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Extra Regularity of Hermite Subdivision Schemes

Jean-Louis Merrien* Tomas Sauer†

January 4, 2021

Abstract

Hermite subdivision schemes act on vector valued data that is not only considered as
functions values of a vector valued function from R to Rr , but as evaluations of a func-
tion and its consecutive derivatives. Starting with data on `r (Z), r = d + 1, interpreted
as function value and d = r − 1 consecutive derivatives, we compute successive itera-
tions to define values on `r (2−nZ) and an r -vector valued limit function for whose first
component C d –smoothness is generally expected.

In this paper, we construct Hermite subdivision schemes such that, beginning with
the same data, it is possible to reach a limit function with smoothness d+p for any p > 0.
The result is obtained with a generalized Taylor factorization and a smoothness condi-
tion for vector subdivision schemes.

keywords: Taylor operator, Hermite subdivision, Vector Subdivision, Smoothness.

1 Introduction

Subdivision schemes create curves or surfaces by applying stationary refinement rules on
data defined on the integers. This refinement process extends the data to a discrete function
defined on the half integers, quarter integers and so on, until eventually the values become
so dense that one could speak of a limit function. Stationary subdivision [1] means that any
step of the subdivision process is a stationary process which defines data on next level in a
convolution like way as

gn+1 = Sa gn := ∑
β∈Z

a(·−2β) gn(β);

in this expression, a stands for the mask, a finitely supported sequence and the values gn on
different iteration levels are normalized to be discrete functions gn : Z→ R with the under-
standing that gn(α) stands for a value at 2−nα, α ∈ Z. Such subdivision schemes with scalar
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coefficients can be trivially extended to the generation of curves by acting componentwise,
on vector data, resulting in the iteration

g n+1 = Sa g n := ∑
β∈Z

a(·−2β) g n(β), g n :Z→Rr .

Vector subdivision goes one step further by applying a matrix valued mask to the data, allow-
ing for interaction between the components of the data vectors:

g n+1 = S A gn := ∑
β∈Z

A(·−2β) g n(β), A :Z→Rr×r ,

again with the assumption that A is finitely supported. Finally, in Hermite subdivision the
components of the vector f n(α) ∈ Rr , r = d +1, are considered as function value and d con-
secutive derivatives of a function at 2−nα. Due to the chain rule, the refinement scheme now
takes a level dependent form, that is, the operator depends on the iteration level n as

f n+1 = D−n−1 S A Dn f n = ∑
β∈Z

D−n−1 A(·−2β)Dn f n(β), D =


1

1
2

. . .

2−d

 .

All such types of subdivision schemes are covered extensively in the literature, see e.g. [2, 3,
4, 5, 7, 14], just to name a few specific references on Hermite subdivision schemes. Standard
questions to consider are the convergence of the iterative schemes and the regularity of the
associated limit functions. This is well-known to be closely related to the way how the sub-
division operators act on polynomial sequences, a property that can in turn be conveniently
characterized by means of operator factorizations.

In the next section, we will review the basic definitions of vector and Hermite subdivision
schemes and the appropriate notions of convergence. We will point out what vector subdi-
vision schemes and Hermite subdivision schemes have in common and where they differ.
Introducing Taylor operators, we will also present the transformation of a Hermite subdivi-
sion scheme into vector subdivision schemes via the Taylor factorizations. We illustrate the
different schemes with an example where, in particular the limit functions are shown.

We will see that the definitions of the smoothness of the two schemes are significantly
different. By construction, the limit function

φ=

φ0
...
φd

 ,

of a Hermite scheme satisfies φ j = φ
( j )
0 for j = 0, . . . ,d , so that φ0 ∈ C d whenever all compo-

nents of φ are continuous. The limit of a Hermite subdivision scheme always has to have
a certain amount of regularity in the sense of differentiability. In this paper we investigate
the question under which circumstances we can have extra regularity, that is, φ0 ∈ C d+p for

2



some integer p ≥ 0. We will relate this to a combined factorization, one due to the nature
of Hermite subdivision schemes and one coming from a smoothness condition for vector
subdivision schemes that is due to [13]. A similar approach has been used to characterize
overreproduction of polynomials as an algebraic properties of the matrix symbols in [15].

Section 3 will be devoted to the B-spline case. Here the splines are obtained as the limit
of, firstly, a scalar subdivision scheme, secondly, a Hermite subdivision scheme. The smooth-
ness of such functions are well known and can be as large as wanted.

In the final Section 4, we will give a generic construction to obtain convergent Hermite
subdivision schemes with any order of extra smoothness.

2 Vector and Hermite subdivision schemes

We begin by fixing some notation to describe subdivision schemes. Vectors in Rr , r ∈N, will
generally be labeled by lowercase boldface letters: y = [

y j
]

j=0,...,r−1 or y = [
y ( j )

]
j=0,...,r−1,

where the latter notation is used to highlight the aforementioned fact that in Hermite sub-
division the components of the vectors correspond to consecutive derivatives. Moreover, in
Hermite subdivision we denote the highest derivative by d , so that throughout the paper we
will always have the relationship r = d +1.

Matrices in Rr×r will be written as uppercase boldface letters such as A = [
a j k

]
j ,k=0,...,r−1.

The space of polynomials in one variable of degree at most n will be written as Πn , with
the usual convention Π−1 = {0}, while Π will denote the space of all polynomials. Vector se-
quences will be considered as functions from Z to Rr and the vector space of all such func-
tions will be denoted by `r (Z). For a sequence y ∈ `r (Z), the forward difference is defined as
∆y := y(·+1)− y , and iterated to

∆ j y :=∆
(
∆ j−1 y

)
=∆ j−1 y(·+1)−∆ j−1 y(·) =

j∑
k=0

(−1)k− j

(
j

k

)
y(·+k), j ≥ 1.

We use 0 to indicate zero vectors and matrices. If we want to highlight the dimension of the
object, we will use a subscript like 0r , but to avoid too cluttered notation, we will often drop
them if the size of the object is clear from the context.

For a finitely supported sequence of matrices A ∈ `r×r
0 (Z), called the mask of the subdivi-

sion scheme, we define the associated stationary subdivision operator

S A : g 7→ ∑
β∈Z

A(·−2β) g (β), g ∈ `r (Z).

Using potentially different masks An ∈ `r×r
0 (Z), n ∈N, these operators can be iterated into a

subdivision scheme that creates sequences g n ∈ `r
0(Z), n ≥ 0,

g n+1 := S An g n := ∑
β∈Z

An
(·−2β

)
g n(β), n ≥ 0, (1)

from a given g 0. An important algebraic tool for stationary subdivision operators is the sym-
bol of the mask, the matrix valued Laurent polynomial

A∗(z) := ∑
α∈Z

A(α) zα, z ∈C\ {0}. (2)
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In a vector subdivision scheme as defined in [1], we simply set An = A ∈ `r×r
0 (Z) and define

convergence as follows.

Definition 1 The vector subdivision operator S A : `r (Z) → `r (Z) is called C p –convergent, p ≥
0, if for any data g 0 := g ∈ `r (Z) and the refinements from (1) there exists a functionψg :R→Rr

with C p components such that for any compact K ⊂ R there exists a sequence εn with limit 0
that satisfies

max
α∈Z∩2n K

∥∥g n(α)−ψg
(
2−nα

)∥∥∞ ≤ εn . (3)

For a Hermite scheme, in (1), we set

An(α) = D−n−1 A(α)Dn , α ∈Z, D :=


1

1
2

. . .
1

2d

 , (4)

so that r = d +1 and for k = 0, . . . ,d the k-th component of c n(α) corresponds to an approxi-
mation of the k-th derivative of some function ϕn at α2−n . Starting from an initial sequence
f 0 ∈ `r (Z), a Hermite scheme

f n+1 := HAn f n := D−n−1S ADn f n , n ≥ 0,

can be rewritten as

g n+1 := Dn+1 f n+1 = S ADn f n = S A g n , n ≥ 0, (5)

based on the relation
g n = Dn f n , n ≥ 0. (6)

To capture the intuition of vectors with consecutive derivatives, the convergence of Hermite
schemes is a little bit more intricate and defined as follows.

Definition 2 The Hermite subdivision scheme with respect to the mask A ∈ `r×r (Z) as defined
by (5) is called convergent if for any data f 0 ∈ `r (Z) there exists a function Φ ∈ C (R,Rr ) such
that for any compact K ⊂R there exists a sequence εn with limit 0 which satisfies

max
0≤ j≤d

max
α∈Z∩2n K

∣∣∣ f ( j )
n (α)−φi

(
2−nα

)∣∣∣≤ εn . (7)

Moreover, the scheme HAn is said to be C p –convergent with p ≥ d if in addition φ0 ∈C p (R,R)
and

φ
( j )
0 =φ j , 0 ≤ j ≤ d .

Remark 3 Since the intuition of Hermite subdivision schemes is to iterate on function values
and derivatives, it usually only makes sense to consider C p –convergence for p ≥ d. Note, how-
ever, that the case p > d leads to additional requirements.
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Remark 4 The two concepts of convergence based on S A and HAn are significantly different as
can be seen immediately from (6). Indeed, if the Hermite subdivision scheme is convergent it
follows that

g n =


f (0)

n

2−n f (1)
n

...

2−nd f (d)
n

→


φ0

0
...
0

 ,

hence Ψg = φ0 e0. In particular, the components of g n have to converge to zero even with a
prescribed rate. Therefore, in general it cannot be ensured that D−n g n converges or is bounded,
even if g n converges to a multiple of e0. This is the reason why the factorization properties and
the convergence analysis for Hermite subdivision cannot be obtained in a straightforward way
from that of the vector subdivision operator, even if they are based on the same mask, see Fig. 1
for a particular example.

As a consequence of Remark 4 we observe that whenever a mask A defines a convergent
Hermite subdivision scheme, the associated vector subdivision scheme based on S A is a so-
called rank-1 subdivision scheme as defined in [12, 13]. In concrete terms, this means that the
mask as to satisfy

Q0e0 =Q1e0 = e0, Qε := ∑
α∈Z

A2α+1, ε ∈ {0,1},

and that the two matrices Q0 and Q1 have no further common eigenvector with respect to
the eigenvalue 1.
To give convergence criteria for vector and Hermite subdivision schemes, we need three dif-
ferent types of difference operators from [9, 10].

Definition 5 The simple difference operator (of rank-1 type) is defined as

Dd :=∆ed eT
d =


1

. . .

1
∆

 (8)

A generalized incomplete Taylor operator is an operator of the form

Td :=



∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

1

=
[
∆I

1

]
+ [

t j k
]

j ,k=0,...,d , (9)

where
t j , j+1 =−1 and t j k = 0, k ≤ j .
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In the same way, the generalized complete Taylor operator is of the form

T̃d := Dd Td =



∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

∆

=∆I + [
t j k

]
j ,k=0,...,d . (10)

The name Taylor operator stems from the fact that, motivated by observations from [6], the
(incomplete) operator had originally be introduced in [9] as

Td :=



∆ −1 −1
2 . . . − 1

d !
. . .

. . .
. . .

...
. . .

. . . −1
2

∆ −1
1


as a comparison between the difference of function values and the derivative terms of the
Taylor expansion. Since for any φ ∈C d+1(R) one has that

T̃d


φ

φ′
...

φ(d)

 (x) =


φ(d+1)(ξ0)
φ(d+1)(ξ1)

...
φ(d+1)(ξd )

 , ξ j ∈ (x, x +1), j = 0, . . . ,d ,

the operator clearly annihilates all polynomials of degree at most d . Moreover, it enables us
to give a sufficient criterion for the convergence of Hermite subdivision schemes by means
of factorization.

Definition 6 The masks B , B̃ ∈ `r×r (Z) are called a Taylor factorization and a complete Taylor
factorization of A, respectively, if they satisfy

Td S A = 2−d SB Td and T̃d S A = 2−d SB̃ T̃d , (11)

respectively.

In a certain sense, the factorization always exists. We simply have to write 6 as

T ∗(z)A∗(z) = 2−d B∗(z)T ∗(z2), T ∗(z) :=



z−1 −1 −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
z−1 −1 −1

1


6



with an analogous identity for the complete factorization, to obtain that

B∗(z) = 2d T ∗(z)A∗(z)T ∗(z2)−1 and A∗(z) = 2−d T ∗(z)−1B∗(z)T ∗(z2),

respectively. Given a finitely supported mask A, the resulting B∗(z) is usually a nonpolyno-
mial rational function, hence the factor B is an infinitely supported mask. Unfortunately,
the same also holds true for A∗ which, for given B can only be guaranteed to be a rational
function, even if

det A∗(z) = 2−d (
detT ∗(z)

)−1 detB∗(z) detT ∗(z2) = 2−d (z−2 −1)d+1

(z−1 −1)d+1
detB∗(z)

= 2

(
z−1 +1

2

)d+1

detB∗(z)

is a Laurent polynomial in z. This is in contrast to scalar subdivision schemes where raising
the order of the zero at −1 is the standard way to increase the smoothness of the limit func-
tion. Nevertheless, the existence of a factorization is the key to the construction of convergent
Hermite subdivision schemes.

Theorem 7 ([10], Corollary 4) If a given mask A has a complete Taylor factorization T̃d S A =
2−d SB̃ T̃d where

1. B̃ ∈ `r×r (Z) is finitely supported,

2. SB̃ is a contraction on `r∞(Z),

3. (B∗(1))11 = 1,

then HAn is C d -convergent.

Hence, in order to construct a C d -convergent subdivision scheme, we can start with a finitely
supported B̃ such that the associated subdivision satisfies the contractivity condition 2) and
the normalization condition 3) at the same time. Note that the latter prohibits a simple rescal-
ing of B , i.e., a multiplication with a small constant.

This, however, is not enough as one also has to ensure that T ∗(z)−1B∗(z)T ∗(z2) is a matrix
valued Laurent polynomial which leads to additional conditions on B∗. A generic construc-
tion for such a B has been given, for any generalized Taylor operator, in [10] which shows
that for any generalized Taylor operator and any d there exists a C d convergent Hermite sub-
division scheme that if factorizable with respect to this generalized Taylor operator. We will
later extend this construction by means of a supercomplete Taylor factorization, but first we
illustrate the concept by looking at a special case that actually motivated the development of
generalized Taylor factorizations.

In Figure 1, with a given mask, {A(·)}, we plot the ”limit” functions for the two vector
schemes, S A , SB (after Taylor incomplete factorization), and the Hermite scheme HAn . We
notice that the first functions for S A and HAn are identical, corresponding to φ0 in Definition
2 and similarly the last ones of SB and HAn corresponding to φ(d)

0 in the same definition.
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Figure 1: The different schemes: S A , SB and HAn
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3 The B–spline case

In this section, we rewrite the well known cardinal splines, [16] in term of a scalar subdivi-
sion scheme and extend it into Hermite schemes of different orders. From the properties of
cardinal splines, we have convergence of the schemes and regularity of the limit.

Our presentation, already proposed in [8], is based on a construction detailed by Michelli
in [11] and in summarized in the following.

Let

ϕ0(x) =χ[0,1] =
{

1 if x ∈ [0,1],
0 if x ∉ [0,1].

For m = 1,2, . . ., we build ϕm by means of autoconvolution as ϕm = ϕ0 ∗ϕm−1 or ϕm(x) =∫ x
x−1ϕm−1(t )d t .

Let us recall that ϕm is a C m−1 piecewise polynomial of degree m with finite support
[0,m +1].

Moreover, ϕm(x) = 1
2m

∑
α∈Z

(m+1
α

)
ϕm(2x −α) where

( i
j

)={
i !

j !(i− j )! if 0 ≤ j ≤ i ,

0 otherwise.

Considering v(x) = ∑
α∈Z f (0)

0 (α)ϕm(x −α), which is a finite sum for any x ∈ R since ϕm

has finite support, we deduce for n ∈N0 that v(x) =∑
α∈Z f (0)

n (α)ϕm (2n x −α) where

f (0)
n+1(α) = 1

2m

∑
β∈Z

(
m +1
α−2β

)
f (0)

n (β) =:
∑
β∈Z

am(α−2β) f (0)
n (β), α ∈Z, (12)

that is,

am(α) = 1

2m

(
m +1

α

)
, α ∈Z. (13)

This is a scalar subdivision scheme.
Then, the well–known derivative formula for cardinal B–spline yields

d i v

d xi
(x) = ∑

α∈Z
2ni∆i f (0)

n (α− i )ϕm−i
(
2n x −α)

, i = 0, . . . ,m −1. (14)

We have a particular case when i = m − 1. Since the function ϕ1 is piecewise linear with
ϕ1(α) = δ1α, we obtain

d m−1v

d xm−1 (β/2n) = 2n(m−1)∆m−1 f (0)
n (β−m +1).

With this formula, we define a Hermite subdivision scheme of order d < m with mask {A(α)}
and support [0,m +d +1] by applying differences to the mask am , yielding

A(α) =


am(α) 0 . . . 0

∆am(α−1) 0 . . . 0
...

∆d am(α−d) 0 . . . 0

 , (15)
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thus

A∗(z) = (1+ z)m+1

2m


1 0 . . . 0

(1− z) 0 . . . 0
...

(1− z)d 0 . . . 0

 . (16)

Beginning with f 0 ∈ `r , defined by (5) we notice that for n ≥ 1 and i = 1, . . . ,d :

f (i )
n (α) = 2i n∆i f (0)

n (α− i ). (17)

Now with (12) and (14), for n > 0,

d i v

d xi
(x) = ∑

α∈Z
f (i )

n (α)ϕm−i (2n x −α), i = 0, . . . ,d .

In [8], we had proved that the generalized Taylor operators are given by

T d :=


∆ −1 . . . −1

. . .
. . .

...
∆ −1

1

 and T̃ d :=


∆ −1 . . . −1

. . .
. . .

...
∆ −1

∆

 (18)

Thus the corresponding vector scheme in the factorization is given by

B̃
∗

(z) = z(1+ z)m−d

2m−d


1
1
...
1

[
(1− z2)d z2((1− z2)d−1 . . . z2(1− z2) z2

]
. (19)

It is of rank 1. Let us also notice that

T̃
∗

(z)A∗(z) = 2−d B̃
∗

(z)T ∗(z2) = 2−m z−1(1+ z)m+1(1− z)d+1


1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0

 .

We did not plot the graphs of the B-splines which are well known and probably everyone
has seen one already.

4 Hermite schemes with extra regularity: a generic construction

In this section we will show that for any generalized Taylor operator of any order d there exists
a C d -convergent subdivision scheme with an a extra regularity of p for any given p ≥ 0.

Theorem 8 Given p ≥ 0 and a Taylor operator Td of order d, there exists a finitely mask A ∈
`r×r such that the subdivision scheme is C d -convergent with a limit function φ ∈C d+p (R) and
S A admits a Taylor factorization with respect to Td .

10



The idea behind the supercomplete construction is simple and to some extent even fol-
lows the same concept as usual scalar subdivision: starting with the Taylor factor B such that
Td S A = 2−d SB Td , we create an additional the order of smoothness of the limit function of SB

by constructing a scheme whose symbol has extra (matrix) factors. This means that SB from
the (incomplete) Taylor factorization should be further factorizable into[

I d

∆

]p

SB = 2−p SB̃

[
I d

∆

]p

, (20)

where B̃ is also a finitely supported mask. From [12, 13] we recall the following result on
smoothing limit functions.

Theorem 9 The vector subdivision scheme SB has C p limit function if[
I d

∆

]p+1

SB = 1

2p SB̃

[
I d

∆

]p+1

(21)

and SB̃ is contractive. The converse does not hold.

For the construction of an appropriate B̃ , we partition it as

B̃
∗

(z) =
[

B̃
∗
11(z) B̃

∗
12(z)

B̃
∗
21(z) B̃

∗
22(z)

]
, B̃ 11 ∈ `d×d (R), B̃ 12, B̃

T
21 ∈ `1×d (R), B̃ 11 ∈ `1×1(R)

Since (21) can be rewritten as

B∗(z) = 1

2p

[
I d

z−1 −1

]−p−1 [
B̃

∗
11(z) B̃

∗
12(z)

B̃
∗
21(z) B̃

∗
22(z)

][
I d

z−2 −1

]p+1

= 1

2p

[
B̃

∗
11(z) (z−2 −1)p+1 B̃

∗
12(z)

(z−1 −1)−p−1B̃
∗
21(z) (z +1)p+1 B̃

∗
22(z)

]
, (22)

we can record the following immediate consequence of Theorem 9.

Corollary 10 SB converges to a C p limit function of the form f c = fc ed if

1. SB̃ is contractive,

2. B̃
∗
21 has a zero of order p +1 at 1,

3. B̃ is normalized as B̃
∗
22(1) = 1.

The corollary tells us that contractive schemes are at the heart of the construction of a con-
vergent Hermite subdivision scheme. Note that contractivity of a scheme C means that the
spectral radius

ρ(SC ) := limsup
n→∞

‖Sn
C‖1/n , ‖SC‖ := sup

‖c‖∞=1
‖SC c‖∞,

11



based on the operator norm of the subdivision operator is less than one, where

‖c‖∞ = sup
α∈Z

max
0≤k<r

|ck (α)|.

The following simple sufficient condition for contractivity of a vector subdivision scheme is
most likely known in the folklore, but state it and give a quick proof for the sake of complete-
ness and the reader’s convenience.

Lemma 11 If C is a lower triangular mask, i.e., all components of C (α) are lower triangular
matrices and the diagonal elements c00, . . . ,cr−1,r−1 ∈ `(Z) are scalar contractive schemes, then
C defines a contractive vector subdivision scheme.

Proof: Write C = D +N where D ∈ `r×r (Z) is a diagonal scheme and N ∈ `r×r (Z) is strictly
lower diagonal one, then Sn

C = Sn
D +SN n for some strictly lower diagonal N n ∈ `r×r (Z), n ∈N.

Since the diagonal elements are contractions, there exist some n ∈N such that
∥∥Sn

D

∥∥< 1. With

Eε :=


1

ε
. . .

εr−1


we have that

EεSn
C E−1

ε = Sn
D +SEεN n E−1

ε
, EεN nE−1

ε =


0
ε∗ 0

...
. . .

. . .

εr−1∗ . . . ε∗ 0


and hence there exists ε> 0 such that ρ := ∥∥EεSn

C E−1
ε

∥∥< 1. Hence, for any m ∈N,

‖Smn
C ‖ ≤ ‖Eε‖‖E−1

ε ‖ ∥∥EεSmn
C E−1

ε

∥∥= ε1−r
∥∥∥(

EεSn
C E−1

ε

)m
∥∥∥≤ ρr

er−1

which becomes< 1 for m sufficiently large. Sinceρ(SC ) ≤ ‖Smn
C ‖1/(mn) for any choice of m,n ∈

N, this completes the proof that SC is a contraction. �

Next, note that the second condition on B̃ in Corollary 10 ensures that B∗ in (22) is a Laurent
polynomial while the normalization yields

B∗(1) =
[∗ 0

0 2

]
, B∗(−1) =

[∗ 0
∗ 0

]
,

hence ( ∑
α∈Z

B (2α)

)
ed =

( ∑
α∈Z

B (2α+1)

)
ed = ed ,

which is the necessary condition for the limit function to be of the form fc ed . Combining the
two factorizations into one, we arrive at the following definition.

12



Definition 12 The (generalized) supercomplete Taylor operator of order d and extra regular-
ity p is of the form

Td ,p :=



∆ −1 ∗ . . . ∗
. . .

. . .
. . .

...
. . .

. . . ∗
∆ −1

∆p+1

=
[

I d

∆

]p

T̃d =
[

I d

∆

]p+1

Td . (23)

The special cases are Td = Td ,−1 and T̃d = Td ,0.

A factorization with respect to a supercomplete operator, Td ,p S A = 2−p−d SB̂ Td ,p is equivalent
to

A∗(z) = 1

2p+d

(
T ∗

d ,p (z)
)−1

B̂
∗

(z)T̂
∗
d ,p (z2)

= 1

2p+d

(
T̃

∗
(z)

)−1
[

I d

(z−1 −1)−p

]
B̂

∗
(z)

[
I d

(z−2 −1)p

]
T̃

∗
(z2)

= 1

2p+d

(
T̃

∗
(z)

)−1
[

I d

z−1 −1

]−p−1

B̂
∗

(z)

[
I d

z−2 −1

]p+1

T̃
∗

(z2)

=:
1

2d

(
T̃

∗
(z)

)−1
C∗(z) T̃

∗
(z2).

Thus, if we can find mask C associated to a contractive scheme and normalized as (C∗(1))dd =
1, such that HA is a C d -convergent subdivision scheme, then we can compute B̂

∗
(z) as

B̂
∗

(z) = 2p
[

I d

z−1 −1

]p+1

C∗(z)

[
I d

z−1 −1

]−p−1

= 2p

[
C̃

∗
11(z)

( 1
z−2−1

)p+1
C̃

∗
12(z)

(z−1 −1)p+1C̃
∗
21(z)

( 1
z−1+1

)p+1
C̃

∗
22(z)

]
.

The construction of C has been pointed out in [10]. More precisely, given any symbol h∗
dd

of a mask h such that the univariate scalar stationary subdivision scheme Sh is contractive,
then there exists a recursive scheme [10, eq. (65) in the proof of Theorem 5] to compute
h∗

d ,d−1, . . . ,hd ,0 such that for any h∗
j k , k = 0, . . . , j −1, j = 1, . . . ,d −1, the upper triangular sym-

bol

C∗(z) =



z−1−1
2

(z−1 −1)2h∗
10(z) (z−1−1)2

4
...

. . .
. . .

(z−1 −1)d h∗
d−1,0(z) . . . (z−1 −1)d h∗

d−1,d−2(z) (z−1−1)d

2d

c∗d0(z) . . . c∗d ,d−2(z) c∗d ,d−1(z) c∗dd (z)


with

c∗d j (z) = (
z−1 −1

)d− j
h∗

d j (z−1), j = 0, . . . ,d ,

13



defines a Taylor factor with a contractive associated subdivision scheme by Lemma 11. Note,
in particular, that C∗

12 = 0 and that c∗dd = h∗
dd . If, in addition, we choose

h∗
dd (z) = (z +1)p+1

2p+1 a(z), a(1) = 2,

in a B-spline fashion, then B̂
∗

(z) is a matrix Laurent polynomial and S A , defined by

A∗(z) = 1

2d

(
T̃

∗
(z)

)−1
C∗(z) T̃

∗
(z2) = 1

2p+d

(
T ∗

d ,p (z)
)−1

B̂
∗

(z)T̂
∗
d ,p (z2)

defines a C d convergent Hermite subdivision scheme by Theorem 7 and has a p-supercomplete
Taylor factorization with factor B̂ . The symbol B̂

∗
is a lower triangular matrix with the same

diagonal structure as C∗ and thus also defines a contraction. Hence, by Theorem 9 and Corol-
lary 10, the last component of the limit

[
φ,φ′, . . . ,φ(d)

]
of HA belongs to C p (R) which eventu-

ally verifies that φ ∈C d+p (R).
This also concludes the proof of Theorem 9.
We finish with revisiting one example from [10] where already a mask with a supercom-

plete Taylor factorization was constructed.

Example 13 In the case n = 5 with the functions from [10, Example 5], we can get a factoriza-
tion with p = 4 and obtain

B̂
∗

(z) =

 −8(z−1)
z

16(z−1)2

z2

32(z−1)6 (5−4 a−3 z+4 a z)
z7

0
4(z−1)2

z2

−8(z−1)5 (15−20 a+16 a2−18 z+32 a z−32 a2 z+7 z2−12 a z2+16 a2 z2)
z7

0
0

1+z
2 z


as well as

A∗(z)

=

 − (1+z)(−20 a+16 a2−23 z+48 a z−32 a2 z+15 z2−28 a z2+16 a2 z2)
2 z3

− (z−1)(1+z) (11−8 a−7 z+8 a z)
z3

2(z−1)2 (1+z) (5−4 a−3 z+4 a z)
z4

30 a−40 a2+32 a3+31 z−46 a z+56 a2 z−32 a3 z+24 z2−78 a z2+72 a2 z2−32 a3 z2−45 z3+94 a z3−88 a2 z3+32 a3 z3

4 z3

(z−1)(−31+40 a−32 a2−24 z+16 a z+43 z2−56 a z2+32 a2 z2)
4 z3

− (z−1)2 (−15+20 a−16 a2−12 z+8 a z+19 z2−28 a z2+16 a2 z2)
2 z4

a+z+7 a z+8 z2+22 a z2+30 z3+42 a z3+72 z4−183 a z4−119 z5+63 a z5

32 z5

(z−1)(−1−8 z−30 z2−72 z3+119 z4+32 a z4)
32 z5

− (z−1)3 (1+9 z+39 z2+111 z3)
32 z6

 .
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Figure 2: The function and its first and second derivatives

In this expression, a is the free parameter of the associated generalized Taylor operator with
complete form

T̃d =
∆ −1 a

∆ −1
∆

 .

In Fig. 2, we have plotted the ”limit” function and its first and second derivatives. Since the
process does not compute the next derivatives, the approximations for higher derivatives in
Fig. 3 have been determined using the successive finite differences of f (2).

5 Conclusions

Convergent Hermite subdivision schemes have a limit function that belongs to C d , at least
if the scheme converges in the sense proper for Hermite subdivision. We have shown that
this regularity can be raised to an arbitrary order and provided an explicit recipe to deter-
mine such schemes. The approach uses factorizations and contractivity, but in contrast to
the scalar univariate case the factor mask B̃ must satisfy additional, nontrivial conditions,
and the main task in the construction is to satisfy these conditions.
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