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Background: Heart rate (HR) and HR variability (HRV) indices are established tools
to detect abnormal recovery status in athletes. A low HR and vagally mediated HRV
index change between supine and standing positions reflected a maladaptive training
stress-recovery status.

Objectives: Our study was focused on a female multistage cycling event. Its overall aim
was twofold: (1) quantify the correlation between (a) the change in HR and HRV indices
during an active orthostatic test and (b) subjective/objective fatigue, physical load, and
training level indicators; and (2) formulate a model predicting the stress-recovery status
as indexed by 1RR and 1LnRMSSD (defined as the difference between standing and
supine mean RR intervals and LnRMSSD, respectively), based on subjective/objective
fatigue indicators, physical load, and training levels.

Methods: Ten female cyclists traveled the route of the 2017 Tour de France, comprising
21 stages of 200 km on average. From 4 days before the beginning of the event itself,
and until 1 day after its completion, every morning, each cyclist was subjected to HR
and HRV measurements, first at rest in a supine position and then in a standing position.
The correlation between HR and HRV indices and subjective/objective fatigue, physical
load, and training level indicators was then computed. Finally, several multivariable linear
models were tested to analyze the relationships between HR and HRV indices, fatigue,
workload, and training level indicators.

Results: HR changes appeared as a reliable indicator of stress-recovery status. Fatigue,
training level, and 1RR displayed a linear relationship. Among a large number of
linear models tested, the best one to predict stress-recovery status was the following:
1RR = 1,249.37 + 12.32V̇O2max + 0.36 km·week−1

−8.83 HRmax−5.8 RPE−28.41
perceived fatigue with an adjusted R2

= 0.322.

Conclusion: The proposed model can help to directly assess the adaptation status of
an athlete from RR measurements and thus to anticipate a decrease in performance
due to fatigue, particularly during a multistage endurance event.

Keywords: females, cycling, endurance, mathematical model, performance, heart rate variability, stress-recovery
status
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INTRODUCTION

Physical training must combine workloads and recovery periods
(Bishop et al., 2008). An optimal match between these two
parameters is requested to avoid fatigue accumulation and thus
reach the best individual physical performance level. Conversely,
in the event of an imbalance between the two parameters,
a state of overreaching or overtraining with marked drop in
performance may occur (Kuipers, 1998). The individual optimal
balance between work and recovery is difficult to achieve,
especially for highly trained athletes. Thus, having relevant
indicators of the exercise stress-recovery status could be a real
advantage for individual athlete’s monitoring. The aim of this
study was to provide a new tool for coaches to help them to assess
the athlete’s individual fatigue level.

Several tools have been proposed to assess the fatigue level
in daily routine of athletes (Buchheit, 2014; Halson, 2014). The
most used are those providing an indirect evaluation of heart rate
(HR) control by the autonomic nervous system (ANS) as analysis
of spontaneous RR interval duration or HR variability (HRV)
temporal and spectral indices (Bellenger et al., 2016), although
the spectral ones present some limits (Buchheit, 2014). The
HRV analysis can be performed either statically or dynamically,
reflecting the heart adaptation to a physiological stress (Buchheit,
2014). Training-induced fatigue causes a more or less weak
response of the ANS to external stimuli. Specifically, under
normal training conditions (stress/recovery balance), intense
strenuous exercise results in a decrease in vagally mediated
HRV indices, followed by cardiac parasympathetic reactivation,
which takes place during the recovery period (24–48 h) during
which the cardiovascular system plays an important role in
restoring body’s homeostasis (Stanley et al., 2013). In training
with a stress/recovery imbalance, a more marked and prolonged
alteration of only vagally mediated HRV indices is reported
(Bosquet et al., 2008; Plews et al., 2012). These results seem to
support a link between fatigue and mainly the parasympathetic
nervous system. Thus, HRV analysis, and especially focusing
on parasympathetic’ activity, represents a noninvasive method
to track and record training status, “exercise readiness,” and
post-exercise fatigue in athletes (Buchheit, 2014; Bellenger
et al., 2016). Indeed, in the parasympathetic system presenting
the more marked impact on the post-exercise recovery, the
vagally mediated HRV index variation is able to evaluate
the cardiac response (Michael et al., 2017): the root-mean-
square difference of successive normal RR intervals (RMSSD
or its natural log, LnRMSSD) in the time domain is the most
recommended (Plews et al., 2012; Buchheit, 2014; Bellenger et al.,
2016), since it represents pure parasympathetic HR modulation
(Malik and Camm, 1993).

However, it seems that the correct interpretation of HR
or HRV fluctuations during the training period requires the
comparison of these markers with other objective signs of fatigue
to detect the risk of overreaching or overtraining (Stanley et al.,
2013; Buchheit, 2014). From nocturnal ANS activity recordings
in swimmers, Chalencon et al. (2012) found strong relationships
between resting high-frequency (HF) power of HRV and 400-m
freestyle time-trial performance of the next morning (Chalencon

et al., 2012). The higher the HF power values, the better
the performance. Moreover, using the same protocol of ANS
activity and performance recordings, the authors demonstrated
that intensive training periods have a negative impact on both
performance and HF due to fatigue (negative influence). In
addition, modeling the effect of a 30-week training on swimmers’
performance allowed for an accurate prediction of individual
performance (Chalencon et al., 2015), supporting the relevance
of a mathematical modeling of HRV in order to predict responses
to training. To our knowledge, such mathematical analysis was
only conducted over long training periods. Therefore, it appears
relevant to also assess daily athlete’s response on a shorter
timescale, such as during a competitive event spreading over
a few weeks (e.g., Grand Tours in cycling and World Football
Cup) or during training camps, in which stress and fatigue affect
day-to-day performances.

In a previous study on well-trained female cyclists, we have
demonstrated that during a multistage event, HR and HRV
indices evolved along the event in correlation with the daily
physical load (Barrero et al., 2019). Briefly, we have observed
a progressive increase of resting HR during the event and a
progressive imbalance in the autonomic balance with an increase
in the low-frequency (LF) power value that partly reflects the
effects of sympathetic tone and a decrease in the HF and RMSSD
values that reflects the parasympathetic effects. Our results also
highlighted that variation in HR and HRV indices when changing
from supine-to-standing position during an active orthostatic
test is strongly correlated with the fatigue status (Barrero et al.,
2019). The use of active orthostatic test has been recommended to
detect fatigue in athletes, because of its ability to detect autonomic
responses not observed with isolated supine or standing measures
(Bosquet et al., 2008; Schmitt et al., 2015). This test explores
the reactivities of sympathetic (excitation) and parasympathetic
systems (withdrawal) in response to the position change (Taylor,
1994) and is the most widely used physiological maneuver for
assessing neuro-vegetative and cardiovascular responsiveness.
When standing from a supine position, the normal response
is an increase in HR to maintain blood pressure (Tse et al.,
2005). In well-trained athletes, with respect to supine rest
values, after active stand-up, a marked increase of HR associated
with a decrease in global HRV, HF, and RMSSD and with an
increase of LF/HF ratio has been reported (Hynynen et al.,
2008). These observations suggest that standing up normally
induced mainly parasympathetic withdrawal. In overtrained
athletes, an attenuation of parasympathetic and sympathetic
activity during both supine and standing positions has been
observed. Moreover, in these athletes, in response to stand-up
position, the HR increases, and the decrease of total power, HF,
LF, and RMSSD seemed lower than in non-overtrained athletes
(Hynynen et al., 2008). Although a complex phenomenon
(Schmitt et al., 2015), it is proposed that training induced-
fatigue attenuates baroreflex response to change in position
(Uusitalo et al., 2000). Thus, a low HR change between supine
and standing positions reflects a maladaptive training stress-
recovery status.

The multidimensional monitoring of recovery status
has been underlined (Heidari et al., 2018), and it was
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recommended to associate other markers with HR/HRV
indices to more accurately detect the state of overtraining
(Stanley et al., 2013; Buchheit, 2014). Because progression
to overtraining syndrome appears to be associated with
psychological states, the use of self-administered questionnaires
on perceived physical and psychological well-being (WB)
by athletes has been recommended (Saw et al., 2016). In
this context, monitoring the evolution of several indices
such as rate of perceived exertion (RPE), the WB, the sleep
quality, and the delayed-onset muscle soreness (DOMS)
during intensive periods of training has been proposed
(Ouergui et al., 2020).

In our previous study, we observed a progressive decrease
of HR and HRV responses induced by the active orthostatic
test. These alterations were positively associated with the athlete’s
daily physical load and thus with fatigue (Barrero et al., 2019).
However, the descriptive method we used to analyze the day-
to-day HR and HRV indices did not allow to accurately predict
the cyclist’s individual adaptation ability in response to the
exercise performed.

Thus, based on these previous data, the aim of the present
study was first to investigate the individual correlation between
the supine-standing difference of HR and HRV index values
presented above, fatigue, physical load, and training level
and second to formulate models relating two dependent HR
variables (1RR and 1LnRMSSD defined as the difference
between standing and supine mean RR intervals and LnRMSSD,
respectively) to subjective/objective fatigue, physical load, and
training level indicators in order to investigate the parameters
better predicting 1RR and 1LnRMSSD. The added value of
the current study is to propose a model allowing coaches to
understand the adaptation ability of athletes to a multistage
endurance event and helping them to anticipate a decrease in
performance due to fatigue.

The design of our study has been based on two assumptions.
First, a relation exists between ANS alterations, mainly

the cardiac vagal tone and early fatigue detection in athletes.
Indeed, the development of fatigue in athletes is considered
as a continuum process with, one side, the voluntary and
controlled fatigue and, the opposite side, the uncontrolled
fatigue, so-called overtraining (Meeusen et al., 2013). All the
states of fatigue in athletes classically associate the same more
or less marked symptoms: decrease in physical performance,
neuro-endocrinal abnormalities, and psychological trouble such
as irritability. Thus, the early detection of fatigue in athletes
by use of HR and HRV analyses could be in line with the
biological behavioral model (Grossman and Taylor, 2007). In
accordance with previously published data concerning this
first hypothesis, we assumed that due to the repetition of
the successive endurance stages, we would observe a lower
change of HR and of HR vagally mediated HRV between
supine and standing positions during the orthostatic test.
Moreover, we also hypothesized that HR and time-domain HRV
vagal indices would present the higher relation with fatigue
parameter levels.

Second, based on previous research (Ouergui et al., 2020), we
hypothesized that the most suitable prediction models for both

1RR and 1LnRMSSD should include parameters related on the
one hand with physical performance, such as amount of training
and level of performance, and on the other hand with levels of
WB and of exertion feeling. We hypothesized that parameters of
V̇O2max, WB, RPE, sleep quality, and DOMS could be included
in the prediction model.

MATERIALS AND METHODS

The first results of this prospective study have been previously
published (Barrero et al., 2019).

This scientific project took place as part of the sports
project “Donnons des elles au vélo J-1” aimed to promote
women’s cycling. This sport project included only 11 well-
trained female cyclists, and of them, 10 participated in the
whole study.

Population
All were healthy, with no medical history of cardiovascular
disease, and were not currently taking medication. At the time
of this study, their weekly training mileage ranged from 100 to
250 km per week. All cyclists had a minimum of 2 years of
competitive cycling experience. The characteristics of the athletes
already presented (Barrero et al., 2019) are recalled in Table 1.

This study received the approval of our hospital ethics
committee. After information was given, all participants provided
written informed consent. The study was conducted in
accordance with the “Good Clinical Practice” guidelines as laid
down in the Declaration of Helsinki.

Cycling Event
The characteristics of the multistage cycling event were
previously described (Barrero et al., 2019). In brief, cyclists
performed the 21 stages of men’s 2017 Tour de France (TdF)
1 day before each stage of the official race. All event stages were
performed without any spirit of competition or performance
goal. The unique cyclists’ objective was to complete 3,540 km of
the TdF to promote women’s cycling.

TABLE 1 | Anthropometric and physical performance characteristics of the
cyclists (mean ± SD).

Characteristic Value

Age (years) 31.7 ± 4.7

Weight (kg) 57.0 ± 6.3

Height (m) 1.60 ± 0.1

BMI (kg·m−2) 21.4 ± 1.9

V̇O2max (ml·min·kg−1) 53.6 ± 5.2

Maximal power output (W) 285.5 ± 19.2

Relative maximal power output (W kg−1) 5.0 ± 0.5

Maximal HR (bpm) 185.7 ± 7.2

Previous cycling experience (years) 14.0 ± 8.9

Current training level (km·week−1) 187.5 ± 51.5

BMI, body mass index; V̇O2max , maximal oxygen uptake; HR, heart rate.
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Preliminary Testing
Each cyclist had a preparticipation medical evaluation with
a clinical exam, a resting ECG (Mac 1600, GE Healthcare,
Chicago, IL, United States) and an incremental maximal
cardiopulmonary exercise test performed on an electronically
braked cycle ergometer (Excalibur Sport, Lode, Netherlands)
with continuous ECG and blood pressure monitoring and gas
exchange analysis (Case system-Power cube, GE Healthcare,
Chicago, IL, United States). The French Cycling Federation
incremental exercise protocol was used. It started with a warm-up
period (100 W for 5 min and 150 W for 1 min) followed by a step
load-increase of 25 W min−1 until exhaustion. This preliminary
testing took place 1 week before the first stage.

RR Interval Recording and Analysis
The RR interval recording and HRV analysis protocols used were
previously described (Barrero et al., 2019). Baseline pre-TdF RR
intervals were collected daily during 4 days before the event to
obtain a basal HRV state. Then RR recordings were performed
every day of the multistage event. All resting recordings were
made in the morning fasting, right after awakening, before the
cyclist gets up. In order to avoid mental activity and stress
and thus to place the cyclists in an optimal physiological rest
state, RR recordings were performed in spontaneous breathing
(Bernardi et al., 2000).

Briefly, all RR interval samples were recorded with a portable
HR monitor (Polar V800, Kempele, Finland) during the two
successive phases of the test: 7 min in a supine position followed
by 7 min in standing position as recommended (Bourdillon
et al., 2017). Individual RR recorded data were downloaded
via Polar FlowSync software for mac version 2.6.4 (Polar,
Kempele, Finland) and exported for later analysis. The Kubios
HRV Standard software version 3.0.0 2 (Biosignal Analysis
and Medical Imaging Group at the Department of Applied
Physics, University of Kuopio, Kuopio, Finland) was used. For
the HRV analysis, the last 5-min window for each position
was used. All the ectopic beats were filtered with the artifact
correction option of the software. A very low threshold was
applied when needed (<5% of corrected beats). Both time and
frequency domain HRV analysis were performed. The HRV
spectrum is calculated with fast Fourier transform-based Welch’s
periodogram for spectral analysis. The RMSSD, which reflects
cardiac vagal tone, was calculated. The HF (0.15–0.40 Hz)
and LF (0.04–0.15 Hz) domains were analyzed. The HF band
reflects cardiac vagal tone, while the LF band indicates both
sympathetic and parasympathetic influences. RMSSD, HFnu,
LFnu (normal units) absolute values, and their difference between
supine and standing positions were calculated. The difference of
the natural logarithm LnRMSSD between supine and standing
positions was also studied. The normalized (or normalized
unit) spectral indices are defined by the developers of the
Kubios HRV Standard software v3.0.0 2 as HFnu = HF/(LF
+ HF) and LFnu = LF/(LF + HF) (Biosignal Analysis and
Medical Imaging Group at the Department of Applied Physics,
Kuopio, Finland) in accordance with the recommendations
(No authors listed, 1996).

Daily Collection and Analysis of Heart
Rate and Workload
Heart Rate and GPS Recording
Both HR and GPS data were continuously registered with
the Polar V800 (Polar, Kempele, Finland) portable monitor
during each stage.

Workload Evaluation
The objective load of the daily individual exercise performed
was estimated from the HR collected during each stage. For
this, the recorded HR values were divided into five zones
according to the percentages (i.e., 50–60, 60–70, 70–80, 80–90,
and 90–100%) of the individual maximum HR obtained during
the maximum effort test. Then, the individual daily internal
workload was estimated using the training pulse score (TRIMP)
method (Edwards, 1993). In this model proposed by Edwards,
the quantification of the workload is derived from the duration
of the exercise maintained in the five HR zones described above
(Edwards, 1993).

The individual RPE of the 21 stages was evaluated with Borg
CR-10 scale within 30 min after each stage (Borg, 1990). RPE was
indicative of the subjective load of each stage.

Perceived Fatigue Evaluation (Well-being
Questionnaire)
Cyclists answered every morning, during breakfast, a
questionnaire with four questions focusing on perceived general
fatigue, sleep quality, DOMS, and stress level. Each question
scored on a 7-point (with 1 and 7 representing poor and very
good WB ratings, respectively) scale. Overall WB was determined
by summing the four questions’ scores (Hooper et al., 1995).

Statistical Analysis
The first step of the statistical analysis concerned the first
hypothesis of the study. We studied the evolution of HR and
HRV indices throughout the cycling event in our previously
published study (Barrero et al., 2019). Then, we investigated the
correlation between individual HR (RR interval duration) and
HRV indices, and subjective/objective fatigue, physical load, and
training level indicators, in order to establish the best fatigue
marker. We analyzed more precisely the RMSSD of RR interval
duration in supine (RMSSDsup) and in standing (RMSSDsta)
positions, the difference 1RMSSD = RMSSDsup−RMSSDsta
and its natural logarithm (1LnRMSSD), the LF and HF indices
of RR time series, and the ratio LF/HF. We also computed the
RR duration mean values in supine (MeanRRsup) and standing
(MeanRRsta) positions. Finally, the difference of the mean time
interval between two successive heart beats (1RR) between
supine and standing positions was computed (White, 1980; Tse
et al., 2005): 1RR = RRsupine−RRstanding.

We then calculated the correlation coefficient between each of
these indices and subjective/objective fatigue, physical load, and
training level indicators (see section “Materials and Methods”).

The second step of the analysis concerned the second
hypothesis of the study. To test this second hypothesis, we first
had to characterize the influence of the cyclist’s training level
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on her adaptation all along the multistage event. To do this,
the impact of each cycling stage was evaluated through the daily
change observed on WB, with 1WB =WB(staget)−WB(staget−1).
A low daily 1WB indicates that the cyclist was slightly impacted
by the stage. Then, all daily 1WB was averaged and plotted for
each cyclist as a function of her weekly pre-TdF training load
(km·week−1).

The final step of the statistical analysis concerned the second
hypothesis of the study. We aimed to test models to investigate
which objective/subjective fatigue, physical load, and training
level indicators best predict 1RR and 1LnRMSSD. For this
purpose, different multivariable linear models (LMMs) were
tested in order to estimate which set of variables best explains the
1RR and 1LnRMSSD.

For both, each model was a linear combination of up to
eight parameters related to training and physical condition
(km·week−1, v̇O2max, HRmax) on the one hand and to the
perceived difficulty of the cycling stage and its impact on the
cyclist (RPE, DOMS, perceived fatigue, quality of sleep, and
stress) on the other hand:

1RR = f (km·week−1, V̇O2max, HRmax, RPE, perceived
fatigue, DOMS, quality of sleep, stress)
where f is a linear function.

1LnRMSSD = f (km·week−1, V̇O2max, HRmax, RPE,
perceived fatigue, DOMS, quality of sleep, stress)
where f is a linear function.

The training level, assessed trough V̇O2max and km·week−1,
clearly influences the fatigue accumulated during the event.

For each parameter, we thus tested all 28
= 256 possible

models, covering all possible combinations of the eight
parameters. The predictive power of each model was estimated
through its Akaike information criterion (AIC) and the highest
adjusted R2, which penalize for including extra fitting parameters
(Akaike, 1974). The best model corresponds to the lowest AIC
value. In particular, if two models have the same R2, the one
having the less parameters has the lowest AIC.

The statistical significance of each parameter was estimated
through its p-value with a significant value stated at p < 0.05.
The dispersion of our data did not allow us to evaluate nonlinear
effects beyond LMMs.

All statistical analyses were performed with Python 3.7
software version.

RESULTS

All participants cycled for 21 consecutive stages, including two
resting days. They all successfully completed the whole circuit of
the TdF 2017 (3,540 km) (Barrero et al., 2019).

Effects of Cycling Event on Heart Rate
and Heart Rate Variability Indices
The evolution of HR and HRV indices throughout the cycling
event has been previously published (Barrero et al., 2019).
To summarize, resting supine HR increased progressively in
comparison with its basal value during the multistage event, and
the HR value returned to its basal values after each rest day.

On the other hand, standing HR values showed no significant
evolution during the cycling event. All along the multistage
event, we observed a progressive decrease in 1RR. Indeed,
compared with its initial value (day 0), a progressive decrease in
1RR was observed through successive stages. A small increase
in 1RR was noted after each resting day (days 10, 17, and
24) (Figure 1A).

Regarding HRV, a progressive imbalance in the autonomic
balance marked with a decrease in cardiac vagal activity,
evaluated through RMSSD and HF, was noted all along the
cycling event. The daily RMSSD standing–supine difference was
lower than the basal value during the multistage event.

Correlations Between Heart Rate and
Heart Rate Variability Indices, Fatigue,
Physical Load, and Training Levels
Indicators
These correlations concern our first hypothesis. Table 2 shows
correlations between HRV and subjective/objective fatigue,
physical load, and training level indicators. As expected,
MeanRRsup, MeanRRsta, 1RMSSD, 1LnRMSSD, and 1RR
were negatively correlated with workload. We also observed
significant negative correlations between RMSSDsup and
workload indicators.

No correlation was observed between RMSSDsta and RPE
(r = 0.19, p = 0.41), RMSSDsta and TRIMPS (r = 0.047,
p = 0.84), nor RMSSDsta and distance of the stages (r = 0.21,
p = 0.35). Lastly, the LF, HF, and LF/HF indices were not
correlated with workload indicators (r < 0.15, p > 0.46).
The 1RMSSD index showed significant negative correlation
with TRIMPS (r = −0.20, p = 0.02), RPE (r = −0.17,
p = 0.03), and KMS (r = −0.43, p = 0.05). We also
computed the correlations of 1LnRMSSD with TRIMPS
(r = −0.23, p = 0.009), RPE (r = −0.04, p = 0.12),
KMS (r = −0.41, p = 0.06), perceived fatigue (r = −0.24,
p = 0.002), DOMS (r = −0.22, p = 0.004), quality of
sleep (r = −0.06, p = 0.447), and stress (r = −0.22,
p= 0.004).

The 1RR index showed significant correlation with workload
markers with negative correlations with TRIMPS (r = −0.22,
p = 0.009), RPE (r = −0.26, p < 0.05), daily stage distance
(r = −0.41, p = 0.07), perceived fatigue (r = −0.39, p < 0.001),
DOMS (r = −0.40, p < 0.001), quality of sleep (r = −0.13,
p= 0.107), and stress (r=−0.24, p= 0.001) (Table 2). Otherwise,
the overall 1RR decrease observed all along the multistage
cycling event was correlated (r= 0.41, p< 0.05) with the increase
of RPE (Figure 1B).

Correlations between 1RR, 1RMSSD or 1LnRMSSD, and
subjective/objective fatigue, physical load, and training level
indicators are statically comparable (the p-value of the William’s
test we used to compare correlations is >0.1 for each indicator).

Impact of Training Level
To test the second hypothesis of the study, we first had to
characterize the influence of the cyclist’s training level on her
adaptation all along the multistage event, and we considered the
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FIGURE 1 | Evolution of 1RR stage by stage (A) and with daily workload assessed through rate of perceived exertion (RPE) score on CR-10 Borg scale (B).
(A) 1RR of stage n reflect stress/fatigue induced by stage n–1. Statistical differences with baseline: *p < 0.05, **p < 0.01, and ***p < 0.001.

change in mean WB on all the stages as a function of individual
weekly training load. The results are shown in Figure 2.
Overall, consequent to the accumulated fatigue, the feeling
of WB gradually decreased all along the event. This decrease
was less marked in the most trained cyclists. However, the
relationship observed was not linear but curvilinear. Finally, we
must emphasize the great individual variability of the evolution of
WB for the same weekly training load (i.e., 100 or 200 km·week−1

in Figure 2).

Multivariable Linear Models
To test our second hypothesis, we had lastly to consider 256
models for both 1RR and 1LnRMSSD. Among them, the four
presenting the lowest AIC and the highest adjusted R2 for 1RR
and 1LnRMSSD are shown in Tables 3, 4, respectively. The
fitting coefficients are reported with their p-value.

It must be underlined that the V̇O2max value and the pre-
TdF training load (km·week−1) that were included in all models
appeared to be the most relevant parameters to explain the
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FIGURE 2 | Averaged change in well-being (<1WB>) as a function of weekly
training load (km week-1). Blue circles represent change in well-being
averaged on cyclists covering the same distance per week. The small blue
points and the dotted lines represent individual change in WB.

1RR and the 1LnRMSSD observed. To further quantify the
importance of these indicators of the physical condition, we also
included in Tables 3, 4 the best model, which does not include the
V̇O2max (model 5), the number of km·week−1 (model 6), or none
of them (model 7). Clearly, beyond the multistage event-induced
fatigue, the physical condition is the key to account the 1RR and
1LnRMSSD variations.

Specifically, the most relevant model to explain 1RR can be
expressed as a multi-linear function:

1RR = 1,249.37 + 12.32 V̇O2max + 0.36 km·week−1
−8.83

HRmax−5.8 RPE−28.41 perceived fatigue
where the p-values of each coefficient are given in Table 3.

And the best model to predict 1LnRMSSD is:
1LnRMSSD = 1.647 + 0.042 V̇O2max +

0.002 km·week−1
−0.017 HRmax−0.019 RPE−0.100 perceived

fatigue+ 0.092 stress
where the p-values of each coefficient are given in Table 4.

Finally, to formulate a more accessible model for coaches
and team managers, we looked for a linear relationship between
1RR, a single indicator of fatigue and physiologic constants
excluding the V̇O2max, which is not easily measurable. This
model can be expressed as 1RR = −14.36 WB−2.06 HRmax +

0.35 km·week−1
+ 689.62. The R2 adjusted and AIC observed for

this model were, respectively, 0.194 and 2033.
Concerning 1LnRMSSD, as we can see from adjusted R2,

models predict less variance than for 1RR index (Table 4).

DISCUSSION

Intense physical training exposes the athlete to the risk of
overreaching or of overtraining, partly due to an imbalance
between training and recovery (Bishop et al., 2008). The
information from overreaching and overtraining markers,
especially based on HR and HRV analyses, seems reinforced when
it is associated with other fatigue parameters (Stanley et al., 2013;
Buchheit, 2014). Our study aimed at modeling the relationship
between the level of fatigue reported by well-trained female
cyclists during a multistage cycling event, their physical load,
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TABLE 3 | Linear coefficients, their corresponding p-values (in parentheses), adjusted R2 coefficients, and Akaike information criterion (AIC) of the different linear
multivariable mixed models tested to explain the difference between standing and supine RR duration of cyclists.

R1 R2 R3 R4 R5 R6 R7

V̇O2max 12.32** (<0.001) 11.39** (<0.001) 12.59** (<0.001) 12.40** (<0.001) 11.78** (<0.001)

Training load
(km·week−1)

0.36 (0.021) 0.36 (0.019) 0.35 (0.023) 0.36 (0.023) 0.35 (0.033)

HRmax −8.83** (<0.001) −8.13** (<0.001) −9.02** (<0.001) −8.79** (<0.001) −8.97** (<0.001) −2.52 (0.075)

RPE −5.90 (0.096) −5.12 (0.16) −5.99 (0.093) −5.78 (0.156) −4.71 (0.222) −6.02 (0.094) −5.94 (0.129)

Perceived fatigue −28.41** (<0.001) −24.55* (0.006) −28.80** (<0.001) −28.88 (<0.001) −24.58* (0.009) −29.62** (<0.001) −19.32 (0.058)

DOMS −6.20 (0.365) −19.13* (0.004) −19.33* (0.005)

Sleep quality 1.15 (0.85) −10.81 (p = 0.10)

Stress 2.23 (0.748)

Constant 1,249.37** (<0.001) 1,166.96** (<0.001) 1,266.30** (<0.001) 1,234.21** (<0.001) 314.60** (<0.001) 1,375.93** (<0.001) 860.54** (<0.001)

Adjusted R2 0.322 0.321 0.318 0.319 0.234 0.302 0.223

AIC 1,805 1,807 1,807 1,807 1,823 1,824 1,825

Adjusted R2 and AIC are used to estimate the predictive power of each model. These criteria are used instead of R2 in order to penalize including extra fitting parameters.
Training load corresponds to the weekly pre-TdF training load of the cyclists.
V̇O2max , maximal oxygen uptake; HRmax , maximal heart rate; RPE, rate of perceived exertion; WB, well-being; DOMS, delayed-onset muscle soreness.
*p-value < 10−2, **p-value < 10−3.

TABLE 4 | Linear coefficients, their corresponding p-values (in parentheses), adjusted R2 coefficients, and Akaike information criterion (AIC) of the different linear
multivariable mixed models tested to explain the difference between standing and supine LnRMSSD of cyclists.

R1′′ R2′′ R3′′ R4′′ R5′′ R6′′ R7′′

V̇O2max 0.042* (0.002) 0.026* (0.004) 0.024* (0.008) 0.038* (0.009) 0.040* (0.003)

Training load
(km·week−1)

0.002 (0.010) 0.002 (0.013) 0.002 (0.011) 0.002 (0.014) 0.0017 (0.036)

HRmax −0.017 (0.094) −0.014 (0.217) −0.018 (0.081)

RPE −0.019 (0.308) −0.019 (0.303) −0.013 (0.487) −0.015 (0.421) −0.016 (0.407) −0.020 (0.297) −0.017 (0.392)

Perceived fatigue −0.100 (0.013) −0.114* (0.005) −0.081 (0.083) −0.084 (0.072) −0.075 (0.118) −0.108* (0.009) 0.085 (0.078)

DOMS −0.044 (0.018) −0.026 (0.464) −0.059 (0.079) −0.054 (0.109)

Sleep quality

Stress 0.092 (0.012) 0.074 (0.034) 0.074 (0.033) 0.089 (0.016) 0.059 (0.092) 0.095 (0.011) 0.063 (0.078)

Constant 1.647 (0.238) −0.495 (0.388) −0.427 (0.457) 1.271 (0.393) 0.982** (<0.001) 2.365 (0.090) 1.331** (<0.001)

Adjusted R2 0.141 0.130 0.135 0.139 0.098 0.111 0.076

AIC 229.9 230.9 231.0 231.4 236.4 234.1 239.1

Adjusted R2 and AIC are used to estimate the predictive power of each model. These criteria are used instead of R2 in order to penalize including extra fitting parameters.
Training load corresponds to the weekly pre-TdF training load of the cyclists.
V̇O2max , maximal oxygen uptake; HRmax , maximal heart rate; RPE, rate of perceived exertion; WB, well-being; DOMS, delayed-onset muscle soreness.
*p-value < 10−2, **p-value < 10−3.

their training level, and the variations in HRV and HR rate indices
in response to an active orthostatic test.

Regarding our first hypothesis, we noted a lower change
of HR and of HR vagally mediated HRV between supine
and standing positions during the orthostatic test. However,
only HR and RMSSD, a time domain HRV index, were
correlated with subjective/objective fatigue, physical load, and
training level indicators. Lastly, the index 1RR, defined as the
difference between the average RR intervals measured in a
supine position and then in a standing position, appeared a new
indicator of stress/recovery status. These results confirmed our
first hypothesis.

Regarding our second hypothesis, we have then demonstrated
that 1RR and 1LnRMSSD could be modeled as a linear function
of training volume, V̇O2max and fatigue level, assessed through
the RPE and the WB questionnaire. Thus, the results observed

confirmed only partly our second hypothesis, because DOMS and
sleep quality previously proposed (Ouergui et al., 2020) did not
provide major information to specify the stress-recovery status in
the multistage of endurance event studied (Table 3). Regarding
1LnRMSSD, models predict less variance than for 1RR index.
This result underlines the interest of 1RR in stress-recovery
status prediction.

Respective Values of Heart Rate
Variability Indices
From all the HRV indices we used, time domain’s is the one that
was the best correlated with workload and fatigue parameters
(Table 2). Limits of spectral indices have been previously reported
(Buchheit, 2014). Our results confirm also that the time-domain
markers of parasympathetic effects seemed to be better adapted
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to explore fatigue level (Buchheit, 2014; Fazackerley et al., 2019).
This can be explained by the fact that parasympathetic nervous
system is implied in self-regulation mechanisms, which are
critical for adaptation (Laborde et al., 2017). Lastly, among
these indices, the 1RR index was significantly correlated with
subjective/objective fatigue, physical load, and training level
indicators, as 1RMSSD and 1LnRMSSD. Previous reviews were
focused on interests and limits of HR and HRV measures on
monitoring training status (Buchheit, 2014; Bellenger et al.,
2016). If Buchheit considers resting HRV (more precisely
RMSSD) as the HR measure more sensitive to fatigue (Buchheit,
2014), Bellenger et al. (2016) underlined some limits of this ANS
status analysis. Indeed, in their meta-analysis, Bellenger et al.
(2016) have observed that overload training had little effect on
resting HRV due to various effects on vagally mediated HRV
indices. The authors explained that the disagreement between
studies may be the result of methodological issues. In addition to
these methodological aspects, HRV analysis appears as a complex
process due to different fatigue-induced alterations of HRV
pattern (Schmitt et al., 2015). Given these limits of resting HRV, it
is interesting to bring out new tools in ANS status evaluation. Our
study therefore outlines a new indicator of stress/recovery status,
the 1RR. Based on our results, a low 1RR, translating a low HR
change between supine and standing positions, could mean a lack
of post-exercise recovery. This observation is in accordance with
the increase cardiac sympathetic modulation during supine rest
and attenuated baroreflex response to change position observed
by Uusitalo et al. (2000) in heavily trained females. The decrease
observed here seems explained by an increase in supine HR
without modification of standing HR (Barrero et al., 2019).
This observation may be due to a decrease in parasympathetic
and/or an increase in sympathetic HR influence (Schmitt et al.,
2015). To our knowledge, the precise cause of this observation,
decrease in sensitivity, and/or density of sinus cell membrane
receptors or other one has not been formally demonstrated
(Bellenger et al., 2016).

Mathematical Model
As specified in the Introduction, we tested eight parameters that
quantify physical load, training level, and fatigue indicators.
The V̇O2max is widely used to assess both physical capacity
and training level in endurance sports, but it is typically not
repeatedly measured during a sporting season. Therefore, we
included the training volume, summarized by the mean number
of kilometers per week during the training period prior to the
event. The chosen fatigue indicators reflect the internal load:
RPE is commonly used to evaluate the perceived difficulty of an
exercise and appeared strongly correlated to 1RR, and the DOMS
is specifically targeted at muscular fatigue; the perceived fatigue
reflects general tiredness; quality of sleep and stress are associated
with physical and mental fatigue.

We first studied the influence of the individual training level
on the adaptation throughout the multistage cycling event. This
training level depends on two main factors: the number of years
of practice and the quality of training carried out during the
weeks preceding the event. We noted no correlation between the
number of years of practice and WB during the event. On the

other hand (see Figure 2), except for the least trained cyclist, we
observed a positive correlation between the training volume per
week before the event and the adaptation all along the event. We
therefore observed a predominant influence of recent training on
the level of exercise tolerance during the multistage event.

Then, several multivariable models were tested. We showed
that the indices 1RR and 1LnRMSSD could be modeled
linearly as a function of three main individual variables: training
volume, V̇O2max, and fatigue assessed through RPE and WB
questionnaire. These indices appear to be relevant indicators
of the adaptation ability along multistage events. However, we
have noticed that linear models based on 1RR have more
predictive power than those based on 1LnRMSSD. Moreover,
the individual 1RR and 1LnRMSSD appear to be reliable
indicators of both athlete’s training level and fatigue level. Indeed,
we observed a positive correlation between 1RR (respectively,
1LnRMSSD) and V̇O2max, which reflects the training level and
a negative correlation between 1RR (respectively, 1LnRMSSD)
and fatigue, RPE, WB, and maximal HR. The positive correlation
we observed with the individual fitness and recovery of altered
autonomic regulation after prolonged exercise confirms previous
observations (Hautala et al., 2001; Fazackerley et al., 2019).
Finally, the negative correlation with maximal HR confirms
that the latter decreases with chronic endurance training
(Bailey and Davies, 1999).

Practical Applications
A decrease in the value of HRV indices is a marker of weak
adaptability of the cardiovascular system to stress conditions that
it faces (Michael et al., 2017); for example, the supine vagally
mediated HRV parameters (RMSSD, total spectral power, and
HF but not LF/HF) were lower in athletes identified in the
fatigue state compared with the nonfatigue one (Plews et al.,
2012; Schmitt et al., 2015). The active orthostatic test, a well-
described marked physiological stress, is recommended to study
HRV in athletes (Uusitalo et al., 2000; Hynynen et al., 2008;
Schmitt et al., 2015).

From our results, it seems that the higher is 1RR, HR
difference between supine and standing positions, the better is
the cardiovascular adaptability to orthostatic stress. Conversely,
a low 1RR means stress-recovery imbalance as described in the
paragraph Respective Values of Heart Rate Variability Indices. The
negative impact of a Grand Tour on physical performance, mood,
and WB of competitive cyclists is well reported, and a study
performed with professional male cyclists during the Vuelta a
España has noted that changes in supine HRV were inversely
correlated to the exercise level (Earnest et al., 2004; Lastella et al.,
2015; Rodríguez-Marroyo et al., 2017). Our results confirmed
this observation. The impact of the preintervention physiological
status on HRV alteration has also been proposed (Lastella et al.,
2015; Rodríguez-Marroyo et al., 2017). Our data also underlined
the importance of the pre-event training level to explain the HR
adaptability change during a cyclist’s multistage event.

To our knowledge, it is the first time that the HR changes
observed during an easy physiological test are modeled as
a function of two physical parameters, training level and
V̇O2max, and one psychological parameter, fatigue. The model
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proposed allowed us to understand the ability to adapt to a
repeated endurance exercise measuring the mean RR interval
changes observed between supine and standing positions in
well-trained female cyclists. If the measured 1RR is lower than
predicted by the model, we could conclude that the imbalance of
stress-recovery status is higher than perceived by the athlete in
this context of a cyclist multistage event.

Thus, our findings support the use of 1RR monitoring
to quantify training load, as 1RR can be directly predicted
from fatigue and training level indicators. The use of 1RR
monitoring can help coaches and athletes to make strategic
decisions during a multistage long-duration event. It should be
noted that the proposed model can be used with unsophisticated
HR monitors (i.e., those recording only RR average values).
This therefore makes it accessible to a majority of coaches
and athletes, interested in the scientific approach of the
training and performance monitoring. Finally, we also presented
a model more accessible for coaches and team managers,
connecting HR changes to a single indicator of fatigue.
However, in accordance with its R2 adjusted and AIC values,
the robustness of this model appears low, and it should be
used with caution.

Study Limitations
This study presents three main limitations. First, the small
population sample studied can reduce the predictive power of the
proposed model. However, the daily evolution of HRV in female
athletes has been scarcely studied, and the model we proposed
seems to be easy to use to follow the individual training and
performance level. Second, our study focuses on well-trained
female cyclists, and the validity of our model deserves to be
confirmed in other sports. Specific studies are also needed in
endurance male athletes, because HRV gender’s difference has
been reported (Schäfer et al., 2015). Third, as some HRV indices
are closely related and dependent on the individual’s breathing
frequency during recording (No authors listed, 1996), it could
have been relevant to impose controlled breathing (Gregoire
et al., 1996), although this induces a mental activity and stress
(Bernardi et al., 2000). At least, monitoring of respiratory rate
could have been considered.

CONCLUSION

From our data on well-trained female cyclists, we introduced
a new indicator of post-endurance exercise recovery, the 1RR
based on the change of mean HR observed during an orthostatic
active test. This index is influenced by the training level and by the
V̇O2max of the athlete. The proposed quantitative model can help
to assess the adaptation ability of an athlete and thus to anticipate
a decrease in endurance performance due to fatigue, particularly
during a long-duration multistage cycling event. Investigating
larger populations of athletes, included in other sports than
cycling, represents an exciting perspective for future studies.
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