitation level 247

between the mutant and the resident. Once the system has transitioned to a cyclic 248

regime, it is not possible to compute the invasion fitness analytically. In order to find if 249

the evolutionary dynamics pushes �S consistently towards higher values, or a reversal in 250

the direction of evolution happens in the non-equilibrium regimes, we estimated 251

numerically the invasion fitness as the average rate of increase in the frequency of an 252

initially rare mutant type. 253

Fig 4 displays the invasion fitness for different values of the resident exploitation 254

parameter �⇤
S , assuming that mutations produce a small increment in exploitation 255

(�S � �S⇤ = 10�1). In both equilibrium and cyclic regimes, invasion fitness remains 256

positive for all levels of exploitation. This means that exploitation becomes 257

progressively more severe, as one might expect given the advantages of cheaters within 258

social groups. Nonetheless, such evolutionary change also drives the system toward the 259

bifurcation point, so that as cheating becomes more effective, the emergence of the new 260

collective timescale generates a temporal compartmentalization, whereby social conflicts 261
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dominate in only one phase of the cycle. 262

Moreover, invasion fitness scales as the reciprocal of �S (Fig 4, inset), therefore the 263

time necessary for a mutant with increased �S to invade the population grows 264

progressively larger. The population might therefore reach the limit when the timescale 265

of mutations is comparable to that of trait substitution, opening the door to a possible 266

quasi-neutral coexistence, along an oscillatory trajectory, of strains with different levels 267

of exploitation. This could offer an explanation, alternative to limited dispersal and fast 268

evolutionary variation [29], to the observation that coexistence of different strains rather 269

than competitive exclusion seems to characterize natural cell populations. In 270

aggregative microbes, an unrestrained escalation of exploitation levels may hence boost 271

genetic diversity by diminishing the returns to cheating. At the same time, however, the 272

system would be driven toward regimes with higher excursions in population size, where 273

stochastic fluctuations in finite populations may cause the population to go extinct. 274

Fig 4. Invasion fitness. Invasion fitness of mutants whose level of social exploitation
�S is higher with respect to the resident trait �S⇤ as a function of the latter (remaining
parameters are as in Fig 2). Continuous lines represent Eq. (3), dots the rate of increase
of perturbations transverse to the limit cycle, averaged over a period of the cycle
(S4 Text). The invasion fitness is always positive, leading to selection of ever-increasing
levels of cheating, but its decline means that the evolutionary dynamics of the trait
grows progressively slower.
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Discussion 275

The emergence of life cycles involving a multicellular stage is a necessary step in major 276

transitions in individuality, whereby organization at higher levels provided access to 277

novel collective functions [2]. The evolutionary origin of collective reproduction and life 278

cycles has been addressed both theoretically [27, 34–36] and experimentally [17, 36] in 279

systems where single-cell bottlenecks and clonal expansion ensure efficient purging of 280

cheating types. The evolutionary establishment of aggregative life cycles, where 281

different cellular types can come together, has instead been much less explored. 282

Here, we have considered the possible role of pre-existing differences in cell motility 283

in the evolution of eco-evolutionary ’life-like’ cycles, whereby cells come to alternate 284

aggregated and solitary phases on a nascent timescale, on which both population size 285

and composition undergo periodic oscillations. Such a timescale is longer than that of 286

cell division and emerges as an adaptive response to social conflicts that differential 287

motility raises within multicellular aggregates. Setting the pace for recurrence of 288

heterogenous aggregates, it can be associated to a higher level of cellular organization, 289

and act as a scaffold to subsequent evolutionary innovation [18]. 290

Alternating selective pressures are considered a basic ingredient for the emergence of 291

multicellular life cycles. They can be extrinsically forced by environmental fluctuations, 292

either periodic or stochastic, that exogenously set the timescale over which benefits and 293

costs of multicellular organization are evaluated [37,38]. In our model, equilibrium 294

coexistence of cells with different motility evolves into a cycle that alternates phases 295

where either fast or slow cells are selectively advantaged. The timing of these phases 296

depends on cell-level parameters, and changes along the evolutionary trajectory. As in 297

the case of extrinsic oscillations, such alternating selective pressures, generated by 298

genetically distinct partners, may set the scene for selection of more complex strategies 299

for cell behaviour, notably phenotypic switching [39] or context-dependent phenotype 300

determination [15, 16, 40]. The possibility that extrinsically imposed periodic changes in 301

selection lead to the emergence of phenotypic variation typically associated to life cycles 302

has been experimentally demonstrated in Hammerschmidt et al. [17]. In our work, we 303

thus focused on the emergence of the timescale of such variation. Extensions of the 304

model to cases when behaviour is not or is only partially heritable would however be a 305
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natural next step towards the complete integration of cell ecology in the evolution of 306

aggregative life cycles. 307

We have shown that increasing social conflicts drive the transition from an initial 308

state, where different conflicting types coexist at equilibrium, to eco-evolutionary limit 309

cycles, where their frequency is coupled to the partition of cells between solitary and 310

aggregated states. Such cycles bear numerous analogies to aggregative life cycles: they 311

display recurring phases of enhanced aggregation, and are characterized by conflicts 312

within aggregates, as well as between aggregates and solitary cells. When resources are 313

scarce, fast cells behave as cooperators fuelling collective motion [4, 21]. However, they 314

play the role of ’loners’ by feeding on locally available resources when these are 315

plentiful [7, 8, 41]. Cooperation therefore stands as a side effect of individual strife for 316

survival, which only manifests when fast cells join groups by chance [42]. Slow cells, on 317

the other hand, cheat within groups but cannot survive in the absence of fast cells, so 318

that social exploitation curtails itself through population dynamics. When cheating 319

increases – as predicted by the ’tragedy of the commons’ [25, 26] – over evolutionary 320

times, the system progressively moves towards the oscillatory regime, where conflicts are 321

solved through the temporal compartmentalisation of social investment. 322

Previously, non-steady behaviour was identified as a means to maintain cooperation 323

in spite of cheaters success within groups [28,30,43–45]. Individual-based simulations 324

taking motility into account showed that limit cycle oscillations in the frequency of 325

cooperators and cheaters could occur due to the undermining of the collective function 326

by the spread of cheaters. Their period encompassed numerous collective cycles, each 327

marked by a discontinuous dispersal event (whereby cells were randomly reallocated in 328

space) [32, 46]. In the model discussed here, the timescale over which social conflicts 329

play out is instead the same as that of the aggregation dynamics, and defines – 330

independently of the initial state of the population – the period of recurrence of the 331

collective state. It is therefore more appropriate to describe the origin of the temporal 332

organization of life cycles, rather than a specific cycle already punctuated by a single 333

dispersal event (which could instead represent a successive adaptation). 334

An indication that motility phenotypes may have been involved in the emergence of 335

aggregative life cycles is that the emergent eco-evolutionary cycles bear many 336

similarities to the life cycle of D. discoideum. In particular, our model depicts a 337
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continuous exploitation of fast cells by slow cells, that occurs not only at the stage of 338

reproduction (as in game-theoretical models ), but at any step of the multicellular 339

phase, analogous to what had been proposed to occur in slime moulds [21]. 340

Even though the example of Dictyostelium made us focus on motility as the factor 341

underpinning collective function and conflicts among different cell types, we expect 342

similar transition to take place when conflicts and trade-offs stem from other heritable 343

traits that affect both solitary living and collective function, notably from differences in 344

adhesion or in sensitivity to signals. In order to distinguish among different possible 345

cell-level features in their effect on the population cycles, more realism needs to be 346

introduced in the description of the population dynamics. Simple deterministic 347

equations allowed us to fully characterize the parameter-dependence of the dynamic 348

regimes, and to apply analytically adaptive dynamics theory. Individual-based models 349

however would offer the opportunity to examine more closely other aspects of the 350

eco-evolutionary dynamics, such as demographic fluctuations and group 351

formation [24,47,48]. Finite-size fluctuations [49–51], in particular, are expected to be 352

important if cell-level parameters attain, along an evolutionary trajectory, regions where 353

the population bottleneck becomes more extreme. 354

By assuming that fast and slow cells have the same probability of being found inside 355

groups, our model describes in a very crude way the process of group formation. 356

Differences in speed, possibly associated to differences in adhesion, may indeed induce 357

differential grouping properties among cell types. Since traits that influence assortment 358

affect the evolutionary process [13, 23,46,48,52–54], a more detailed description of 359

motility-induced biases would be important to evaluate the applicability of our 360

conclusions to specific microbial populations. In particular, future studies describing 361

explicitly the process of group formation may address the consequences of evolution of 362

motility on dispersal strategies [55–57]. 363
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S2 Text. Bounded probability of remaining alone.

S3 Text. Linear stability analysis of the purely ecological dynamics.

S4 Text. Adaptive Dynamics.

S1 Fig. Eco-evolutionary limit cycle oscillations in the number of

aggregated and isolated cells.

The numbers of fast and slow cells found in the solitary and in the aggregated state

oscillate in time along a life-like cycle. These quantities are computed along a limit

cycle solution of the eco-evolutionary dynamical system, for the same parameter values

as Fig 2 of the main text.

S2 Fig. Payoffs of the fast and slow cell types in the oscillating regime.

The payoffs of the two strategies oscillate in time as a consequence of the variations in

the fraction of aggregated cells and in group composition. These quantities are

computed along a limit cycle solution of the eco-evolutionary dynamical system, for the

same parameter values as Fig 2 of the main text.

S3 Fig. Bifurcation diagram for varying strength of social exploitation by

slow cells.

Bifurcation diagrams of the three state variables as a function of the exploitation

parameter �S (remaining parameters as in Fig 2 of the main text). Continuous lines

indicate the stable coexistence equilibrium and the stable limit cycle, the dashed line

indicates the unstable equilibrium. The transition from the coexistence equilibrium

point to the limit cycle occurs through a supercritical Hopf bifurcation. The parameter

values that identify this bifurcation are numerically computed as explained in S1 Text

and are illustrated by the white line in Fig 3 of the main text and S5 Fig - S6 Fig.

S4 Fig. Period of oscillations against exploitation strength.

The period of the eco-evolutionary limit cycle increases a function of the exploitation

level �S (remaining parameters as in Fig 2 of the main text). The fact that the period

does not diverge indicates that an increase in exploitation level does not drive the
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system towards a global bifurcation that would go undetected by the local analysis of

the equilibria we performed.

S5 Fig. Ratio between the timescale of the life cycle and the maximal cell

generation length.

Bifurcation diagram with respect to the parameters �S and �F (remaining parameters

as in Fig 2 of the main text). The numerically obtained heatmap indicates the ratio

between the period of the limit cycle and the fastest timescale of the demographic

dynamics, computed as the maximum value of the population growth rate along the

limit cycle. The white line is the bifurcation curve analytically derived in S1 Text.

S6 Fig. Ratio between the timescale of the life cycle and the average cell

generation length.

Bifurcation diagram with respect to the parameters �S and �F (remaining parameters

as in Fig 2 of the main text). The numerically obtained heatmap indicates the ratio

between the period of the limit cycle and the mean timescale of the demographic

dynamics, computed as the average value of the population growth rate along the limit

cycle. The white line is the bifurcation curve analytically derived in S1 Text.
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Aggregative cycles evolve as a solution to conflicts in social investment

Leonardo Miele (mmlm@leeds.ac.uk), Silvia De Monte (silvia.de.monte@bio.ens.psl.eu)

S1 Text

Equilibria of the eco-evolutionary dynamics and linear stabil-

ity analysis

In this section we describe two equivalent formulations of the resource-consumer dynamics, and we

present the linear stability analysis of the model.

The system is fully described by the three variables R, NF and NS, denoting respectively: resource,

number of fast cells and number of slow cells. Then, the dynamics is given by the following ODES:

dR

dt
= R


r

✓
1 � R

K

◆
� (NF +NS)

�
(1)

dNF

dt
= NF [pF R � d] (2)

dNS

dt
= NS [pS R � d] , (3)

where K is the carrying capacity of the resource and d is the mortality rate of both kinds of cells.

The growth rate of each cell type di↵ers because of their reproduction rate, that is proportional to

the type’s payo↵ (see main text for the definition of the payo↵s).

The system can be equivalently described using total population size and composition. We define

N = NF +NS the total population, and x = NF
N the fraction of fast cells. Combining (2) and (3), we

1



get the dynamics for the total population:

dN

dt
=

dNF

dt
+

dNS

dt
= NF pF R +NS pS R � d (NF + NS)

= N


NF

N
pF R +

NS

N
pS R � d

�

= N [x pF R + (1� x) pS R� d]

= N [p̄(x,R)R � d] , (4)

where in the last line we have used Relation (2) of the main text. Equation (4) states that the total

consumer population grows at a rate that is proportional to the average payo↵ p̄(x,R).

Applying the chain rule for the temporal derivative of the variable x and using (2) and (4), we get

the dynamics for the social composition:

dx

dt
=

d

dt

✓
NF

N

◆
=

1

N

dNF

dt
� NF

N2

dN

dt

=
NF

N
[pF R � d] � NF

N

N

N
[p̄(x,R)R � d]

= x ( 1 � x )R [ pF (x,R) � pS(x,R) ] , (5)

which takes the form of a replicator equation for the cell types fractions.

Eq. 1 of the main text, in terms of the resource density, total population size and fraction of fast

cells, is finally given by Eqs. (1), (4) and (5):

dR

dt
= R


r

✓
1 � R

K

◆
� N

�

dN

dt
= N [ p̄(x,R)R � d ]

dx

dt
= x ( 1 � x )R [ pF (x,R) � pS(x,R) ]

with:

p̄F (x,R) = ↵R �F

p̄S(x,R) = (1� ↵R) x�S,

2



where ↵R is the probability that a cell is found in isolation, that we assume to depend on the

resource availability. This formulation highlights the distinction between the ecological consumer-

resource dynamics (given by the equations for R and N), and the evolutionary dynamics describing

the competition between the two cell types (given by the replicator equation for x).

In the main text, we considered that this probability varies between zero, when no resource is

available, to one, when resources attain the carrying capacity. This is modelled by choosing ↵ = 1/K.

This choice was driven by simplicity and in order to reduce the number of free parameters. Since

the amplitude of the oscillations of the resource depend on all parameters, it indirectly bounds the

probability in an interval strictly contained in [0, 1]. In S2 Text we consider the more general case

when ↵ 6= 1/K, but in the following of this section we will keep the same scaling as in the main text.

The average payo↵ thus takes the form:

p̄(x,R) =


(�F � �S)

R

K
+ �S

�
x�

✓
1� R

K

◆
�S x

2.

The dynamical system has two sets of degenerate trivial equilibria (0, 0, x), and (K, 0, x), the latter

corresponding to the resource being at its carrying capacity in the absence of consumers.

If �F K/d > 1, the system has one fixed point where only fast cells are present:

R̂F = �K N̂F = r (1� �) x̂F = 1, (6)

where for convenience we have defined:

� =

r
d

�F K

the fraction of the carrying capacity at which the resource is at equilibrium. This composite parameter

appears in several expressions derived in the following, demonstrating that the e↵ect of death rate d

and of carrying capacityK on the system equilibria and on its evolutionary dynamics are compounded,

so that an increase in the former can be compensated by a proportional increase of the latter.

3



If, furthermore, the condition:

�

✓
1 +

�F

�S

◆
< 1 (7)

is satisfied, then a coexistence equilibrium exists:

R̂ = �K N̂ = r (1� �) x̂ =
�F

�S

�

1� �
(8)

where the proportion of fast cells decreases when the level of exploitation by slow cells increases. In

order for a coexistence equilibrium to exist, thus, not only the payo↵ of fast cells needs to be large

enough for their population to survive based on the resource available, but slow cells also need to

have a su�ciently high ’incentive to cheat’, that is their payo↵ needs to be su�ciently high so that

communal living provides sizable advantages. Relation (7) means that slow cells can survive when

resources are depleted as a result of consumption by fast cells.

The trivial manifold (0, 0, x) is always a saddle point, corresponding to the fact that in the absence

of consumers, the resource will increase. As long as �F  d/K, the equilibria with R = K, N = 0 are

stable for any x, that is the consumers will go extinct and the resource reach its carrying capacity.

The fast-only equilibrium Eq. 6 is stable as long as no positive coexistence equilibrium Eq. 8 exists.

The leading eigenvalue of the Jacobian matrix in the fast-only equilibrium:

J(R̂F , N̂F , x̂F ) =

0

BBBBBBB@

�r � ��K 0

2�F r � (1� �) 0 r �K (1� �)[�F�+ �S(�� 1)]

0 0 ��K[�F�+ �S(�� 1)]

1

CCCCCCCA

(9)

becomes positive when relation (7) is satisfied, that is when the coexistence equilibrium exists. In

this case, this equilibrium is a saddle point.
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The eigenvalues of the Jacobian matrix Ĵ in the internal equilibrium (R̂, N̂ , x̂) is:

Ĵ =

0

BBBBBBB@

�r � ��K 0

r�F �
�S (1��) [�S + � (�F � 3�S + 2�S�)] 0 r� (1� �)K [�S � (�F + �S) �]

�2
F �2

�2
S (��1)3

[(�F + �S) �� �S] 0 �F �2 K
�S (��1) [�S � (�F + �S) �]

1

CCCCCCCA

can be numerically evaluated as a function of the parameters, and the equilibrium can be shown to be

stable close to the transcritical bifurcation that generates the coexistence equilibrium, and successively

to bifurcate into an unstable focus.

This Hopf bifurcation of the coexistence equilibrium occurs when the characteristic polynomial of

the Jacobian matrix transitions from having three real solutions to having one real and two complex-

conjugate solutions. The bifurcation condition is thus that two roots of the third-degree characteristic

polynomial are simultaneously null. We thank Alice l’Huillier and Bertrand Maury for pointing out

that we could use Cardano’s method to numerically compute the boundary of the region in a 2-

dimensional parameter space were the system oscillates.

If we fix the parameters d = K = r = 1, then the Jacobian matrix as a function of the evolutionary

parameters, evaluated at the coexistence equilibrium, reads:

Ĵ =

0

BBBBBB@

� 1p
�F

� 1p
�F

0

1
�S(

p
�F�1)

(2�s + �S�F � 3�S

p
�F + �3/2

F ) 0 1�
p
�F

�
3/2
F

(�S + �F � �S

p
�F )

�2
F

�2
S

(�S
p
�F��F��S)

(
p
�F�1)3

0 �F

�S(
p
�F�1)

� 1

1

CCCCCCA

The sign of the real part of the eigenvalues � can now be found as a function of the evolutionary

parameters �S and �F . The secular equation for the Jacobian can be cast in the following form:

P(�) = �3 + p�+ q,
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where:

p = (
p
�F�1)(�F��S+�S

p
�F )p

�F�S(
p
�F�1)

� (�S��F�S+�
3/2
F )2

3�F�2
S(

p
�F�1)2

q =
(�F��S+

p
�F�S)(�S��S�F+�

3/2
F )

3�F�2
S(

p
�F�1)

� 2(�S��F�S+�
3/2
F )

27�
3/2
F �3

S(
p
�F�1)3

� 2�F+�S�
p
�F�Sp

�F�S
.

All these quantities can be numerically evaluated, given the parameters �F and �S. Following

Cardano’s method for the resolution of third order equations, we define the quantity �(�F ,�S) =

q2

4 + p3

27 , whose sign determines the nature of the roots. Since �(�F ,�S) is always positive 8�F ,�S 2

[2, 40], the Jacobian has one real and two complex conjugate eigenvalues, which we call ⇤R and ⇤C1,2 ,

respectively. ⇤R is always negative in the region of the parameters investigated. The real part of ⇤C,

instead, can be either positive or negative. The numerical bifurcation curve, that is the solution of

Re(⇤C) = 0, is displayed as a white line in S5 Fig. Along this line, the system undergoes a supercritical

Hopf bifurcation (Ott 2002), whereby a stable focus gives rise to an unstable focus and a stable limit

cycle of frequency Im(⇤C).
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S2 Text

Bounded probability of remaining alone

When the probability ↵ of cells remaining alone is di↵erent from 1/K, cells cannot avoid being in

groups even when resources are very abundant. Numerical estimations of the bifurcation boundary

(Fig 1) indicate that the qualitative structure of the bifurcation diagram remains unchanged, but

the bifurcation boundary displaces towards higher �F as the probability of aggregation decreases.

This means that, somewhat counter-intuitively, oscillatory solutions emerge more easily when cells

have less opportunity to group. This is a consequence of the fact that increased grouping forces an

additional load that free-riders impose to the collective function. The total number of cells is thus

maintained low, and resources high. The coupling between resource-consumer ecology and population

composition can however be re-established if the population as a whole can achieve faster growth by

being more e�cient in solitary feeding, which occurs for high �F . Interestingly, the role of the social

exploitation parameter �S is almost unchanged in the region when oscillations are possible.

1



Fig 1: Dependence of the bifurcation diagram on the probability to aggregate. As the

maximum probability of being in the solitary state decreases, the region when oscillatory behaviour

occurs displaces towards higher �F .
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S3 Text

Linear stability analysis of the purely ecological dynamics

Purely ecological equations correspond to the neutral case when both slow and fast types have the

same payo↵, and the social composition of the population is fixed to the value x0 for which fast and

slow strategies have equal payo↵, that is:

x0 =
�F

�S

1

K
R � 1

.

Consequently, the average payo↵ p̄ will be equal to the fast cells payo↵:

p̄(R) = pF (R) =
R

K
�F .

Then, the purely ecological dynamics is given by the two equations governing the temporal variation

of resource and consumer densities:

dR

dt
= R

⇥
r ( 1 � R

K
) � N

⇤

dN

dt
= N

✓
�F

K
R2 � d

◆
.

The corresponding coexistence fixed point (R̂eco; N̂eco) is then:

R̂eco = �K

N̂eco = r(1� �).

1



The Jacobian of the ecological system is thus:

J =

0

BBB@

r(1� 2
R
K )�N �R

2
�F
K N R �F

K R2 � d

1

CCCA
.

By evaluating J at the fixed point we get:

Ĵeco =

0

BBB@

�r� ��K

2�F r(1� �) 0

1

CCCA

According to the Jury conditions, the fixed point will be locally asymptotically stable if Tr(Ĵec) <

0 and Det (Ĵec) > 0 (Strogatz 2018). Here we have:

Tr Ĵeco = �r� < 0

Det Ĵeco = 2�F K r(1� �)� > 0

as long as such a coexistence equilibrium exists (i.e. when � < 1). Hence, the coexistence fixed

point of the ecological module is always asymptotically stable for each value of the single-cell payo↵s

parameters �F , �S.
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S4 Text

Adaptive Dynamics

In the framework of adaptive dynamics, we consider an infinitely large population where slow resident

cells are characterized by a level �⇤
S of social exploitation. We assume that a mutation induces a small

random phenotypic variation, generating a mutant sub-population of slow cells with exploitation level

�S close to �⇤
S, i.e. |�S � �⇤

S| ⌧ 1. The eco-evolutionary dynamics in the presence of a population of

mutant slow cells is:

dR

dt
= R


r ( 1 � R

K
) � N

�
(1)

dN

dt
= N [ p̄(R, x, y, z)R � d ] (2)

dx

dt
= xR


�F

R

K
� p̄(R, x, y, z)

�
(3)

dy

dt
= y R


�⇤
S

✓
1� R

K

◆
x � p̄(R, x, y, z)

�
(4)

dz

dt
= z R

⇥
�S

✓
1� R

K

◆
x � p̄(R, x, y, z)

⇤
(5)

where x, y, z (such that x + y + z = 1) are the frequencies of respectively fast and slow resident and

slow mutant cells. The average payo↵ p̄ now reads:

p̄(R, x, y, z) = �F
R

K
x + (�⇤

S y + �S z)

✓
1� R

K

◆
x.

Adaptive dynamics assumes that a phenotypic mutation is initially carried by an infinitesimally small

fraction of the population, that is the continuous limit for a mutation occurring in one individual of

1



a large population. The invasion fitness S is then given by the per capita growth rate of the rare

mutant into the resident population. If the population is at equilibrium, this can be computed by

linear stability analysis of the equilibrium corresponding to the case when the population is solely

composed of residents (R̂; N̂ ; x̂; 1� x̂; 0):

S(�⇤,�) :=
ż

z

��
(R̂;N̂ ;x̂;1�x̂;0)

= R̂

"
�S

 
1� R̂

K

!
x̂ � p̄(R̂, x̂, 1� x̂, 0)

#
.

At such equilibrium, from Eq. (4) follows:

p̄(R̂, x̂, 1� x̂, 0) = �⇤
S

 
1� R̂

K

!
x̂, (6)

that substituted in Eq. (5) yields:

S(�⇤,�) = R̂ (�S � �⇤
S)

 
1� R̂

K

!
x̂.

By equating the average payo↵ of Eq. (6) to that obtained from Eq. (3):

p̄(R̂, x̂, 1� x̂, 0) = �F
R̂

K
,

and solving for

⇣
1� R̂

K

⌘
x̂, we can express the invasion fitness as function of R̂:

S(�⇤,�) = (�S � �⇤
S)

�F

�⇤
S

R̂2

K
.

Finally, substituting the equilibrium value of R̂ (Eq. (8) in S1 Text), we obtain Eq. (4) of the main

text:

S(�S,�
⇤
S) = d

�S � �⇤
S

�⇤
S

.

The derivative of S with respect to the evolving trait �S specifies the fate of the invasion of a

mutant whose phenotype has a given distance from the resident (Brännström et al. 2013). Since in

our case such derivative:

@S

@�S
=

d

�⇤
S
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is positive whenever there is a coexistence equilibrium, a mutant with �S > �⇤
S will eventually invade

the population and become the new resident, replacing the previous one. On the other hand, a mutant

with �S < �⇤
S would decrease in frequency over time, and go extinct without a↵ecting the resident

population composition.

Such analytical results were obtained when the interior equilibrium fixed point exists and it is

stable. Numerical integration shows that, when the system’s attractor is a limit cycle, the invasion

fitness maintains the same scaling as for the equilibrium case and that when it starts invading, the

mutant substitutes the resident. We computed numerically the rate of divergence of z after a sub-

population of slow individuals with trait �⇤
S was initialized at an initial frequency z(0) = 10

�10
. The

dominant Lyapunov exponent was estimated by linearly fitting ln(z(t)/z(0)) for 0 < t < tmax. Since

the trajectory oscillates (the unstable manifold of the limit cycle is not parallel to the z axis), tmax has

been chosen su�ciently large (tmax = 2000) so that those oscillations are averaged-out. We checked

that the same results were obtained by computing the average rate of divergence, and that, when

the system has a stable equilibrium, the numerical results matched the analytic calculation of the

invasion fitness.
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