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Abstract: The chalcogen bond (ChB) is a noncovalent interaction based on electrophilic features of re-
gions of electron charge density depletion (σ-holes) located on bound atoms of group VI. The σ-holes
of sulfur and heavy chalcogen atoms (Se, Te) (donors) can interact through their positive electrostatic
potential (V) with nucleophilic partners such as lone pairs, π-clouds, and anions (acceptors). In the
last few years, promising applications of ChBs in catalysis, crystal engineering, molecular biology,
and supramolecular chemistry have been reported. Recently, we explored the high-performance liq-
uid chromatography (HPLC) enantioseparation of fluorinated 3-arylthio-4,4′-bipyridines containing
sulfur atoms as ChB donors. Following this study, herein we describe the comparative enantiosepa-
ration of three 5,5′-dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines on polysaccharide-based chiral
stationary phases (CSPs) aiming to understand function and potentialities of selenium σ-holes in
the enantiodiscrimination process. The impact of the chalcogen substituent on enantioseparation
was explored by using sulfur and non-chalcogen derivatives as reference substances for comparison.
Our investigation also focused on the function of the perfluorinated aromatic ring as a π-hole donor
recognition site. Thermodynamic quantities associated with the enantioseparation were derived
from van’t Hoff plots and local electron charge density of specific molecular regions of the interacting
partners were inspected in terms of calculated V. On this basis, by correlating theoretical data and
experimental results, the participation of ChBs and π-hole bonds in the enantiodiscrimination process
was reasonably confirmed.

Keywords: bipyridines; chalcogen bond; electrostatic potential; enantioseparation; high-performance
liquid chromatography; polysaccharide-based chiral stationary phases
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1. Introduction

The electronic charge distribution is anisotropic around bound atoms due to the
rearrangement of electronic density when atoms participate in a bond formation, whereas
free neutral atoms have spherically symmetric electronic density [1]. The terms σ-hole
and π-hole describe the electronic charge density depletion which is observed in specific
regions of bound atoms [2,3]. In most cases, positive electrostatic potential (V) values are
associated with these regions [4]. Indeed, V in a point r (V(r)) is generated by each nucleus
in a system and by the system’s electron distribution, given by Equation (1):

V(r) = ∑
A

ZA

|RA − r| −
∫

ρ(r)dr′∣∣r′ − r
∣∣ (1)

where ZA is the positive charge on nucleus A located at RA, and ρ(r) is the electron
density distribution [5,6]. Consequently, the sign of V(r) is positive if the effect of the
nuclei (first positive term) is dominant due to a lower electron density at the point r.
Otherwise, V(r) is negative if the effect of the electrons (second negative term) is dominant.
σ-Holes were found on covalently bonded atoms of groups III–VIII and hydrogen, and
depending on the atom valence, one or more σ-holes can be identified. In Figure 1, σ-and
π-hole regions are depicted through V mapped on electron density isosurfaces (VS), colors
toward red and blue representing negative and positive VS, respectively. σ-Hole regions
on halogen (a) and chalcogen (b) atoms are located on the external side of the bound
atom, approximately on the elongation of the covalent σ bond. Otherwise, an increase of
electronic charge density occurs on the lateral sides of the atom. The σ-hole depth and
the magnitude of the associated V depend on atom polarizability and electronegativity.
The more polarizable and the less electronegative the atom is, the more positive the
associated V may be. π-Hole regions are located above and below a planar portion of a
molecule, often found on atoms involved in double bonds such as carbonyls and aromatic
rings with strongly electron-withdrawing substituents. In Figure 1c, π-hole regions on
hexafluorobenzene are represented. It is worth mentioning that V associated to σ- and
π-hole is affected by the contributions from the entire molecule, and through-space effects
may impact σ-hole depth in complex molecules [7–9]. Typically, electron-withdrawing
groups covalently attached to an atom bearing σ- and/or π-hole redistributes the electronic
density on the atom, increasing the depth of the “hole” and, consequently, its function as a
Lewis acid. Neutral and cationic N-heterocyclic and perfluorinated substructures are able
to activate σ-hole sites [10–12].
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red depict negative VS while colors towards blue depict positive VS, and colors in between (orange, yellow, green) depict
intermediate values.

Their associated V being positive, σ- and π-hole regions (donors) can interact with
negative sites (lone pairs, π-clouds, and anions) (acceptors). These types of noncovalent
interactions are named σ- and π-hole bonds [1,13,14]. In this field, the most studied and
applied interactions based on σ-hole are halogen (XB) [15] and chalcogen (ChB) [16] bonds
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involving atoms of groups VII (Cl, Br, I) and VI (S, Se, Te), respectively. In general, the
interaction strength increases following the order Cl < Br < I and S < Se < Te. Currently, the
importance of σ- and π-hole bonds has been recognized in several areas including catal-
ysis, crystal engineering, molecular biology, molecular recognition, and supramolecular
chemistry [17–21].

Despite the pivotal role of noncovalent interactions in chiral recognition, studies on the
potentialities of σ- and π-hole bonds in enantioseparation science are scarce [22]. Starting
from 2014, our groups demonstrated that (a) XB can work in HPLC environment [23–25],
and (b) HPLC, as a technical tool, can be used to systematically investigate σ-hole bonds oc-
curring on the surface of polysaccharide-based chiral stationary phases (CSPs) by properly
tuning molecular properties of analyte as σ-hole donor and of selector as σ-hole acceptor,
under normal phase (NP) elution conditions [26]. Recently, we reported the first inves-
tigation on ChB and π-hole bond in HPLC environment by using cellulose-based CSPs
and fluorinated 3-arylthio-4,4′-bipyridines as analytes [27]. In these compounds, a sulfur
atom at the 3-position was highly polarized by the electron-withdrawing 2,2′-dichloro-5,5′-
dibromo-4,4′-bipyridine (1) framework.

Following our previous studies, in this paper we describe the enantioseparation of 5,5′-
dibromo-2,2′-dichloro-3-selanyl-4,4′-bipyridines 2–4 (Figure 2) on polysaccharide-based
CSPs aiming to understand function and potentialities of selenium σ-holes in the enantiodis-
crimination process. The impact of subtle structural variations on the chromatographic
separation was also evaluated by comparing the chromatographic responses of 2–4 (3-SeR,
R = Me, Ph, C6F5) and of compounds bearing different substituents at the 3-position of the
4,4′-bipyridine scaffold, namely 1 (3-H), 5,5′-dibromo-2,2′-dichloro-3-thio-4,4′-bipyridines
5–7 (3-SR, R = Me, Ph, C6F5), and the non-chalcogen analogue 8 (3-CH2R, R = C6F5).
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Figure 2. Structures of compounds 1–8.

In this study, the enantiomer elution order (EEO) was assigned, the effect of tempera-
ture was considered, and thermodynamic quantities associated with the enantioseparations
were derived by van’t Hoff plots. Finally, calculated VS values associated with σ- and
π-hole regions of compounds 1–8 were correlated with the chromatographic parameters to
disclose the potential role of ChBs and π-hole bonds in HPLC enantioseparation.

It is worth mentioning that selenium is an essential trace element which is present
in selenoproteins with relevant biological functions [28]. Selenium compounds have
become of interest for selenium supplementation for cancer chemoprevention [29]. In
particular, selenomethionine is well known for its biological and dietary importance, the
L-enantiomer being better absorbed into the body [30]. On this basis, enantioseparations of
selenium and sulfur derivatives were reported in the literature, in general observing for
selenium compounds higher retention and selectivity compared to sulfur analogues [31–33].
Nevertheless, the impact of σ-holes of sulfur and selenium on LC enantioseparation has
been overlooked, and so far, ChB remains almost unexplored in enantioseparation science.

2. Results and Discussion
2.1. Conceptual Bases

The strength of ChB and π-hole interactions is regulated by the depth of the electron
charge density hole, the Lewis basicity of the acceptor and the stereoelectronic properties
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of the medium. On the other hand, the pivotal components of an enantioseparation
system are analyte, selector, and mobile phase (MP). Taking into account these features,
HPLC can be used to investigate σ- and π-hole interactions occurring therein by properly
tuning molecular properties of the analyte in this particular project as donor, selector as
acceptor, and MP as medium. In particular, HPLC works in a solvated medium which
can be easily tuned allowing solvent effects on both donor and acceptor to be evaluated.
This approach was successfully applied to the study of XB in a HPLC environment [26].
Therefore, with the aim to demonstrate conclusively that ChBs and π-hole interactions can
work in LC enantioseparations, an orthogonal screening was designed through a focused
choice of analytes (ChB donors), CSPs (ChB acceptor), and MPs (ChB medium) considered
as experimental variables. Changes of the chromatographic responses upon structural
variations were evaluated in terms of changes in retention (k) and separation factors (α).

2.1.1. Chiral Analytes

In this study, the identification and quantification of weak noncovalent interactions
such as ChBs and π-hole bonds relies on the peculiar structure of the analytes used as
test probes. Indeed, knowing that the enantioseparation of functionalized 4,4′-bipyridines
depends on the substituents on the heteroaromatic scaffold [34,35], we expected that
the chromatographic response would be strictly dependent on the σ- and π-hole of the
distinctive substituent at the 3-position of compounds 11–88. Recently, our groups designed
and synthesized these compounds through focused procedures [11,27,36]. 4,4′-Bipyridines
1–8 are multi-site σ- and π-hole donors, the electron-withdrawing 4,4′-bipyridinyl moiety
providing polarization of bound X and Ch atoms. Moreover, compounds 21–88 being chiral
by atropisomerism, the absolute configuration of their pure enantiomers was assigned
on the basis of X-ray diffraction (XRD) and electronic circular dichroism (ECD) analyses
coupled with time-dependent density functional theory calculations (TD-DFT) [11,27]. Four
different σ- and π-hole patterns could be identified in compounds 11–88 due to the features
of the distinctive substituent at the 3-position (Figure 3): (a) compound 1 (Bipy-H) is the
achiral 3-unsubstituted-4,4′-bipyridine containing four σ-holes located on the elongation
of Csp2-Br and Csp2-Cl bonds; (b) compounds 2, 3, 5, and 6 contain two additional σ-holes
located on the elongation of Ch-Bipy and Ch-R bonds; (c) compounds 4 and 7 also contain
a π-hole centered on the perfluorinated aromatic ring; (d) compound 8 contains a π-hole
system but no Ch atom. Compounds 3, 4, and 7 were shown to function as σ- and π-hole
donors. This was confirmed in the solid state through XRD analyses [9], and in solution
through 19F NMR titration and catalysis experiments [11].
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In previous studies, from two to four low-energy conformers were identified by
calculation for compounds 2–8 [9,11] (Supplementary Data, Figure S1 and Table S1). Calcu-
lations of the VS maximum (VS,max) values of the σ-holes showed that on average more
positive VS,max are associated with selenium σ-holes (compounds 2–4) compared to sulfur
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(compounds 5–7) due to the higher polarizability and lower electronegativity of selenium
atom [9]. Moreover, the nature of R impacts the σ-hole depth which increases following the
order Ph (3, 6) < Me (2, 5) < C6F5 (4,7) [9] (Supplementary Data, Table S1). The VS,max on the
π-hole increases in the order CH2C6F5 (8) < SeC6F5 (4) < SC6F5 (7). In each conformation,
both σ- and π-holes are characterized by a distinctive chemical environment impacting the
“hole” depth. Indeed, the impact of neighboring “holes” and through-space effects on the V
associated with a σ- or a π-hole is particularly critical when the molecular system contains
several “hole” sites. In this case, the contribution of a specific “hole” to the interaction capa-
bility of the molecular system may be challenging to be rationalized [37–39]. On the other
hand, the study of multi-site σ-hole donors provides the possibility to examine in depth
the actual capability of regions of electronic charge density depletion as interaction sites.

2.1.2. Chiral Selectors

Polysaccharide phenylcarbamates, in addition to a presence of chiral centers, are
characterized by conformational chirality dependent on the helical twist generated by
the specific glycosidic 1,4-linkages in cellulose (β) and amylose (α) chains [40]. Carba-
mate groups are located deep inside the groove cavities near the polysaccharide back-
bone, while the hydrophobic aromatic rings tend to be located outside the chiral cavities
(Figure 4). Thus, a chiral supramolecular environment surrounds the carbonyls poten-
tially acting as ChB and/or π-hole acceptors, whereas the external aromatic rings are able
to exert π–π and hydrophobic interactions. We recently demonstrated that XB-driven
HPLC enantioseparations of halogenated 4,4′-bipyridines can be performed on cellulose
tris(3,5-dimethylphenylcarbamate) (C-3,5diMe) [24,26], where XBs are formed between the
halogen substituents of the analyte and the carbonyl groups of the CSP.
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Figure 4. Drawing of polysaccharide carbamate-based selectors (a); three-dimensional (3D) tube structure of cellulose
tris(3,5-dimethylphenylcarbamate) (b).

On this basis, two series of selectors (coated or immobilized on silica gel) were used
in this study (Table 1), which contain carbonyls with different electron density distribu-
tions and, consequently, different capability as Lewis bases: (a) coated C-3,5diMe and
amylose tris(3,5-dimethylphenylcarbamate) (A-3,5diMe) containing carbonyl groups with
higher electron density due to the electron-donating effect induced by the methyl sub-
stituents at the 3- and 5-positions of the phenyl ring; (b) coated cellulose tris(3-chloro-4-
methylphenylcarbamate) (C-3Cl,4Me) and amylose tris(5-chloro-2-methylphenylcarbamate)
(A-5Cl,2Me), and the immobilized amylose tris(3-chloro-5-methylphenylcarbamate) (iA-
3Cl,5Me) as chlorinated selectors, which present lower electron density on the carbonyl
groups due to the electron-withdrawing effect exerted by the chlorine substituents of the
phenyl ring.
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Table 1. Structure of the six polysaccharide-based chiral stationary phases (CSPs) used in the study.

Column 1 Backbone Ar
(R’,R”-C6H4) Abbreviation

VS,min C=O
(au) 2

VS,max N-H
(au) 2

Lux
Cellulose-1 Cellulose 3,5-dimethyl C-3,5diMe −0.0660 0.0788

Lux
Cellulose-2 Cellulose 3-chloro-4-

methyl C-3Cl,4Me −0.0606 0.0868

Lux
Amylose-1 Amylose 3,5-dimethyl A-3,5diMe −0.0660 0.0788

Lux
i-Amylose-1 Amylose 3,5-dimethyl iA-3,5diMe −0.0660 0.0788

Lux
Amylose-2 Amylose 5-chloro-2-

methyl A-5Cl,2Me −0.0618 0.0798

Lux
i-Amylose-3 Amylose 3-chloro-5-

methyl iA-3Cl,5Me −0.0594 0.0871

1 Coated columns: Lux Cellulose-1, Cellulose-2, Amylose-1, Amylose-2. Immobilized columns: Lux i-Amylose-1
and i-Amylose-3. 2 VS values calculated at DFT/B3LYP/6-311G* level [22].

The VS minimum (VS,min) values calculated on the carbonyl oxygen atoms become less
negative moving from methylated CSPs (−0.0660 au) to the chlorinated ones (−0.0618 au ≤
VS,min ≤ −0.0594 au) [22]. In a complementary manner, the N-H amidic proton of the
chlorinated CSPs has better capability as hydrogen bond (HB) donor (Lewis acid) than the
methylated CSPs, and more positive VS,max values were calculated in these cases [22]. In
addition, the immobilized amylose tris(3,5-dimethylphenylcarbamate) (iA-3,5diMe) was
also used to inspect the effect of immobilization on these series of enantioseparations.

The chromatographic responses of the polymeric selectors were compared under
identical MPs in order to ensure a common environment assisting the interactions under
investigation. If the analytes are able to exert ChBs as ChB donors on polysaccharides-3,5-
diMe, lower retention and separation factors are expected on the chlorinated selectors due
to the reduced capability of the carbonyls as “hole” acceptors.

2.1.3. Mobile Phases

We used three MPs, namely n-hexane (Hex)/2-propanol (IPA) 90:10 (mix A), Hex/IPA/
methanol (MeOH) 90:5:5 (mix B) and pure MeOH (mix C). ChB being based on the com-
plementarity of donor and acceptor partners, the non-polar mix A was expected to assist
the electrostatic interaction. Otherwise, MeOH-containing mixtures (mix B and mix C)
were expected to destabilize the interactions by forming competitive HBs with the carbonyl
oxygen atoms [24,41,42]. Meanwhile, MeOH favors hydrophobic contacts.

2.2. Chromatographic Screening

Retention factors of first (k1) and second (k2) eluted enantiomers, and selectivity factors
(α) of the enantioseparations of compounds 2–8 on C-3,5diMe, C-3Cl,4Me, A-3,5diMe, iA-
3,5diMe, A-5Cl,2Me, and iA-3Cl,5Me are summarized in Figure 5 (for numerical data see
Supplementary Data, Table S2). On average, the selectivity factors increase following the
order 3, 6 < 5 < 2 < 4 < 8 < 7. The best enantioseparations were obtained for compounds 3
and 6 (R = Ph) with A-5Cl,2Me (α = 1.22 and 1.23), for compounds 2 and 5 (R = Me) with
the A-3,5diMe-based columns (α = 1.21 and 1.16) and for compounds 4, 7, and 8 (R = C6F5)
with C-3,5diMe (α = 3.71, 5.27 and 3.52). This trend clearly showed the impact of the
perfluorinated aromatic ring on the enantioseparation. This framework contains a π-hole
region and exerts a strong electron-withdrawing effect on Ch and halogen atoms, increasing
the depth of their σ-holes (Table S1). Retention was higher for selenium compounds 2–4
compared to the sulfur series (5–7) with all columns except one case with C-3,5diMe where
7 was more retained than 4. The success rate of the CSPs in terms of average selectivity
tended to increase as the VS,min on the CSP carbonyl oxygen atoms decreases in the order
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iA-3Cl,5Me (average α, VS,min: 1.08, −0.0594 au), C-3Cl,4Me (1.20, −0.0606 au), A-5Cl,2Me
(1.24, −0.0618 au), A-3,5diMe (1.37), iA-3,5diMe (1.42), C-3,5diMe (2.43) (−0.0660 au).
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In general, retention, especially of the first eluting enantiomer, does not correlate
with enantioresolution. Indeed, strong interactions occurring between analytes and CSP
may not always contribute to the enantioselectivity. In this regard, scattered plots of ln α

vs ln k1 were obtained for all CSPs with p-values ranging from 0.1009 to 0.7280, and no
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trend was observed. Otherwise, a tendency was found for the plots of ln α vs ln k2 of the
three 3,5-dimethylated CSPs and the A-5Cl,2Me (0.0001 ≤ p-value ≤ 0.0146; 0.7280 ≤ r2

≤ 0.9621) (Supplementary Data, Figure S2). In these cases, large k2 values were related
to large separation factors (compounds 4, 7, and 8), enantioseparation values increasing
proportionally to retention. This observation indicated that improved enantioseparation
is associated to stronger enantioselective interactions. No trend was observed for both
plots of ln α vs ln k1 and ln α vs ln k2 in the case of C-3Cl,4Me and iA-3Cl,5Me. These
columns have the best capability of the carbamate N-H as HB donor (VS,max = 0.0868 and
0.0871 au, respectively). This result confirms that in most cases the analytes do not work as
HB acceptors.

In fact, in the polysaccharide selectors, retention and selectivity are also determined by
the conformational features of the polymer which are controlled by a series of intramolec-
ular HBs between some of the carbonyl oxygen and the amidic hydrogen atoms [40,43].
In the chlorinated CSPs, as the electron density on both these HB centers changes due
to the stereoelectronic effect of chlorine located on the aromatic rings, the strength of the
HBs stabilizing the polymer conformation also changes impacting the conformation of
the polymer.

Therefore, the unsuccessful trend which was observed with C-3Cl,4Me and iA-3Cl,5Me
compared to C-3,5diMe and A-3,5diMe may be due to the change of polymer conformation,
and thus not directly related to the lower capability of the carbonyl moieties of the CSPs
as σ-hole acceptors. However, different behaviors could be observed. For the selanyl
series 2–4 and the sulfur series 5–7 the reduction percentage of k1 and k2 increased in the
order Ph < Me < C6F5 moving from C-3,5diMe to C-3Cl,4Me: SePh (3: −1.7%, −4.6%),
SeMe (2: −22.5%, −23.7%), SeC6F5 (4: −18%, −73.5%) and SPh (6: −1.8%, −6.3%), SMe
(5: −20.8%, −20%), SC6F5 (7: −23.7%, −80.9%). These values assumed an interesting
meaning by considering that the average VS,max on Ch (S, Se) σ-holes increased following
the order Ph (0.0274, 0.0390 au) < Me (0.0348, 0.0441 au) < C6F5 (0.0470, 0.0553 au). For
compound 8, lacking Ch substituent, the reduction percentage of k1 and k2 changing from
C-3,5diMe to C-3Cl,4Me (8: −3.9%, −59.4%) was lower compared to 4 and 7. On this
basis, in compounds 21–88, the 3-substituents impacted k2 more than k1. This aspect was
evident by comparing k1 and k2 of 21–88 with the retention of the achiral 1 as reference
substance (Figure 5). The higher selectivity factors observed on the C-3,5diMe compared
to the A-3,5diMe-based CSPs may be due to the wider chiral cavity of the cellulose-based
polymer compared to the amylose-based system. Indeed, σ-hole bonds are interactions
which require space, with typical C-Ch···acceptor angles around 180◦.

The EEO was M-P in almost all cases. Reversal of the EEO dependent on backbone
type was observed for compounds 2 and 5 (R = Me), showing P-M and M-P as the elution
sequence on C-3,5diMe and A-3,5diMe, respectively. For the same pair of compounds,
reversal of the elution sequence dependent on side chain structure was also observed,
the EEO being M-P on C-3Cl,4Me. This effect based on the side chain structure was not
observed in the amylose CSP series. Compound 6 also provided a case of EEO dependent
on backbone structure, showing M-P and P-M as elution order on C-3,5diMe and A-3,5diMe,
respectively. Interestingly, coated A-3,5diMe provided slight selectivity (α = 1.06) with
P-M as EEO for compound 6 (Ch = S, R = Ph) but no enantioseparation for 3 (Ch = Se,
R = Ph). Otherwise, compound 3 was enantioseparated with the opposite EEO (M-P)
and similar selectivity (α = 1.05) on the immobilized iA-3,5diMe, which was unable to
enantioseparate 6.

2.3. Effect of Methanol on Retention and Selectivity

The impact of MP on retention and selectivity was evaluated by using mix B and
C, containing different amount of MeOH, with C-3,5diMe. The results are summarized
in Figure 6 and compared with the enantioseparation data obtained by using mix A on
the same CSP (for numerical data see Supplementary Data, Table S3). Also in this case,
scattered plots of ln α vs ln k1 were obtained for all CSPs with p-values ranging from
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0.1171 to 0.9597, and no trend was observed. Otherwise, a tendency was found for the
plots of ln α vs ln k2 (p-value = 0.0001 (mix B), 0.0072 (mix C); r2 = 0.9597 (mix B), 0.7931
(mix C)) (Supplementary Data, Figure S3). MP-dependent reversals of EEO were observed
for compounds 2 and 5 (R = Me), the elution sequence being P-M and M-P with mix A and
mix B/C, respectively.
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Compound 1 is used as a reference substance.

The use of pure MeOH (mix C) as MP had a detrimental effect on the enantioseparation
of 3 and 6 on C-3,5diMe, obtaining α = 1.00 in both cases. Enantioseparation of 2 remained
unaffected in the polar medium, whereas α increased slightly for 5 (α = 1.07 (mix A)→
1.10 (mix C)). Otherwise, for compounds 4, 7, and 8, the reduction percentages of k2 and
α moving from mix A to mix C were higher with respect to the lowering observed for k1:
4 (k1, −33.6%; k2, −67.8%; α, −51.5%), 7 (k1, −24.6%; k2, −70.5%; α, −60.5%), and 8 (k1,
−46.5%; k2, −69.0%; α, −33.5%). It is likely that, in this case, the higher hydrophobicity of
selenium compared to sulfur lowers the reduction percentages observed for k2 and α of 4.

The same trend could be observed with mix B, but with some exceptions. Indeed, for 4,
7 and 8 k2 decreases (−20%,−24.5%, and−1.3%), whereas k1 increases (+ 9.4%, + 7.9%, and
+ 3.1%). This behavior highlights the impact of MeOH on the enantioseparation of both 4
and 7, containing Ch substituents, compared to the non-chalcogen derivative 8. In addition,
these results also confirmed that retention of the first eluted enantiomers is determined
by hydrophobic interactions, likely involving the four halogens on the 4,4′-bipyridine
framework, whereas the retention of the second eluted enantiomer is controlled by the
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properties of the distinctive substituents at the 3-position. On the other hand, the retention
of the reference compound 1 also increased with mix B (+ 1.5%) compared to mix A.

It is interesting to note that, analogously to XB behavior in HPLC environment [24],
depending on substitution pattern and chromatographic medium (CSP structure and
MP polarity), two competitive mechanisms, one hydrophobic and another involving
“hole” regions, could be envisaged for the enantioseparation of 21–88 on polysaccharide-
based CSPs. Considering compounds 4, 7, and 8, due to their structural similarity, the
hydrophobic mechanism provides very close values of k2 and α, whereas chromatographic
parameters are spread over a wider range if the mechanism depends on the specific
properties of either chalcogen substituents or π-hole. On this basis, k2 range becomes
narrower moving from C-3,5diMe/mix A (0.29 ≤ ∆k2 ≤ 1.57) to C-3Cl,4Me/mix A (0.11 ≤
∆k2 ≤ 0.66), C-3,5diMe/mix B (0.15 ≤ ∆k2 ≤ 0.75), and C-3,5diMe/mix C (0.15 ≤ ∆k2
≤ 0.25). In particular, a drop of k2 was observed by replacing C-3,5diMe/mix A with
C-3Cl,4Me/mix A (4: 4.75 → 1.26; 7: 6.03 → 1.15; 8: 4.46 → 1.81) due to the reduced
ChB acceptor ability of the CSP (structural effect). Analogously, the polar interaction
contribution to k2 was progressively suppressed on C-3,5diMe by changing the MP from
mix A to mix B (4: 4.75→ 3.80; 7: 6.03→ 4.55; 8: 4.46→ 4.40) and mix C (4: 4.75→ 1.53;
7: 6.03→ 1.78; 8: 4.46→ 1.38) because alcohol exerts a cap-effect on the carbonyls of the
CSP by means of competitive HB interactions (medium effect).

2.4. Effect of Temperature and Thermodynamic Quantities

The nature of the analyte/CSP contact can be explored on the basis of thermodynamic
considerations. For each enantiomeric pairs, the difference in the change in standard
enthalpy ∆∆H◦ and entropy ∆∆S◦ can be derived by the van’t Hoff equation (Equation (2)),
taking into account that this approach does not differentiate between chiral and achiral
contributions [44,45]. This equation describes the dependence between retention factor k
and the absolute temperature T:

ln k = −∆H◦/RT + ∆S◦/R + ln Φ (2)

where R is the gas constant and Φ is the phase ratio. ∆H◦ and ∆S◦ represent the differences
in the enthalpy and entropy, respectively, when one enantiomer is adsorbed onto the CSP
surface. Assuming that the plots of ln k against 1/T is linear in the temperature range of
a study, the correlative thermodynamic parameters, which are temperature-independent,
can be derived from the slope (∆H◦ = −slope × R) and the intercept (∆S* = intercept × R,
where ∆S* is used to substitute the expression ∆S◦/R + ln Φ) of the straight lines. The free
energy associated with the adsorption of an enantiomer onto the CSP surface is given by
the Gibbs–Helmholtz Equation (3):

∆G◦ = ∆H◦ − T ∆S◦ (3)

∆∆G◦, ∆∆H◦, and ∆∆S◦ represent the difference between the free energy of adsorption of
the two enantiomers and its enthalpic and entropic terms, respectively (Equation (4)):

∆∆G◦ = ∆∆H◦ − T ∆∆S◦ (4)

On the basis of the van’t Hoff equation (Equation (2)), ∆∆H◦ and ∆∆S◦ can be derived
from Equation (5):

ln α = −∆∆H◦/RT + ∆∆S◦/R (5)

Even if the molar quantities determined on the basis of Equation (2) are composite values
representing different adsorption types, thermodynamic parameters are depending on
analyte, CSP and MP, therefore useful information can emerge by comparison of thermody-
namic data of analogous analyte/CSP pairs as subtle variations of the chromatographic sys-
tem (analyte, CSP, MP) occur [46,47]. On this basis, retention and selectivity of compounds
2–8 were determined at different temperatures from 5 to 35 ◦C in 5 ◦C increments by using
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the following chromatographic systems (CSP/MP): C-3,5diMe/mix A, C-3Cl,4Me/mix
A, C-3,5diMe/mix B, C-3,5diMe/mix C (Supplementary data, Tables S4–S7). From the
evaluation of the thermodynamic quantities derived from van’t Hoff plots (Supplementary
Data, Table S8), the following remarks emerged:

(i) enantioseparations were enthalpy-driven in all cases (|∆∆H◦| > |T∆∆S◦|);
(ii) change in standard enthalpy and entropy were more negative on C-3,5diMe with

mix A and mix B, indicating a stronger adsorption process under these conditions.
A different trend was observed for compounds 2 and 5 (R = Me), showing more
negative values with the system C-3,5diMe/mix C;

(iii) the ∆∆G◦ values associated with the enantioseparation of compounds 2 and 5 (R = Me)
on the C-3,5diMe CSP showed to be quite different with mix A (∆∆G◦ (kJ/mol) = −0.26,
−0.19, respectively), whereas they became equal by using the same CSP with mix B
(∆∆G◦ =−0.27,−0.27), where methanol weakened analyte-CSP electrostatic interactions;

(iv) retention of both first and second eluted enantiomers were enthalpy-driven (|∆H◦|
> |T∆S◦|) in almost all cases. Entropy-driven retention (|∆H◦| < |T∆S◦|) was
observed for both enantiomers of compounds 2 and 5 (R = Me), and 6 (Ch = S, R = Ph)
with the system C-3,5diMe/mix C. Under the same conditions, positive values of ∆G◦

were also derived for the first eluted enantiomers of compounds 4, 7, and 8. The first
eluted enantiomer of compound 7 gave entropy-driven retention also with the system
C-3Cl,4Me/mix A. The adsorption step with positive ∆G◦ as an independent process
is definitely impossible. However, it may be coupled with other endergonic processes
facilitating the exergonic adsorption step. The details of this unusual observation are
the subject of further studies;

(v) in all cases, thermodynamic quantities associated with retention changed in a nar-
rower range (−1.17 ≤ ∆G◦ ≤ 0.96 kJ/mol) for the first eluted enantiomers compared
to the second eluted ones (−4.45 ≤ ∆G◦ ≤ 0.36 kJ/mol), this evidence confirming
that the adsorption mechanism of the most retained enantiomer is more sensitive to
subtle structural variations;

(vi) in the series 4–7–8, compound 7 showed the lowest retention for the first eluted
enantiomer (∆G◦ = −0.35 kJ/mol), and the highest retention for the second eluted
enantiomer (∆G◦ = −4.45 kJ/mol) with the system C-3,5diMe/mix A, evidencing the
pivotal role of the system Ch = S and R = C6F5 for enantiodiscrimination.

2.5. Electrostatic Potential Analysis to Explore Chiral Recognition Mechanism

In previous studies, from two to four low-energy conformers were identified for
compounds 2–8 [9,11] (Table S1 and Figure S1) by means of DFT calculations. These
conformers originate from the relative orientation of the distinctive substituent at the
3-position, the methyl group (2 and 5), the phenyl (3 and 6), and the pentafluorophenyl (4,
7, and 8) rings. These substituents can be in front (conformers A) of the 2′-chloro-5′-bromo-
4′-pyridyl ring or away from it (conformers B) due to rotation around the bond C3–Ch. For
each of the two patterns A and B, two additional conformers are generated because the
distinctive substituent at the 3-position can be close to the 3′-hydrogen (conformers A1
and B1) or to the 5′-bromine atom (conformers A2 and B2). On this basis, conformers 2-A2,
3-A1, 4-B1, 5-A2, 6-A1, 7-B1, and 8-B1 were calculated as the most stable in vacuum [9]. In
this regard, it is worth noting that A2-type conformers were found as the most populated
in vacuum only for compounds 2 and 5, whereas 1-type conformers (A1 and B1) were
computed as most stable for the other compounds. On this basis, the different position of
the methyl group with respect to the 4,4′-bipyridine framework could explain the reversal
of EEO observed with C-3,5diMe and mix A. As VS,max values of X and Ch σ-holes and
phenyl π-holes have been computed for each conformers (Table S1) [9], we have applied
here V analysis of analytes and polysaccharide-based CSPs, recently used to successfully
rationalize noncovalent interaction patterns underlying enantiodiscrimination [47,48].

Considering compounds 4, 7, and 8, both retention and selectivity obtained with
C-3,5diMe and mix A increase in the order 8 (4.46, 3.52) < 4 (4.75, 3.71) < 7 (6.03, 5.27)
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(Table S2) as the VS,max values calculated for the π-hole regions of conformers B1 (VS,max
[au], 8: 0.0369, 0.0416 < 4: 0.0455, 0.0425 < 7: 0.0470, 0.0444), indicating that the π-hole
region participates in the enantiodiscrimination process as electrophilic site.

With the aim to also confirm the participation of the Ch σ-hole in the enantiodiscrimi-
nation processes, the possible correlation between calculated VS,max values and retention of
the second eluted enantiomers of compounds 2–7 with C-3,5diMe and mix A was explored
by fitting a simple linear regression model to describe the relationship between ln k2 and
VS,max as independent variable. Good correlation (p-value = 0.0007, r2 = 0.9560) (Figure 7)
was obtained by considering the VS,max values associated on the σ-hole located on the
elongation of the Cpyridyl-Ch bond for compounds 2, 3, 5, and 6. Otherwise, the sum of this
σ-hole and the π-hole region was considered for compounds 7 and 4. It is worth noting
that it was reasonable to neglect the σ-hole located on the elongation of the CR–Ch bond as
well as the π-hole below the aromatic plane, both regions being less accessible.
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values for compounds 2–7.

It is worth mentioning that good correlation levels were also obtained with a larger
number of inspected compounds by fitting a simple linear regression model to describe the
relationships between ln k2 vs VS,max (Cpyridyl-Ch σ-hole) and ln k2 vs VS,max (Ar π-hole),
as independent variables (Supplementary Data Figure S4). The Ch σ-holes of compounds
2–7 and the fluoroaryl derivatives 9–14 [27] (n. 12), and the π-holes of compounds 3, 4,
6–8, and 111–814 (n. 9) were considered. In both cases, p-values < 0.05 were obtained
indicating a statistically significant correlation for the examined relationships: ln k2 =
f(VS,max (Cpyridyl-Ch σ-hole)), p-value = 0.0033, r2 = 0.5946; ln k2 = f(VS,max (Ar π-hole)),
p-value = 0.0001, r2 = 0.9146.

2.6. Source Function Reconstruction of the Electrostatic Potential

Given VS,max associated with a “hole” region, this V value may be envisaged as being
due to source contributions from atoms or groups of the system. The decomposition of V in
atomic groups contributions can be achieved by extending the Bader–Gatti source function
(SF) for the electron density to V [9,27,49,50] in order to quantify the impact of single
contributions to the V value. On this basis, the factors determining a certain V in a point
can be inspected, understanding the reasons of observed trends in series of structurally
related compounds.

The results of the SF decomposition of VS,max on the basis of the equation VS,max =
SF(Se) + SF(R) + SF(Bipy), calculated for the Cpyridyl-Se σ-hole of selenium compounds 2, 3,
and 4, are reported in Figure 8a. The VS,max (Figure 8a, leftmost bar for each compound)
originates from the sum of single contributions of each component of the molecular system,
namely the Se atom itself (Figure 8, orange), the 4,4′-bipyridine framework (yellow), and
the distinctive substituent R (grey). The source sign is positive or negative whether the
atomic (or group) source concurs or opposes to the positive potential of the σ-hole.
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to the Cpyridyl–Se σ-holes, contribution colors: Se (orange), R (grey), Bipy (yellow); (b) VS,max (au) associated with the
Cpyridyl–Se σ-holes of compounds 2–4, (c) trend of k2, and (d) ∆G◦298 K for the second eluted enantiomers of compounds 2–4.

In the case of 2, the methyl group is not really “electron-withdrawing” but the σ-
hole depth is not negligible (VS,max = 0.0518 au) due to the less negative SF contribution
of the methyl group (−0.0108 au) to the Cpyridyl-Se σ-hole. In the case of 3, the higher
electron-withdrawing power of the phenyl relative to the methyl group increases the
positive SF contribution of selenium compared to 2 (0.0877, 2 → 0.0941, 3), but a more
negative contribution from the Ph group (−0.0108, 2→−0.0318, 3) makes the VS,max less
positive (0.0401 au). Finally, for compound 4, the negative contribution of the C6F5 group
increases (−0.0483 au), but it is balanced by a less negative contribution of the bipyridine
framework (−0.0167 au) and the strong positive contribution of the Se itself (+ 0.1232 au),
due to the very high electron-withdrawing power of the C6F5 group. The SF reconstruction
provides a theoretical explanation of VS,max origin and trend observed for compounds 2–4
(Figure 8b). In turn, the retention features of the second eluted enantiomers of compounds
2–4 (Figure 8c,d) change coherently with VS,max on the Cpyridyl-Se σ-hole confirming the
participation of this region to the enantiodiscrimination process.

3. Conclusions

In most cases, so far sulfur and selenium sites have been considered to participate
in LC retention and enantiodiscrimination as weak HB acceptor and hydrophobic site,
respectively. However, if properly activated by the electron-withdrawing properties of R
and R’ frameworks, sulfur and selenium compounds with general formula R–S–R’ and
R-Se-R’ present two σ-holes regions located on the elongation of the σ bonds R-Ch and
R’-Ch (Ch = S, Se). Analogously, perfluorinated aromatic rings contain regions of electron
charge density depletion (π-hole) located above and below the molecular plane. Our
study reasonably confirmed that noncovalent interactions involving these regions can
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participate in both retention and enantioseparation mechanisms. In the last few years,
new achievements in the theoretical knowledge shed light on the nature and functions
of σ- and π-holes in several fields, introducing a deep change in the way research looks
at the chalcogen bond utilization. In this perspective, our exploration paves the way for
repositioning chalcogen sites also in enantioseparation science.

4. Materials and Methods
4.1. Chemistry

Compounds 1 and rac-2–8 were synthesized as previously reported [11,27,36]. HPLC-
grade n-hexane (Hex), methanol (MeOH), and 2-propanol (IPA) were purchased from
Sigma-Aldrich (Taufkirchen, Germany).

4.2. Chromatography

An Agilent Technologies (Waldbronn, Germany) 1100 Series HPLC system (high-pressure
binary gradient system equipped with a diode-array detector operating at multiple wave-
lengths (220, 254, 280, 360 nm), a programmable autosampler with a 20 µL loop, and a ther-
mostated column compartment) was employed. Data acquisition and analyses were carried out
with Agilent Technologies ChemStation Version B.04.03 chromatographic data software. The
UV absorbance is reported as milliabsorbance units (mAU). Lux Cellulose-1 (cellulose tris(3,5-
dimethylphenylcarbamate)), Lux Cellulose-2 (cellulose tris(3-chloro-4-methylphenylcarbamate)),
Lux Amylose-1 and Lux i-Amylose-1 (amylose tris(3,5-dimethylphenylcarbamate)), Lux Amylose-
2 (amylose tris(5-chloro-2-methylphenylcarbamate)), and Lux i-Amylose-3 (amylose tris(3-chloro-
5-methylphenylcarbamate)) (5 µm) (Phenomenex Inc., Torrance, CA, USA) were used as chiral
columns (250 × 4.6 mm). The retention factor (k) was determined as k = (tR-t0)/t0, where tR
is the retention time for the eluted enantiomer. Dead time (t0) was measured by injection of
tri-tert-butylbenzene (Sigma-Aldrich, Taufkirchen, Germany) as a non-retained compound [51].
The separation factor (α) was calculated as α = k2/k1, where k1 and k2 are the retention fac-
tors of the first- and the second-eluted enantiomer, respectively. Analyses were performed in
isocratic mode at 25 ◦C. The flow rate (FR) was set at 0.8 mL/min. For compounds 2–8, the
enantiomer elution order (EEO) was determined by injecting enantiomers of known absolute
configuration [11,27]. The van’t Hoff experiments were conducted at 5, 10, 15, 20, 25, 30, and 35
◦C by using a thermostat jacket equipped with a RE104 LAUDA circulating water-bath (Lauda,
Königshofen, Germany) (resolution 0.1 ◦C; accuracy± 0.4 ◦C; temperature control± 0.02 ◦C).
When the temperature was changed, the column was allowed to equilibrate for 1 h before injecting
the samples. Thermodynamic parameters were derived from the slopes and the intercepts of the
van’t Hoff plots by linear regression analysis. Statgraphics Centurion XVI (Statpoint Technologies,
Inc., Warrenton, VA, USA) was used for all linear regression analyses.

4.3. Computationals

Electrostatic potential extrema on the molecular electron density isosurfaces (maxima
and minima) (VS,max and VS,min) were calculated as previously reported at DFT/B3LYP/6-
311G* level [9] by using Gaussian 09 (Wallingford, CT, USA) [52], and given in au (elec-
trons/bohr). Search for the exact location of VS,max and VS,min was made through the
Multiwfn code [53] and through its module enabling quantitative analyses of molecu-
lar surfaces (isovalue 0.002 au) [54]. The SF reconstruction of VS,max was performed as
previously described [9,27].

Supplementary Materials: The following are available online: Figure S1: Conformations and related
VS representations on electron density isosurfaces of compounds 2–8, Table S1: VS,max (au) on
halogen (Cl, Br), sulfur and selenium σ-holes (0.002 au), and the pentafluorophenyl ring π-hole
calculated for conformers of compounds 1–8, Table S2: Retention and selectivity of 4,4′-bipyridines
11–88 on coated and immobilized cellulose- and amylose-based CSPs by using Hex/IPA 90:10 as
MP, Table S3: Retention and selectivity of 4,4′-bipyridines 1–8 on coated Lux Cellulose-1 (C-3,5diMe)
by using Hex/IPA 90:10 (mix A), Hex/IPA/MeOH 90:5:5 (mix B) and MeOH (mix C) as mobile
phases, Figure S2: Linear regression analysis describing the relationships between ln α and ln k2 for
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21–88 on cellulose- and amylose based CSPs, Figure S3: Linear regression analysis describing the
relationships between ln α and ln k2 for 2–8 on C-3,5diMe with mix B and mix C as MPs, Table S4:
Temperature dependence of retention factors and van’t Hoff equations for 4,4′-bipyridines 2–8 on
C-3,5diMe (Lux Cellulose-1), hex/IPA 90:10 (mix A), Table S5: Temperature dependence of retention
factors and van’t Hoff equations for 4,4′-bipyridines 2–8 on C-3Cl,4Me (Lux Cellulose-2), hex/IPA
90:10 (mix A), Table S6: Temperature dependence of retention factors and van’t Hoff equations
for 4,4′-bipyridines 2–8 on C-3,5diMe (Lux Cellulose-1), hex/IPA/MeOH 90:5:5 (mix B), Table S7:
Temperature dependence of retention factors and van’t Hoff equations for 4,4′-bipyridines 21–88 on
C-3,5diMe (Lux Cellulose-1), MeOH 100% (mix C), Table S8: Thermodynamic quantities calculated
from the van’t Hoff plots for 4,4′-bipyridines 2–8 on C-3,5diMe and C-3Cl,4Me under normal phase
(NP) an polar organic (PO) elution modes, Figure S4: Linear regression analysis describing the
relationships between ln k2 (C-3,5diMe, mix A) and VS,max (Cpyridyl-Ch σ-hole) (au) (compounds
21–87 and 91–814) (a) and VS,max (Ar π-hole) (au) (compounds 3, 4, 6–8, and 11–14 (b).
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