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Abstract

Detecting cluster structure is a fundamental task to understand and visualize
functional characteristics of a graph. Among the different clustering methods
available, spectral clustering is one of the most widely used due to its speed and
simplicity, while still being sensitive to perturbations imposed on the graph.
This paper presents a robust variant of spectral clustering, called `1-spectral
clustering, based on Lasso regularization and adapted to perturbed graph mod-
els. By promoting sparse eigenbases solutions of specific `1-minimization prob-
lems, it detects the hidden natural cluster structure of the graph. The effective-
ness and robustness to noise perturbations of the `1-spectral clustering algorithm
is confirmed through a collection of simulated and real biological data.

Keywords: Unsupervised learning, Spectral clustering, `1-penalty, Biological
networks

1. Introduction

Graphs play a central role in complex systems as they can model interactions
between variables of the system. They are commonly used in a wide range of
applications, from social sciences (e.g. social networks (Handcock and Gile,
2010)) to technologies (e.g. telecommunications (Smith, 1997), wireless sensor
networks (Akyildiz et al., 2002)) or biology (gene regulatory networks (Davidson
and Levin, 2005), metabolic networks (Jeong et al., 2000)). One of the most
relevant features when analyzing graphs is the identification of their underlying
structures, such as cluster structures, generally defined as connected subsets
of nodes that are more densely connected to each other than to the rest of
the graph. These clusters can provide an invaluable help in understanding and
visualizing the functional components of the whole graph (Girvan and Newman,
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2002; Newman and Girvan, 2004; Abbe, 2017). For instance, in genetics, groups
of genes with high interactions are likely to be involved in a same function that
drives a specific biological process.

Since the pioneering exploratory works in the early 50s, a large number of
clustering methods have launched. Among them, partitioning algorithms, which
include the well-known k-means (MacQueen, 1967), classify nodes into a prede-
fined number of groups based on a similarity measure and hierarchical clustering
algorithms (Hastie et al., 2001) build a hierarchy of clusters through dendrogram
representations. More recently, spectral clustering algorithms, popularized over
years by Shi and Malik (2000); Ng et al. (2002), particularly draw the atten-
tion of the community research due to their speed, simplicity and numerical
performances. As its name suggest, spectral clustering algorithms mainly use
the spectral properties of the graph by (i) computing the eigenvectors of the
associated Laplacian matrix (or one of its derivatives), which gives information
about the structure of the graph, and (ii) performing k-means on it to recover
the induced cluster structure. A large number of extensions of the original spec-
tral clustering algorithm, as presented in Luxburg (2007), have been proposed,
with applications to different fields (Zelnik-Manor and Perona, 2005; Wang and
Davidson, 2010; Li et al., 2019).

While spectral clustering is widely used in practice, handling noise sensitiv-
ity remains a tricky point (Bojchevski et al., 2017), mainly due to the k-means
algorithm, which is highly sensitive to noise. This issue has been considerably
studied with extensions of the k-means to noisy settings so that it recovers the
cluster structure in spite of the unstructured part of the input data (Tang and
Khoshgoftaar (2004); Pelleg and Baras (2007)). More generally, the robustness
of spectral clustering algorithms has recently been investigated for perturbed
graphs derived from stochastic block models (SBM) (Stephan and Massoulié
(2019); Peche and Perchet (2020)). In this context, Joseph and Yu (2016) ex-
plored the effect of regularization on spectral clustering, as proposed in (Amini
et al., 2013), and Zhang and Rohe (2018) particularly highlighted its benefit for
clustering sparse perturbed graphs. Equally, Lara and Bonald (2020) showed
on a simple block model that spectral regularization separates the underlying
blocks of the graph. In this paper, we develop an alternative regularized method
of the spectral clustering, called `1-spectral clustering algorithm and based on
Lasso regularization (Tibshirani et al., 2001). In our model, as in the spec-
tral clustering algorithm, we carefully explore the underlying structure of the
graph through the Laplacian matrix spectrum to cluster nodes. However, by di-
rectly promoting a sparse eigenvectors basis solution to an `1-norm optimization
problem, it does not require the k-means step to extract clustering structures,
making it more robust in highly perturbed graph situations.

The paper is organized as follows: in Section 2, we introduce some prelimi-
nary concepts about graph clustering and more specifically spectral clustering.
In Section 3 and 4, we present the `1-spectral clustering we developed, from a
theoretical and an algorithmic point of view. In Section 5, we finally show its
efficiency and accuracy through experiments on simulated and biological real
data set and compare it with state-of-the-art clustering methods.
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2. Reminders about graph and spectral clustering

2.1. Graphs modeling and notations

This work considers the framework of an unknown undirected graph G(V,E),
with no retroactive loop, consisting of n vertices V = {1, . . . , n} and a set of
edges E ⊆ V × V connecting each pair of vertices. As usual, the graph G is
represented by its associated adjacency matrix A = (Aij)(i,j)∈E of size n × n,
whose non-zero elements correspond to the edges of G:

∀(i, j) ∈ J1, nK2, Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

As G is undirected with no retroactive loop, the adjacency matrix A is symmetric
with zero on its diagonal. Before turning to the next section, we recall some
useful graph definitions.

Definition 1. The degree di of a node i ∈ V of G is defined as the number of
edges that are incident to i: di =

∑n
j=1Aij. The induced degree matrix D is

then the n×n matrix containing (d1, . . . , dn) on its diagonal and zero elsewhere:

D = diag (d1, . . . , dn).

Definition 2. A connected component C of G is a subset of nodes from V such
that each pair of nodes of C is connected by a path and there is no connection
between vertices in C and outside C. Connected components C1, . . . , Ck are a
k-partition of the set V of vertices if the three following conditions hold:

(i) they are non-empty: ∀i ∈ J1, kK, Ci 6= ∅,

(ii) they are pairwise disjoints: ∀(i, j) ∈ J1, kK2, Ci ∩ Cj = ∅,

(iii) their union form the set of all vertices:
k
∪
i=1

Ci = V .

Definition 3. Let C1, ..., Ck be a k-partition of the set of vertices V of G. Then,
the indicators (1Ci

)i∈{1,...,k} of this partition are defined as the vectors of size
n, whose coefficients satisfy:

∀i ∈ J1, kK,∀j ∈ J1, nK, (1Ci)j =

{
1 if vertex j belongs to Ci,
0 otherwise.

In the present paper, we assume that the graph G is the union of k complete
graphs, whose set of vertices C1, . . . , Ck form a k-partition of G. We denote by
c1, · · · , ck their respective size (

∑k
i=1 ci = n). To simplify, we assume that the

nodes, labeled from 1 to n, are ordered with respect to their block membership
and the size of the blocks. From a matrix point of view, the associated adjacency
matrix A is a k-block diagonal matrix of size n× n of the form:
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
. (1)

2.2. Graph clustering through spectral clustering

Graph clustering consists in grouping the vertices of the graph G into clusters
according to its edge structure. Whereas some of the most traditional clustering
algorithms are based on partitions (e.g. k-means) and hierarchies (e.g. hierar-
chical clustering algorithm), spectral clustering takes advantage of the spectral
properties of the graph. A large number of spectral clustering algorithms ex-
ists in the literature. The most common version, presented in (Luxburg, 2007)
and recapped in Algorithm 1 below, uses the properties of the Laplacian matrix
(Definition 4) to detect clusters in the graph.

Definition 4. Given a graph G, the Laplacian matrix L is defined as:

L = D −A,

where A is the adjacency matrix and D the degree matrix associated to G.

Algorithm 1 Spectral clustering algorithm

Require: G a graph, A its associated adjacency matrix, k̂ number of clusters
to build.

1: Compute the Laplacian matrix L = D −A.
2: Perform the spectral decomposition of L and store the k̂ first eigenvectors
U := (u1, · · · , uk̂).

3: Cluster U with the k-means algorithm into clusters C1, · · · , Ck̂.
4: return Clusters C1, · · · , Ck̂.

By definition, the diagonal of L is equal to the degrees of the nodes. More-
over, in the ideal case where G has an underlying partition form with k connected
components and a block diagonal adjacency matrix A, as given in Equation (1),
the eigenvalue 0 of L is of multiplicity k and the associated eigenvectors corre-
spond to the indicator vectors of the k components. These k components can
then be recovered only by performing spectral decomposition of L. However, in
the perturbed case, any perturbation caused by introducing and/or removing
edges between and/or inside the components makes k − 1 of the k eigenvalues
0 slightly larger than 0 and changes the corresponding eigenvectors. The final
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cluster structure is thus no longer explicitly represented. The spectral clustering
algorithm then uses the k-means algorithm on these eigenvectors to discover the
hidden underlying structure, which is hampered by perturbations.

Since the first development of the spectral clustering algorithm, it has been
studied a lot and extended many times in different communities (Hagen and
Kahng, 1992; Hendrickson and Leland, 1995; Pothen, 1997; Shi and Malik, 2000;
Ng et al., 2002; Zelnik-Manor and Perona, 2005) with powerful results. Refine-
ments include the use of normalized versions of the Laplacian matrix, such as the
symmetric and the random walk normalized ones (Luxburg, 2007). Neverthe-
less, the performances of the spectral clustering have shown to be very sensitive
to perturbations, which often occurs when dealing with real data (Bojchevski
et al., 2017). To provide more robustness with respect to perturbations, we thus
developed the `1-spectral clustering algorithm, described in Section 3.

3. An `1-version of the spectral clustering algorithm

In this section, we describe the `1-spectral clustering algorithm we developed
as an alternative to the standard spectral clustering for clustering perturbed
graphs. In this context, to ensure a good recovery of the connected components,
the eigenvectors basis should be carefully defined. The key point is to replace
the k-means procedure, which fails while the perturbation grows, by selecting
relevant eigenvectors that provide useful information about the graph structure.
As the spectral clustering algorithm, the `1-spectral clustering focuses on the
spectral properties of the graph.

Let G = (V,E) be a graph formed of k connected components, as defined in
Section 2, and A its associated adjacency matrix. We denote by (λi)1≤i≤n the
n-eigenvalues of A, sorted in increasing order:

λ1 ≤ ... ≤ λn,

and v1, ..., vn their associated eigenvectors. We define by Vk the eigenspace
generated by the k largest eigenvectors:

Vk := Span(vn−k+1, ..., vn).

In the ideal case, where the graph is not perturbed, the indicators (1Ci
)1≤i≤k

of the connected components C1, . . . , Ck correspond exactly to the eigenvectors
of the Laplacian matrix L associated to the eigenvalue 0 of multiplicity k (see
Section 2.2). As regards the adjacency matrix A, these indicators correspond
this time to the k eigenvectors vn−k+1, . . . , vn, associated to the k largest eigen-
values λn−k+1, ..., λn. In the perturbed case, unlike the traditional spectral clus-
tering, the `1-spectral clustering algorithm does not directly use the subspace
Vk to recover the k connected components but computes another eigenbasis that
promotes sparse solutions, as detailed in the next sections.
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3.1. General `0-minimization problem

Propositions 1 and 2 below show that the connected components indicators
(1Ci)i∈{1,...,k} are solutions of `0-minimization problems.

Proposition 1. The minimization problem

arg min
v∈Vk\{0}

‖v‖0 (P0)

has a unique solution (up to a constant) given by 1C1 .

In other words, 1C1 is the sparsest non-zero eigenvector in the space spanned
by the eigenvectors associated to the k largest eigenvalues.

Proof. We recall that, for all v ∈ Rn, ‖v‖0 = | {j ∈ J1, nK, vj 6= 0} |. Let v ∈
Vk\ {0}. As (1Cj

)1≤j≤n ∈ Vk, v can be decomposed as v =
∑k
j=1 αj1Cj

where

α = (α1, . . . , αk) ∈ Rk and there exists j ∈ {1, ..., k} such that αj 6= 0. By
definition of the `0-norm, we then have:

‖v‖0 = 1α1 6=0c1 + · · ·+ 1αk 6=0ck, (2)

with c1 ≤ ... ≤ ck the sizes of the k connected components. The solution of
(P0), which minimizes Equation (2), is thus given by setting α = (α1, 0, . . . , 0)
with α1 6= 0.

Proposition 1 can then be generalized to iteratively find the indicators associ-
ated to the largest connected components introducing sparsity and orthogonality
constraints. For i ∈ J2, kK, let Vik refers to:

Vik := {v ∈ Vk, ∀l = 1, . . . , i− 1, v ⊥ 1Cl
} .

Proposition 2. Let i ∈ J2, kK. The minimization problem

arg min
v∈Vi

k\{0}
‖v‖0 (Pi0)

has a unique solution (up to a constant) given by 1Ci
.

Solving (P0) and (Pi0)2≤i≤k is a NP-hard problem, which is not computa-
tionally feasible. To tackle this issue, the classical idea consists in replacing
the `0-norm by its convex relaxation, the `1-norm, defined for all v ∈ Rn as
‖v‖1 =

∑
1≤j≤n |vj |.

In the next section, we show that the solution of the `0 optimization problems
remains the same by replacing the `0-norm by the `1-norm, at the price of slight
constraints on the connected components.
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3.2. Relaxed `1-minimization problem

From now on, we assume that we know one representative element for each
component, that is a node belonging to each component, denoted by (i1, ..., ik)
thereafter. Let Ṽk = {v ∈ Vk, vi1 = 1}. Then, it is straightforward to see
that the indicator vector of the smallest component is solution to the following
optimization problem:

Proposition 3. The minimization problem

arg min
v∈Ṽk

‖v‖1 (P1)

has a unique solution given by 1C1
.

Proof. We recall that, for all v ∈ Rn, ‖v‖1 =
∑n
j=1 |vj |. Let v ∈ Ṽk. As

(1Cj
)1≤j≤n ∈ Vk, v can be decomposed as v =

∑k
j=1 αj1Cj

where α = (α1, . . . , αk) ∈
Rk and there exists j ∈ {1, . . . , k} such that αj 6= 0. By definition of the `1-
norm, we then have:

‖v‖1 = |α1|c1 + · · ·+ |αk|ck, (3)

with c1 ≤ ... ≤ ck the sizes of the k connected components. The solution of
(P1), which minimizes Equation (3), is thus given by setting α = (α1, 0, . . . , 0)
with α1 = 1.

To simplify and without loss of generality, we assume that i1 corresponds to
the first node. We can then rewrite (P1) as:

arg min
v∈Rn−1

(1,v)T∈Vk

‖v‖1.

Constraints in (P1) can be converted into the following equality contraints:

Proposition 4. Let Uk := (v1, ..., vn−k) the matrix formed by the eigenvectors
associated with the n − k-smallest eigenvalues. We denote by wT its first row
and WT the matrix obtained after removing wT from Uk:

Uk := (v1, ..., vn−k) =

b
wT

WT
b

 (4)

The minimization problem

arg min
v∈Rn−1

Wv=−w

‖v‖1 (P̃1)

has a unique solution v∗ such that (1, v∗)T = 1C1
.
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Proof. Since A is symmetric, its eigenvectors form an orthogonal basis and, for
all v ∈ Vk, we have UTk v = 0. Let (1, v)T ∈ Vk. Using Equation (4), we deduce
that:

UTk

(
1
v

)
= w +Wv = 0.

The constraint in (P̃1) is thus equivalent to the constraint in (P1), which ends
the proof.

3.3. Generalization of the relaxed `1-minimization problem

Obviously, the indicator vector 1C1
alone is not sufficient to know the com-

plete graph structure. However, Proposition 4 can be extended to find the re-
maining indicator vectors. To do so, as in Proposition 2, we add the constraint
that the target vector is orthogonal to the previously computed vectors, which
is done in practice by applying a Gram-Schmidt orthonormalization procedure
(see Section 4 below for more details about the procedure).

4. The `1-spectral algorithm

4.1. Global overview of the algorithm

In this section, we present a global overview of the `1-spectral cluster-
ing algorithm we implemented to recover the components of any perturbed
graph (see Algorithm 2 below). It is available as a R-package on GitHub
at https://github.com/championcamille/l1-SpectralClustering. Some precisions
about the algorithm and parameters setting are given in the next paragraphs.

4.2. Solving the `1-minimization problem

This section is devoted to the resolution of the constrained `1-optimization
problem (P̃1) (line 6 of Algorithm 2). To be simplified, it can be equivalently
written as the following penalized problem:

arg min
v∈Rn−1

‖Wv + w‖22 + λ‖v‖1, (PLasso)

where, for all v ∈ Rn−1, ‖v‖22 =
∑n−1
j=1 v

2
j and λ > 0 is the regularization

parameter that controls the balance between the constraint and the sparsity.
Two methods are proposed thereafter to solve (PLasso).

Lasso solution. enrg
The most traditional method to deal with such an `1-minimization problem is
the Lasso procedure, developed by Tibshirani (1996). As for all regularizing
methods, the choice of λ is of great importance. Here, especially, taking λ too
large will lead to an over-constrained problem and a large number of nodes of
G may not be clustered into components. In practice, K-fold cross validation,
as implemented in the glmnet R-package, can be used to optimally set λ.
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Algorithm 2 `1-spectral clustering algorithm

1: Input: G a graph, A its associated adjacency matrix, k̂ number of clusters
to recover and (ij)j∈{1,...,k̂} family of representative elements of each cluster.

2: Perform the spectral decomposition of A, sort the eigenvalues by increasing
order and store the associated eigenvectors: V := (v1, ..., vn).

3: for j = 1 to k̂ do
4: Define Uk̂,j as the matrix that contains the n− k̂− j + 1 first columns of

V :
Uk̂,j := (v1, ..., vn−k̂−j+1).

5: Split Uk̂,j into two parts:

wT := U
ij

k̂,j
, the ij-th row of Uk̂,j ,

WT := U
−ij
k̂,j

, the other rows of Uk̂,j .

6: Solve the `1-minimization problem (P̃1):

v∗ := arg min
v∈Rn−1

Wv=−w

‖v‖1.

7: Recover the indicator of the j-th component:

1̂Cj = (v∗1 , . . . , v
∗
ij−1, 1, v

∗
ij , . . . , v

∗
n).

8: Update vj in V : vj ← 1̂Cj
.

9: Perform Gram-Schmidt orthogonalization on V to ensure orthogonality
between vj and the rest of the columns of V :

V ← Gram-Schmidt(V ).

10: end for
11: Output: (1̂Cj

)1≤j≤k̂ the indicators of the k̂ connected components.

Thresholded least-squares solution. enrg
Another method consists in solving the least-squares problem:

v∗ := arg min
v∈Rn−1

‖Wv + w‖22,

and then thresholding v∗ given some predefined threshold t:

∀j ∈ J1, n− 1K, v∗j =

{
1 if v∗j > t,
0 otherwise.

Of course, this thresholding step imposes sparsity on the solution. However,
we can wonder if nodes with large coefficients should really be clustered together.
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In our model, the ideal parameters to recover (indicators of the components)
do not take continuous values. Enforcing the coefficients of all representative
elements to be equal to 1, under small perturbations, the coefficients of all other
nodes belonging to the same components should then be close to 1. This specific
behavior is underlined in Figure 1. In this example, we generated a graph G
with 50 nodes, split into 5 connected components. We perturbed the structure
of the graph by adding and removing edges with a probability p of 1%, 10%,
25% and 50%. We then solved (PLasso) to recover the first component only.

Figure 1: Evolution of the coefficients of v, solution of (PLasso), with respect to ‖v‖1 for
different perturbations of the ideal graph (from top left to bottom right p = 1%, 10%, 25%
and 50%). Red lines correspond to the coefficients belonging to the component we aim at
recovering, in contrast with black ones. Dotted lines are related to the `1-norm-threshold
(vertical), associated with the Lasso solution, and the threshold on the value of the coefficients
(horizontal), associated with the thresholded least-squares solution.
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As can be seen in Figure 1, the Lasso and thresholded least-squares solutions
give almost the same results: for small perturbations (p ≤ 10%, at the top), the
whole component is perfectly retrieved. For p = 25% (at the bottom left), all
coefficients are tighter but both methods still work, forgetting only one node.
As the perturbation becomes too large (p = 50%, at the bottom right), the
selection of nodes belonging to the first component fails.

4.3. Optimally tuning the number of clusters

Traditional clustering algorithms, such as k-means, require the user to spec-
ify the number of connected components of the graph G to recover, which is, in
practice, unavailable. Determining the optimal number of components k̂ thus
becomes a fundamental issue. A large number of methods have been developed
in this sense: the hierarchical clustering for example looks for a hierarchy of
components using dendrograms. The Elbow, average silhouette and gap statis-
tic methods (Tibshirani et al., 2001) are also frequently used in addition to
clustering techniques.

In our work, as proposed by Luxburg (2007), we focus on the heuristic eigen-

gap method, which consists in choosing k̂ such that it maximizes the eigengap,
defined as the difference between consecutive eigenvalues of the Laplacian ma-
trix L. This procedure is particularly well-suited in a spectral context. Indeed,
in the ideal case, perturbation theory ensures that there exists a gap between
the eigenvalue 0 of multiplicity k and the next k + 1-th one. In the perturbed
case, while being less strong, an eigengap still exists.

4.4. Finding the representative elements

In addition to the number of connected components, to run the `1-spectral
clustering algorithm, we need to know at least one representative element of
each component. This assumption may be restrictive when working with real
data. However, it makes sense in a large number of situations where clusters
are chosen to classify nodes around specific elements of the graph.

To avoid an arbitrary choice of such elements, one solution consists in es-
timating them using a rough partitioning algorithm. Another solution is to
explore the structure of the graph to find hubs of densely connected parts. In
this work, this is done by computing the betweeness centrality score of all nodes.
In graph theory, the betweeness score Sb measures the centrality of a node based
on the number of shortest paths passing through it:

∀` ∈ J1, nK, Sb(`) =
∑

1≤i,j≤n

# shortest paths from i to j

# shortest paths from i to j passing through `
.

In practice, the representative elements of the k components are chosen to max-
imize this score.

Note that the nodes with the highest betweeness scores should be those
that connect the densest parts of the graph. The risk of clustering two nodes
from different connected components may thus be high. To avoid this, we add
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a stabilization step to our algorithm. As soon as one of the nodes with the
k highest scores is added to a component during the minimization step, it is
removed from the list of potential representative elements. We then re-run the
algorithm using the k nodes taken among the k+1 ones with the highest scores,
and so on until stabilization of the list of representative elements.

5. Numerical experiments

This section is dedicated to experimental studies to assess numerical perfor-
mances of the `1-spectral clustering algorithm through two datasets. First, we
show that it behaves well on simulated data with a variety of different settings
and in comparison with state-of-the-art spectral clustering methods. Then, us-
ing a gene expression data set from kidney cancer patients, we demonstrate the
ability of our algorithm to discover relevant groups of genes that act together
to characterize the disease.

5.1. Application to toy datasets

5.1.1. Numerical settings

To explore the capabilities and the limits of the `1-spectral clustering algo-
rithm with respect to state-of-the-art methods, we first considered simulated
data, whose settings are detailed in the next paragraphs.

Simulated data set. zoej
We generated random ideal graphs for a given number of nodes n (n = 20, 50
and 100) and a given number of connected components k (k = 2, 5, 10). The
component sizes (cj)1≤j≤k were chosen in a balanced way: ∀j ∈ J1, k − 1K, cj =

bn/kc, with
∑k
j=1 cj = n. With a probability pin and pout of removing an

edge from a component and of introducing an edge between two components
varying from 0.01 to 0.5, we created multiple perturbed versions of the graph.
All experiments were replicated 100 times each for better robustness.

Algorithm parameters. oeruh
As some of the methods we compare with require the number of components to
form, we focus on two versions of the `1-spectral clustering: the one presented
in Algorithm 2, for which the number of clusters and a list of representative
elements are assumed to be known, and the self-tuned one, for which both of
them are extracted from the graph, as explained in Section 4. The results being
very similar, we choose to focus on the thresholded least-squares solution to
solve the `1-minimization problem (P̃1) in Algorithm 2. The corresponding
threshold parameter t is fixed using 5-fold cross-validation.

Comparison with state-of-the-art. zrizi
We compare the `1-spectral clustering with three other graph-based clustering
algorithms: first, the spectral clustering (Algorithm 1), which is available in
the R-package anocva, then, SpectACl, which was developped by Hess et al.
(2019) with the aim of exhibiting both minimum cut and maximum density of
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the clusters. This algorithm can be viewed as a combination of DBSCAN, a
density-based clustering algorithm (Ester et al., 1996) which is mainly used to
identify clusters of any shape in a data set containing noise and outliers, and
spectral clustering. SpectACl is publicly available on the Bitbucket platform
as a Python code at https://bitbucket.org/Sibylse/spectacl/src/master/. Both
methods requiring the number of components to cluster as an input, we finally
run the Self-Tuning Spectral Clustering from Zelnik-Manor and Perona (2005),
available on GitHub as a Python code at https://github.com/wOOL/STSC.
The latter is an improved version of the spectral clustering, in which the final
postprocessing step (k-means) is removed and the structure of the eigenvectors
is carefully analyzed to automatically infer the number of clusters. It is thus
used to evaluate the performances of the self-tuned version of the `1-spectral
algorithm.

Performance metrics. ieojr
Performances are measured by comparing the learnt components with the true
ones, which are obviously known in the context of simulated data. Among the
large number of existing scores, we used the Normalized Mutual Information
(NMI) score, for its ability to compare clusters that could be of different sizes.
The closer to 1 the NMI score, the better the classification.

5.1.2. Effect of the dimension and cluster sizes on perturbed graphs

First, we aimed at exploring the effect of the dimension and cluster sizes on
the performances of the `1-spectral clustering algorithm. For n ranging from
20 to 100 and k from 2 to 10, results, in terms of NMI scores, are summarized
in Table 1. On the one hand, for fixed n and k, when the perturbations are
small (pin, pout < 0.25), one may note that the `1-clustering algorithm works
well (it is clearly a favorable situation). On the other hand, a crude decrease in
performance results can be observed as the perturbation grows (pin or pout ≥
0.25). In that case, the perturbed graph is far from the original one, which makes
hard the recovery of the components. As expected, this becomes even more
significant while the dimension increases (from top left to bottom right for each
value of n). For perturbations of 0.5 (last line), the NMI scores do not exceed
0.5, which means that the `1-spectral clustering algorithm almost fails to recover
the components. However, we must keep in mind that imposing a perturbation
of 0.5 on a graph strongly affects its structure, with a probability of removing
an edge inside a component and introducing an edge between components of
50%.

5.1.3. Performance results with respect to state-of-the-art

To give more credit to the `1-spectral clustering algorithm, we also evaluated
its robustness in comparison with the spectral and SpectACl algorithms (see
Section 5.1.1) for clustering different perturbed versions of a graph with n = 100
and k = 10. For each perturbation, we generated 100 graphs and computed the
clustering performances using NMI scores.
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Table 1: NMI scores obtained after clustering perturbed graphs of different sizes using the
`1-spectral clustering algorithm. All results are averaged over 100 replicates.

n=20 n=50 n=100

pin pout k = 2 k = 5 k = 2 k = 5 k = 10 k = 5 k = 10

0.01 0.01 1 1 1 1 1 1 1
0.1 1 1 1 1 1 0.99 0.99
0.25 1 0.92 1 1 0.71 0.99 0.88
0.5 0.99 0.65 1 0.76 0.51 0.96 0.40

0.1 0.01 1 0.99 1 1 1 0.99 1
0.1 1 0.98 1 1 0.96 0.99 0.99
0.25 0.99 0.84 1 0.98 0.63 0.99 0.69
0.5 0.91 0.60 1 0.51 0.49 0.79 0.35

0.25 0.01 0.99 0.96 1 1 0.98 0.99 0.98
0.1 0.99 0.91 1 0.99 0.79 0.99 0.87
0.25 0.94 0.69 1 0.78 0.54 0.95 0.47
0.5 0.54 0.54 0.75 0.32 0.46 0.27 0.30

0.5 0.01 0.95 0.84 0.99 0.93 0.82 0.99 0.86
0.1 0.83 0.68 0.97 0.73 0.55 0.90 0.51
0.25 0.52 0.54 0.73 0.34 0.46 0.32 0.30
0.5 0.22 0.46 0.11 0.21 0.43 0.10 0.25

Results can be visualized in Figure 2, which also indicates the 50% confidence
interval. As can be seen, the `1-spectral and spectral clustering algorithms are
very similar, especially for small perturbations (pout < 0.25). However, as the
perturbations grow, the `1-spectral clustering algorithm shows a smaller impact
to noise sensitivity than the spectral one, being, almost ever, the best method.
The results of SpectACl are oddly bad but this may be due to the fact that it
was developed for clustering nonconvex shapes, which is beyond the scope of
the present work.

An interesting question is how the self-tuning version of the `1-spectral clus-
tering, for which the number of clusters and the representative elements are
self-evaluated, compare with the Self-Tuning Spectral Clustering (see Section
5.1.1). For n = 20, k = 2 and perturbations ranging from 0.01 to 0.5, we gen-
erated 100 versions of the same graph. Results are given in Figure 3. At the
top, the NMI scores indicate that the performances of the self-tuning `1-spectral
clustering (in red) decrease while the perturbations grow. On the contrary, the
Self-Tuning Spectral Clustering (in blue) seems to be less sensitive to the in-
crease of pin but provide bad results for pin < 0.25 and pout ≥ 0.25, even though
it is a more favorable situation.
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Figure 2: Clustering results, in terms of NMI, of the `1-spectral clustering (in red), Spec-
tACl (in green) and spectral clustering (in blue) algorithms applied on perturbed graphs for
perturbations ranging from 0.01 to 0.5 and the associated 50% confidence intervals.

Some of the lowest performances of the self-tuning `1-spectral clustering can
be explained by observing that this algorithm was developed in a sparse form,
that is all nodes from a perturbed graph are not automatically clustered into
components. In practice, this has huge consequences on the NMI score, which
processes the non-classified nodes as wrongly-classified ones. When considering
only the classified nodes, the NMI scores of the self-tuning `1-spectral clustering
can be found in green, with, of course, better results.

More generally, the NMI scores are particularly sensitive to the number
of estimated clusters. At the bottom of Figure 3, for each perturbation, the
estimated number of clusters of both methods, which should be close to k = 2,
the true number of clusters, can be visualized. It is clear that the further to 2
the estimation is, the smaller the associated NMI scores. The self-tuning version
of the `1-spectral clustering was not optimized in this sense but it should be the
key for an improvement and a stabilization of the performances.

5.2. Application to cancer data

This section is dedicated to the application of the `1-spectral clustering algo-
rithm on a real kidney cancer data set from The Cancer Genome Atlas (TCGA)
project. After describing the data (Section 5.2.1), results are presented in Sec-
tion 5.2.2 and followed by a discussion (Section 5.2.3).

5.2.1. The kidney cancer data set

The Cancer Genome Atlas (TCGA) is an american project from the National
Cancer Institute (NCI) and the National Human Genome Research Institute
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Figure 3: At the top, clustering results, in terms of NMI, of the self-tuning `1-spectral clus-
tering (in red and in green, where only classified nodes are taken into accounts) and the
Self-Tuning Spectral Clustering (in blue) algorithms applied on perturbed graphs for pertur-
bations ranging from 0.01 to 0.5. At the bottom, the associated estimated number of clusters
of both methods across the 100 perturbed versions of the graphs.

(NHGRI), which was launched fifteen years ago with the aim of characterizing
genetic mutations responsible for cancer using genome sequencing and bioinfor-
matics methods. Since then, millions of data have been produced and made
publically available. In this work, we focused on KIdney Renal clear cell Carci-
noma, abbreviated to KIRC thereafter. KIRC is one of the most common types
of cancer, usually affecting people (mainly men) around 60 years old. Even if
the chances of surgical cures are good, KIRC is hard to detect with no early
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symptoms, which makes it even dangerous.
In this work, we extracted gene expression data for KIRC from the TCGA

data portal http://gdac.broadinstitute.org/. These data were produced using
RNA-sequencing for a total number of 16, 123 genes and 532 cancer patients.
After preprocessing by log-transformating, quantile normalizing the arrays and
filtering genes based on variance, we only kept 75% of them, i.e. 12, 092 genes.

5.2.2. `1-spectral clustering algorithm on kidney cancer data

Applying the `1-spectral clustering algorithm to cluster genes into compo-
nents require the knowledge of an initial network that models the relationships
between genes. The latter are usually represented through Gene Regulatory
Networks (GRNs), which are directed graphs that connect genes based on reg-
ulations (activations/inhibitions). Here, we focused on co-regulated networks,
a simplified version of GRNs, where no causality exists. Edges are thus undi-
rected, representing co-regulations, or correlations in terms of expression be-
tween genes. To create such a network, we computed the correlation matrix,
based on Pearson’s correlation, between all pairs of genes and then thresholded
the matrix by removing edges with correlation smaller in absolute value than
0.7. This network is made of 4,982 genes (see Figure 4 (a) for an overview of
the network).

We then applied `1-spectral clustering algorithm on the adjacency matrix
associated with the co-regulatory network described above. The 4,982 genes
were clustered into 186 components, from size 2 to 986, with an averaged number
of genes of 27. These components are represented in Figure 4 (b), with different
colors.

Figure 4: From left to right: (a) the co-regulatory network representing co-regulations between
genes in KIRC, (b) the components discovered by applying the `1-spectral clustering algorithm
and highlighted with different colors, (c) the five components we particularly focus on.

5.2.3. Clusters as hallmarks of kidney cancer

In this section, we investigate the biological hypotheses that can be deduced
from the network. First, to assign biological meaning to each component of
the network, we performed gene set enrichment analysis. To this aim, we used
the databases GeneSetDB (Culhane et al., 2010) and MSigDB (Liberzon et al.,
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2015), restricted to hallmark (H), curated (C2), GO (C5), oncogenic (C6) and
immunologic signatures (C7) gene sets, which include the gene sets most relevant
to cancer gene expression profiles. Enrichments were evaluated by performing
hypergeometric tests, corrected for multiple testing using the FDR (Benjamini
and Hochberg, 1995). Among the 186 identified components, four particularly
drew our attention (see Figure 4 (c)). These components are described in details
in the next paragraphs.

Transmembrane activity cluster. The first cluster we identified (Figure 4 (c),
red cluster) is made of 43 genes. This cluster gathers genes involved in the same
“transmembrane activity” pathway. Indeed, among the 43 genes of the com-
ponent, 11 are members of the same group SLC of solute carriers transporters,
which aims at facilitating the transport of substrates across membranes. This
is confirmed by the gene set enrichment analysis we performed, with p-values
ranging from 1.97× 10−6 from 1.89× 10−9.

Epithelial-mesenchymal cluster. The second cluster (Figure 4 (c), purple clus-
ter) of seven genes is highly enriched in Epithelial-Mesenchymal Transition
(EMT) pathways, a natural process that converts epithelial cells into mesenchy-
mal phenotypes and is often altered in cancers. This cluster includes the gene
SERPINH1, a known EMT-related gene, which has been identified as a potential
biomarker of kidney cancers (Qi et al., 2018).

T-cells associated cluster. The third cluster (Figure 4 (c), blue cluster) includes
38 genes, mostly enriched in T-cells and inflammatory response associated path-
ways. To confirm this, we tested the correlation of the cluster expression (defined
as the averaged expression across all genes from the cluster) with CD4+ and
CD8+ T-cells, encoded by the genes CD4, CD8A/B, which play a major role in
cancer immunotherapy (Tay et al., 2020). With correlations ranging from 0.46
(CD8B) to 0.86 (CD4) and associated p-values smaller than 10e−16, we validate
this relationship. In addition, Kawashima et al. (2020) recently reported that
both CD4+ and CD8+ T-cells were up-regulated in the patients with kidney
cancer of high grade. We obtained the same results when comparing the cluster
expression with low (grades 1 and 2) and high (grades 3 and 4) kidney cancer
grades: the higher the expression, the worst the grade (p-values for t-test of
0.009, see Figure 5).

Liver-signature cluster. In the last cluster (Figure 4 (c), yellow cluster), we
found 96 genes, most of which belong to liver gene signatures, characterizing
liver cancers. To a little extent, these genes are also associated with glutathione,
an antioxidant that protects cells from important damages. Xiao and Meierhofer
(2019) have recently shown that an increased level of glutathione is a hallmark
of kidney cancer. To go further, we investigated whether the cluster expression
could be used to predict survival in kidney cancer. To this aim, we used Cox
proportional hazards modelling. Hazard ratios were used to report the direction
of the survival effect and the Wald test was used to determine its significance.
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Figure 5: Boxplots representing the association between the cluster expression (averaged
expression across all genes from the cluster) and kidney cancer grades, which range from 1
(low grade) to 4 (high grade), grade x indicating that the grade could not be evaluated.

As shown in Figure 6, high gene expression is significantly associated with good
survivals (Hazard ratio of 0.66, p-value of 0.009). This indicates that this cluster
may be used as a prognosis of kidney cancers.

6. Conclusion

In this paper, we proposed a new spectral clustering algorithm, called `1-
spectral clustering, for detecting cluster structures in perturbed graphs. To
tackle the noise robustness issue of the traditional spectral clustering, the k-
means is removed and replaced by writting the indicators of the components as
solutions of explicit `1-constrained minimization problems. The performances of
this algorithm are highlighted through numerical experiments, with competitive
results when compared to state-of-the-art. Nevertheless, many opportunities
for further improvements can be considered. Firstly, from an algorithmic point
of view, it would be interesting to better explore solutions for calibrating the
optimal number of clusters and its representative elements. Secondly, future
works include theoretical study of the eigenvectors stability, in order to validate
the performances of the algorithm. A particular attention may be paid to the
more general stochastic block model (SBM), where the edge probabilities depend
on the community membership.
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Figure 6: Kaplan-Meier curves representing the association between high/low cluster expres-
sion and survival.
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Bojchevski, A., Matkovic, Y., Günnemann, S., 2017. Robust spectral clustering
for noisy data: Modeling sparse corruptions improves latent embeddings, in:

20



KDD17: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 737–746.

Culhane, A.C., Schwarz, l., Sultana, R., Picard, K.C., Picard, S.C., Lu, T.H.,
Franklin, K.R., French, S.J., Papenhausen, G., Corell, M., Quackenbush, J.,
2010. GeneSigDB, a curated database of gene expression signatures. Nucleic
Acids Research 38, D716–D725.

Davidson, E., Levin, M., 2005. Gene regulatory networks. Proceedings of the
National Academy of Sciences 102, 4935–4935. doi:10.1073/pnas.0502024102,
arXiv:https://www.pnas.org/content/102/14/4935.full.pdf.

Ester, M., Kriegel, H., Sander, J., Xu, X., 1996. A density- based algorithm
for discovering clusters in large spatial databases with noise, in: KDD96:
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, pp. 226–231.

Girvan, M., Newman, E., 2002. Community structure in social and biology
networks, in: Proceedings of the national academy of sciences, pp. 7821–7826.

Hagen, L., Kahng, A., 1992. New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 11, 1074–1085.

Handcock, M., Gile, K., 2010. Modeling social networks form sampled data.
The Annals of Applied Statistics 4, 5–25.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of Statistical
Learning. Springer Series in Statistics, Springer New Yok Inc.

Hendrickson, B., Leland, R., 1995. An improved spectral graph partitioning
algorithm for mapping parallel computations. SIAM Journal on Scientific
Computing 16, 452–469.

Hess, S., Duivesteijn, W., Honysz, P., Morik, K., 2019. The SpectACl of non
convex clustering: a spectral approach to density-based clustering, in: Pro-
ceedings of the AAAI conference on artificial intelligence, pp. 3788–3795.

Jeong, H., B. Tombor, R.A., Oltvai, Z., Barabasi, A., 2000. The large-scale
organization of metabolic networks. Nature 407, 651–654.

Joseph, A., Yu, B., 2016. Impact of regularization on spectral clustering. The
Annals of Statistics 44, 1765–1791.

Kawashima, A., Kanazawa, T., Kidani, Y., Yoshida, T., Hirata, M., Nishida,
K., Nojima, S., Yamamoto, Y., Kato, T., Hatano, K., Ujike, T., Nagahara,
A., Fujita, K., Moritomo-Okazawa, A., Iwahori, K., Uemura, M., Imamura,
R., Ohkura, N., Morii, E., Sakaguchi, S., Wada, H., Nonomura, N., 2020.
Tumour grade significantly correlates with total dysfunction of tumour tissue-
infiltrating lymphocytes in renal cell carcinoma. Scientific Reports 10, 6220.

21



Lara, N.D., Bonald, T., 2020. Spectral embedding of regularized block models
URL: https://arxiv.org/abs/1912.10903.

Li, X., Kao, B., Zaochung, R., Dawei, Y., 2019. Spectral clustering in hetero-
geneous information networks, in: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 4221–4228.

Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J.P.,
Tamayo, P., 2015. The molecular signatures database (MSigDB) hallmark
gene set collection. Cell systems 1, 417–425.

Luxburg, U., 2007. A tutorial on spectral clustering. Statistics and Computing
17, 395–416.

MacQueen, B., 1967. Some methods for classification and analysis of multivari-
ate observations, in: Proceedings of 5th Berkeley Symposium on Mathemat-
ical Statistics and Probability, pp. 281–297.

Newman, E., Girvan, M., 2004. Finding and evaluating community structure in
networks. Physical review E 69, 026–113.

Ng, A., Jordan, M., Weiss, Y., 2002. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems , 849–856.

Peche, S., Perchet, V., 2020. Robustness of community detection to random
geometric perturbations, in: Proceedings of the 34th Conference on Neural
Information Processing Systems.

Pelleg, D., Baras, D., 2007. K-means with large and noisy constraint sets, in:
Machine Learning: ECML 2007, Springer Berlin Heidelberg. pp. 674–682.

Pothen, A., 1997. Graph partitioning algorithms with applications to scientific
computing. Parallel Numerical Algorithms 4, 323–368.

Qi, Y., Zhang, Y., Peng, Z., Wang, L., Wang, K., Feng, D., He, J., Zheng, J.,
2018. SERPINH1 overexpression in clear cell renal cell carcinoma: association
with poor clinical outcome and its potential as a novel prognostic marker.
Journal of Cellular Molecular Medicine 22, 1224–1235.

Shi, J., Malik, J., 2000. Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22, 888–905.

Smith, S., 1997. The integration of communications networks in the
intelligent building. Automation in Construction 6, 511 – 527.
doi:https://doi.org/10.1016/S0926-5805(97)00028-9.
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