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Abstract

Consider the following general question: if we can solve Maximum Matching in (quasi) linear time
on a graph class C, does the same hold true for the class of graphs that can be modularly decomposed
into C ? What makes the latter question difficult is that the Maximum Matching problem is not
preserved by quotient, thereby making difficult to exploit the structural properties of the quotient
subgraphs of the modular decomposition. So far, we are only aware of a recent framework in
(Coudert et al., SODA’18) that only applies when the quotient subgraphs have bounded order
and/or under additional assumptions on the nontrivial modules in the graph. As an attempt to
answer this question for distance-hereditary graphs and some other superclasses of cographs, we
study the combined effect of modular decomposition with a pruning process over the quotient
subgraphs. Specifically, we remove sequentially from all such subgraphs their so-called one-vertex
extensions (i.e., pendant, anti-pendant, twin, universal and isolated vertices). Doing so, we obtain
a “pruned modular decomposition”, that can be computed in quasi linear time. Our main result
is that if all the pruned quotient subgraphs have bounded order then a maximum matching can be
computed in linear time. The latter result strictly extends the framework of Coudert et al. Our
work is the first to use some ordering over the modules of a graph, instead of just over its vertices,
in order to speed up the computation of maximum matchings on some graph classes.

Keywords: maximum matching; FPT in P; modular decomposition; pruned graphs; one-vertex
extensions; P4-structure.

1. Introduction

Can we compute a maximum matching in a graph in linear-time? – i.e., computing a maximum
set of pairwise disjoint edges in a graph. – Despite considerable years of research and the design
of elegant combinatorial and linear programming techniques, the best-known algorithms for this
fundamental problem have stayed blocked to an O(m

√
n)-time complexity on n-vertex m-edge

graphs [41]. Nevertheless, we can use some well-structured graph classes in order to overcome
this superlinear barrier for particular cases of graphs [8, 12, 16, 19, 25, 24, 29, 34, 35, 37, 40,
42, 48, 50, 49]). Indeed, the Maximum Matching problem has several applications, some of
them being relevant only for specific graph families [7, 18, 29, 38, 44]. Our work combines two
successful approaches for this problem, namely, the use of a pruning sequence for certain graph

1Results of this paper were partially presented at the ISAAC’18 conference [21].
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classes [8, 16, 40], and a recent technique based on the decomposition of a graph by its modules [12].
We detail these two approaches in what follows, before summarizing our contributions.

1.1. Related work

A cornerstone of most Maximum Matching algorithms is the notion of augmenting paths [3,
22]. However, although we can compute a set of augmenting paths in linear-time [26], this is a
tedious task that involves the technical notion of blossoms and this may need to be repeated Ω(

√
n)

times before a maximum matching can be computed [34]. A well-known greedy approach consists
in, given some total ordering (v1, v2, . . . , vn) over the vertices in the graph, to consider the exposed
vertices vi (i.e., not incident to an edge of the current matching) by increasing order, then to try
to match them with some exposed neighbour vj that appears later in the ordering [19]. The vertex
vj can be chosen either arbitrarily or according to some specific rules depending on the graph class
we consider. Our initial goal was to extend similar reduction rules to module-orderings.

Modular decomposition. A module in a graph G = (V,E) is any vertex-subset X such that
every vertex of V \X is either adjacent to every of X or nonadjacent to every of X. The modular
decomposition of G is a recursive decomposition of G according to its modules [32]. We postpone its
formal definition until Section 2. For now, we only want to stress that the vertices in the “quotient
subgraphs” that are outputted by this decomposition represent modules of G (e.g., see Fig. 1 for
an insightful illustration). The use of modular decomposition in the algorithmic field has a rich
history. The successive improvements on the best-known complexity for computing this decom-
position are already interesting on their own since they required the introduction of several new
techniques [13, 15, 30, 39, 47]. There is now a practical linear-time algorithm for computing the
modular decomposition of any graph [47]. Our main motivation for considering modular decom-
position in this note is its recent use in the field of parameterized complexity for polynomial-time
solvable problems. – For some earlier applications, see [1, 5, 14, 23, 27]. – Specifically, let us call
modular-width of a graph G the minimum k ≥ 2 such that every quotient subgraph in the modular
decomposition of G is either “degenerate” (i.e., complete or edgeless) or of order at most k. With
Coudert, we proved in [12, Sec. 4 and 5] that many “hard” graph problems in P – for which
no linear-time algorithm is likely to exist – can be solved in kO(1)(n + m)-time on graphs with
modular-width at most k. In particular, we proposed an O(k4n+m)-time algorithm for Maximum
Matching.

One appealing aspect of our approach in [12, Sec. 4] was that, for most problems studied, we
obtained a linear-time reduction from the input graph G to some (smaller) quotient subgraph G′

in its modular decomposition. – We say that the problem is preserved by quotient. – This paved
the way to the design of efficient algorithms for these problems on graph classes with unbounded
modular-width, assuming their quotient subgraphs are simple enough w.r.t. the problem at hands.
We illustrated this possibility through the case of (q, q − 3)-graphs (i.e., graphs where no set of at
most q vertices, q ≥ 7, can induce more than q − 3 paths of length four). However, this approach
completely fell down for Maximum Matching. Indeed, our Maximum Matching algorithm
in [12, Sec. 5] works on supergraphs of the quotient graphs that need to be repeatedly updated
every time a new augmenting path is computed. Such approach did not help much in exploiting
the structure of quotient graphs. We managed to do so for (q, q − 3)-graphs only through the help
of a deeper structural theorem on the nontrivial modules in this class of graphs. Nevertheless, to
take a shameful example, it was not even known before this work whether Maximum Matching
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could be solved faster than with the state-of-the art algorithms on graphs that can be modularly
decomposed into paths!

1.2. Our contributions

We propose pruning rules on the modules in a graph (some of them new and some others
revisited) that can be used in order to compute Maximum Matching in linear-time on several
new graph classes. More precisely, given a module M in a graph G = (V,E), we recall that M
is corresponding to some vertex vM in a quotient graph G′ of the modular decomposition of G.
Assuming vM is a so-called one-vertex extension in G′ (i.e., it is pendant, anti-pendant, universal,
isolated or it has a twin), we show that a maximum matching for G can be computed from a
maximum matching of G[M ] and a maximum matching of G \M efficiently (see Section 4). Our
rules are purely structural, in the sense that they only rely on the structural properties of vM in
G′ and not on any additional assumption on the nontrivial modules. Some of these rules (e.g.,
for isolated or universal modules) were first introduced in [12, Sec. 5.2] — although with slightly
different correctness proofs. Our main technical contributions in this work are the pruning rules
for, respectively, pendant and anti-pendant modules (see Sections 4.2 and 4.3). The latter two cases
are, surprisingly, the most intricate. In particular, they require amongst other techniques: the
computation of specified augmenting paths of length up to 7, the addition of some “virtual edges”
in other modules, and a careful swapping between some matched and unmatched edges.

Then, we are left with pruning every quotient subgraph in the modular decomposition by sequen-
tially removing the one-vertex extensions. We prove that the resulting “pruned quotient subgraphs”
are unique (independent from the removal orderings) and that they can be computed in quasi linear-
time by using a trie data-structure (Section 3). Furthermore, as a case-study we prove that several
superclasses of cographs are totally decomposable w.r.t. this new “pruned modular decomposi-
tion”; namely, every graph that can be modularly decomposed into: trees, (co-)distance-hereditary
graphs [2], tree-perfect graphs [6]. These classes are further discussed in Section 5. Note that for
some of them, such as distance-hereditary graphs, we so obtain the first known linear-time algo-
rithm for Maximum Matching – thereby extending previous partial results obtained for bipartite
and chordal distance-hereditary graphs [16]. Our approach actually has similarities with a general
greedy scheme applied to distance-hereditary graphs [10]. With slightly more work, we can extend
our approach to every graph that can be modularly decomposed into cycles. The case of graphs of
bounded modular treewidth [43] is left as an interesting open question. We also left open whether
our framework in this paper could be applied to other interesting graph classes from the literature.

1.3. Organization of the paper

Definitions and our first results are presented in Section 2. We introduce the pruned modular
decomposition in Section 3, where we show that it can be computed in quasi linear-time. Then, the
core of the paper is Section 4 where the pruning rules are presented along with their correctness
proofs. In particular, we state our main result in Section 4.4. Our reduction rules and algorithms
are stated in a high-level description. Technical details related to their implementations and the
required data structures are postponed to specific subsections (namely, Sec. 2.1.1, 2.2.1 and 3.1).
We use the latter in order to bound the running time of our algorithms: in Sec. 4.1.1, 4.2.1 and 4.3.1,
respectively. Applications of our approach to some graph classes are discussed in Section 5. Finally,
we conclude in Section 6 with some open questions. Results of this paper were partially presented
at the ISAAC’18 conference [21].
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2. Preliminaries

For the standard graph terminology, see [4]. We only consider graphs that are finite, simple
and unweighted. For any graph G = (V,E) let n = |V | and m = |E|. Given a vertex v ∈ V , we
denote its (open) neighbourhood by NG(v) = {u ∈ V | {u, v} ∈ E} and its closed neighbourhood
by NG[v] = NG(v) ∪ {v}. Similarly, we define the neighbourhood of any vertex-subset S ⊆ V as
NG(S) =

(⋃
v∈S NG(v)

)
\S. In what follows, we introduce our main algorithmic tool for the paper

as well as the graph problems we study.

2.1. Modular decomposition

A module in a graph G = (V,E) is any subset M ⊆ V (G) such that for any u, v ∈ M we
have NG(v) \ M = NG(u) \ M . There are trivial examples of modules such as ∅, V, and {v}
for every v ∈ V . Furthermore a fundamental property with nice algorithmic applications [32] is
that, if M is a module of G, and M ′ ⊆ M , then M ′ is a module of G[M ] if and only if it is
also a module of G. Let P = {M1,M2, . . . ,Mp} be a partition of the vertex-set V . If for every
1 ≤ i ≤ p, Mi is a module of G, then we call P a modular partition of G. By abuse of notation,
we will sometimes identify a module Mi with the induced subgraph Hi = G[Mi], i.e., we will
write P = {H1, H2, . . . Hp}. The quotient subgraph G/P has vertex-set P, and there is an edge
between every two modules Mi,Mj ∈ P such that Mi×Mj ⊆ E. – This terminology finds its roots
in the study of equivalence classes. Indeed, a modular partition, as any partition of the vertex-
set of a graph, induces an equivalence relation on the vertices. In the literature, the set of the
equivalence classes of a relation is often called the quotient set. – Conversely, let G′ = (V ′, E′) be
a graph and let P = {H1, H2, . . . Hp}. be a collection of subgraphs. The substitution graph G′(P)
is obtained from G′ by replacing every vertex vi ∈ V ′ with a module inducing Hi. In particular,
for G′ =def G/P we have that G′(P) = G. We say that G is prime if its only modules are trivial
(i.e., ∅, V, and the singletons {v}). We call a module M strong if it does not overlap any other
module, i.e., for any module M ′ of G, either one of M or M ′ is contained in the other or M and
M ′ do not intersect. Let M(G) be the family of all inclusion wise maximal strong modules of G
that are proper subsets of V . The family M(G) is a modular partition of G [32], and so, we can
define G′ = G/M(G). The following structure theorem is due to Gallai.

Theorem 1 ( [28]). For an arbitrary graph G exactly one of the following conditions is satisfied.

1. G is disconnected;

2. its complement G is disconnected;

3. or its quotient graph G′ = G/M(G) is prime for modular decomposition.

We now formally define the modular decomposition of G – introduced earlier in Section 1. We
output the quotient graph G′ = G/M(G) and, for any strong module M ∈M(G) that is nontrivial
(possibly none if G = G′), we also output the modular decomposition of G[M ]. By Theorem 1
the subgraphs from the modular decomposition are either edgeless, complete, or prime for modular
decomposition. See Fig. 1 for an example. The modular decomposition of a given graph G = (V,E)
can be computed in linear-time [47]. There are many graph classes that can be characterized using
the modular decomposition.In particular, G is a cograph if and only if every quotient subgraph in
its modular decomposition is either complete or disconnected [11].

4



a b

c

d e

f

g

h

i j

k

ab cdef g hijk
prime

a
b

edgeless
c

d

e

f

prime

hj
ik

complete

j
h

edgeless

i
k

edgeless

Figure 1: A graph and its modular decomposition.

2.1.1. Data structures and basic operations

Since the modular decomposition is our main algorithmic tool in this paper, it is important to
carefully address the operations which we want to perform on the latter, and their time complexity.
The state-of-the-art algorithm for computing the modular decomposition [47] outputs a linear-time
representation of the quotient subgraphs, sometimes called the modular decomposition tree, that
we introduce next as a particular case of modular partition tree. The definition of the latter is
recursive. If a graph G contains a unique vertex v, then its unique modular partition tree is a
single-node tree labeled by v. Otherwise, a modular partition tree for G is, given some modular
partition P = {M1,M2, . . . ,Mp} of G, a rooted tree such that the p subtrees at the root are modular
partition trees for G[M1], G[M2], . . . , G[Mp], respectively. In order to avoid degenerate situations,
we further impose p ≥ 2 and that all the modules in P must be nonempty, which we call a non-trivial
partition. Finally, we obtain the modular decomposition tree of G by choosing P =M(G) and, as
subtrees for each of G[M1], G[M2], . . . , G[Mp], their respective modular decomposition trees. Note
that there is a one-to-one mapping between the quotient subgraphs in the modular decomposition
of G and the internal nodes of its modular decomposition tree. We label these internal nodes by
either prime, series or parallel: if the corresponding quotient subgraph is either prime, edgeless or
complete. See Fig. 2 for an illustration.

Prime

Parallel Prime g Series

a b c d e f Parallel Parallel

h i j k

Figure 2: The modular decomposition tree of the graph G in Fig. 1.
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Lemma 1. Let G be a graph and let P = {M1,M2, . . . ,Mp}, for some p ≥ 3, be a non-trivial
modular partition of G. For any modular partition tree w.r.t. G and P, the following operations
can be performed in O(1)-time:

• Suppression of a module Mi (resulting in a modular partition tree for G \Mi);

• Merge of two modules Mi,Mj s.t. Mi∪Mj is also a module of G (resulting in a new modular
partition tree for G).

Proof. First, in order to remove Mi, it suffices to remove the edge between the root and the modular
partition tree of G[Mi]. In the same way, in order to merge two modules Mi,Mj (assuming their
union is still a module of G), we start removing the two edges between the root and the modular
partition trees of G[Mi], G[Mj ]. Then, we add a new internal node, that we insert in the graph as
a child of the root; its two subtrees are the the modular partition trees of G[Mi], G[Mj ]. All these
aforementioned operations take constant-time, assuming a standard pointer structure for trees.

Since our reduction rules exploit the structure of the quotient subgraphs, it is desirable to
explicitly compute, and store, these subgraphs. Our next lemma shows that it can be done “for
free” if we are given the modular decomposition tree.

Lemma 2. Given the modular decomposition tree of a graph G, all the quotient subgraphs in its
modular decomposition can be computed in total O(n+m) time.

Proof. We first partition the edges of G along the internal nodes of its modular decomposition tree.
Indeed, let us consider any edge xy of G. There is a unique quotient subgraph H ′ of the modular
decomposition such that: H ′ = H/M(H), for some subgraph H of G (induced by a module);
x, y ∈ V (H); and x, y are in different modules of M(H). Then, if Mx,My ∈ M(H) are such that
x ∈ Mx and y ∈ My, there must be an edge between vMx and vMy in H ′. Therefore, we want to
map xy to H ′. We observe that the quotient H ′ is mapped to the lowest common ancestor of x, y in
the modular decomposition tree. So, in order to construct this above partition of the edges, we first
create an array of lists that is indexed by the internal nodes of the modular decomposition tree.
We pre-process this tree in linear-time such that, for any two nodes, their lowest common ancestor
can be computed in constant-time (e.g., see [33]). Since the modular decomposition tree has O(n)
nodes [32], this whole phase takes O(n) time. Finally, we scan all the edges xy of G. We compute
the lowest common ancestor of x and y in the modular decomposition tree, in constant-time, in
order to allocate the edge xy to the corresponding list in the array. Overall, the partition of the
edges is constructed in total O(n+m) time.

During the second step of the algorithm, we effectively construct the quotient subgraphs H ′.
For that, for every quotient H ′, let EH denote all the edges mapped to H ′. Let GH be the subgraph
of G that is induced by EH . Two non-adjacent vertices in V (GH) are false twins if they have the
same neighbours in GH (see also Sec. 3). This is an equivalence relation, of which we call “false
twin classes” the equivalence classes. Recall that H ′ = H/M(H), for some subgraph H of G.
By construction, the edges of EH are exactly the edges of G whose ends are in different strong
modules of M(H). We so obtain that the false twin classes of GH are exactly the strong modules
of M(H), i.e., the vertices of H ′. As a result, in order to construct H ′, it suffices to compute the
false twin classes of GH , to keep one vertex per false twin class and then to enumerate EH . This
can be done in O(|V (GH)| + |EH |) = O(|EH |) time, using partition refinement techniques, if we
are given the adjacent list of GH [31]. Therefore, we are left computing these adjacency lists, for all
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the subgraphs GH , in total O(n+m) time. For that, during a pre-processing phase, we create an
array of lists and a boolean vector, that are both indexed by the vertices of the graph G. In order
to create the quotient subgraph H ′, we first initialize some empty list for V (GH). We enumerate
all edges xy ∈ EH . If vertex x, resp. y, has not been put in V (GH) yet (that can be verified and
updated in O(1) time, using our global boolean vector), then we add this vertex to the list. Then,
in the global array of lists, we insert the edge xy in both the list indexed by x and the list indexed
by y. Note that our approach does not allow us to store simultaneously the adjacency list of all the
GH ’s. After creating H ′ from GH , we do not need the adjacency list of the latter anymore, and
therefore we need to reset our two global arrays before being able to construct GH′′ , for some other
quotient H ′′ 6= H ′ in the modular decomposition. We do so by scanning once V (GH) and clearing
on the way the corresponding cells in these arrays.

In the next lemma, we present two more operations on the modular decomposition that we need
in order to implement efficiently some of our reduction rules (see Sec. 4.2).

Lemma 3. Let G be a graph and let P = {M1,M2, . . . ,Mp} be a non-trivial modular partition of
G. Given G/P and a modular partition tree w.r.t. G and P, it is possible to enumerate, for any
module Mi ∈ P:

• all the vertices of Mi, in O(|Mi|) time;

• all the vertices of NG(Mi), in O(|NG(Mi)|) time.

Proof. First, in order to enumerate Mi, it suffices to perform a tree traversal on the modular
partition tree of G[Mi] (subtree at the root), and to enumerate all its leaves. We observe that,
since we only allow non-trivial partitions for constructing such tree, there can be no internal node
of degree two. In particular, the number of nodes in the modular partition tree of G[Mi] is linear
in the number of its leaves, and so, in O(|Mi|). Second, in order to enumerate NG(Mi), we start
computing the family of modules Mj1 ,Mj2 , . . . ,Mjq ∈ P s.t. NG(Mi) =

⋃q
k=1Mjk . This can be

done in O(q) = O(degG/P(vMi)) time using G/P, that is in O(|NG(Mi)|) because the modules Mjk

are nonempty. We then enumerate Mjk , for every 1 ≤ k ≤ q, in O(|Mjk |) time.

2.2. Maximum Matching

A matching in a graph is defined as a set of edges with pairwise disjoint end vertices. The
maximum cardinality of a matching in a given graph G = (V,E) is denoted by µ(G).

Problem 1 (Maximum Matching).

Input: A graph G = (V,E).

Output: A matching of G with maximum cardinality.

We remind the reader that Maximum Matching can be solved in O(m
√
n)-time on general

graphs [41] — although we do not use this result directly in our paper. Furthermore, let G = (V,E)
be a graph and let F ⊆ E be a matching of G. We call a vertex matched if it is incident to an
edge of F , and exposed otherwise. Then, we define an F -augmenting path as a path where the
two ends are exposed, and the edges belong alternatively to F and not to F . It is well-known and
easy to check that, given an F -augmenting path P , the matching E(P )∆F (obtained by symmetric
difference on the edges) has larger cardinality than F .
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Lemma 4 (Berge, [3]). A matching F in G = (V,E) is maximum if and only if there is no
F -augmenting path.

We also consider an intermediate matching problem, that was first introduced (informally)
in [12, Sec. 5.1].

Problem 2 (Module Matching).

Input: A graph G′ = (V ′, E′), for some |V ′| = p, with the following additional information;

• a collection of subgraphs P = {H1, H2, . . . ,Hp}, equipped with a bijection between
V ′ and P;

• a collection F = {F1, F2, . . . , Fp},
with Fi being a maximum matching of Hi for every i.

Output: A matching of G = G′(P) with maximum cardinality.

A natural choice for Module Matching would be to take P =M(G). However, we will allow
P to take different values for our reduction rules.

Additional notations. Let 〈G′,P,F〉 be any instance of Module Matching. The order of
G′, or equivalently the cardinality of P, is denoted by p. For every 1 ≤ i ≤ p let Mi = V (Hi)
and let ni = |Mi| be the order of Hi. We denote δi = |E(Mi,Mi)| the size of the cut E(Mi,Mi)
with all the edges between Mi and NG(Mi). In particular, we have δi =

∑
vj∈NG′ (vi)

ninj . Let us

define ∆m(G′) =
∑p

i=1 δi. In the same way, let ∆µ(G) = µ(G) −
∑p

i=1 µ(Hi). We will omit the
dependency in, respectively, G′ and G, if they are clear from the context.

Our framework is based on the following lemma (inspired from [12, Theorem 5.7]). We recall that
a function f is called superadditive if we have ∀x, y f(x) + f(y) ≤ f(x+ y).

Lemma 5. Let G = (V,E) be a graph. Suppose that for every H ′ in the modular decomposition
of G it is possible to solve Module Matching on any instance 〈H ′,P,F〉 in time T (p,∆m,∆µ),
where T is a superadditive function2. Then, Maximum Matching on G can be solved in time
O(T (O(n),m, n)).

Proof. Let N be the sum of the orders of all the subgraphs in the modular decomposition of G.
We observe that each such a subgraph H ′ is the quotient subgraph H/M(H), for some H that is
induced by a module of G. Next, we describe an algorithm for Maximum Matching that runs in
time O(T (N,m, µ(G))). The latter will prove the lemma since we have N = O(n) [32]. We prove
our result by induction on the number of subgraphs in the modular decomposition of G. There are
two cases.

• If G is a singleton, i.e., N = n = 1, then we output an empty matching.

• Otherwise, let M(G) = {M1,M2, . . . ,Mp}, and let G′ = (M(G), E′) be the quotient graph
of G. For every 1 ≤ i ≤ p, we call the algorithm recursively on Hi = G[Mi] and we so obtain
a maximum matching Fi for this subgraph. By the induction hypothesis, this step takes

2We stress that every polynomial function is superadditive, for an exponent ≥ 1.
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time O(
∑p

i=1 T (Ni,mi, µ(Hi))), with Ni being the sum of the orders of all the subgraphs in
the modular decomposition of Hi and mi = |E(Hi)|. Furthermore, let F = {F1, F2, . . . , Fp}.
Observe that we have

∑p
i=1Ni = N−p,

∑p
i=1mi = m−∆m and

∑p
i=1 µ(Hi) = µ(G)−∆µ. In

order to compute a maximum matching for G, we are left with solving Module Matching
on 〈G′,M(G),F〉, that takes time T (p,∆m,∆µ) by the hypothesis. Overall, since T is
superadditive, the total running time is an O(T (N,m, µ(G))).

An important observation for our subsequent analysis is that, given any module M of a graph
G, the internal structure of G[M ] has no more relevance after we computed a maximum matching
FM for this subgraph. More precisely, we will use the following lemma:

Lemma 6 (Lemma 5.2 in [12]). Let M be a module of G = (V,E), let G[M ] = (M,EM ) and
let FM ⊆ EM be a maximum matching of G[M ]. Then, every maximum matching of G′M =
(V, (E \ EM ) ∪ FM ) is a maximum matching of G.

By Lemma 6 we can modify our algorithmic framework as follows. For every instance 〈G′,P,F〉
for Module Matching, we can assume that Hi = (Mi, Fi) for every 1 ≤ i ≤ p. Finally, a canonical
ordering of Hi (w.r.t. Fi) is a total ordering over V (Hi) such that the exposed vertices appear first,
and every two vertices that are matched together are consecutive. We make intensive use of these
orderings in what follows.

2.2.1. Data structures and basic operations

Our data structure to handle a matching is a linear-size global array, indexed by the vertices
of the input graph G. If a vertex v is exposed, then its cell in the array is initialized to Null,
otherwise it contains a pointer to the unique vertex matched with v. Doing so, we can make the
following standard assumption:

Property 1. Let F be a (not necessarily maximum) matching for the substitution G = G′(P).
For every v ∈ V (G), we can decide in constant-time whether v is matched by F , and if so, we can
also access in constant-time to the vertex matched with v.

The canonical ordering of a module Mi, w.r.t. some internal matching Fi, is simply stored in
a doubly-linked list, for which we assume constant-time access to the head and to the tail. Each
cell in the list stores an auxiliary integer variable: equal to either 0 (exposed), −1 (matched to
the predecessor vertex) or 1 (matched to the successor vertex). Doing so, when we traverse the
ordering, we can detect the separation between exposed and matched vertices in O(1) time.

The bottom-up traversal of the modular decomposition tree, presented in Lemma 5, allows us
to initialize all the canonical orderings “on the fly” before we start processing a quotient subgraph
H ′. Specifically, recall that H ′ = H/M(H) for some subgraph H of the input G (induced by a
module of G). We need to compute a canonical ordering for every module Mi ∈ M(H) w.r.t.
some pre-computed matching Fi. For that, it is sufficient to enumerate all vertices of Mi, using
Property 1 in order to identify the exposed vertices and the edges of Fi. By Lemma 3, it takes
O(
∑

i |Mi|) time. If furthermore, H ′ has no isolated vertex (i.e., there is no isolated module in H),
then the scanning of all the modules can be done in O(

∑
i |Mi|) = O(∆m) time. By Theorem 1, the

only quotient subgraphs H ′ with isolated vertices are edgeless. In this situation, there is no need
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processing H ′, and so there is no need computing the canonical orderings either. Hence, the overall
time for computing all the canonical orderings, throughout the whole algorithm, is in O(n+m).

Finally, we stress that M(H), and so, the canonical orderings computed for H ′, partitions
the vertices of H. We store, for every vertex v, the corresponding cell in the unique canonical
ordering containing v (doubly-linked list) in some global linear-size array which is indexed by V . In
particular, when we compute a canonical ordering, we simply update the pointers and the auxiliary
integer variable that are stored in the (permanent) cells of this global array. The advantage of
having at hands this global array is that, after we computed a canonical ordering for a module Mi,
for any vertex u ∈Mi, we can decide in constant-time whether it is exposed or matched in Fi, with
Fi the internal matching that is associated to the ordering.

We summarize the properties of this above data structure:

Property 2. For every instance 〈G′,P,F〉 for Module Matching, we have access to a canonical
ordering for every 1 ≤ i ≤ p.

Furthermore, for every 1 ≤ i ≤ p and u ∈ Mi, in O(1) time we can either assert that vertex u
is left exposed by Fi or compute the vertex that is matched to u in this matching.

3. A pruned modular decomposition

In this section, we introduce a pruning process over the quotient subgraphs, that we use in
order to refine the modular decomposition.

Definition 1. Let G = (V,E) be a graph. We call v ∈ V a one-vertex extension if it falls in one
of the following cases:

• NG[v] = V (universal) or NG(v) = ∅ (isolated);

• NG[v] = V \ u (anti-pendant) or NG(v) = {u} (pendant), for some u ∈ V \ v;

• NG[v] = NG[u] (true twin) or NG(v) = NG(u) (false twin), for some u ∈ V \ v.

A pruned subgraph of G is obtained from G by sequentially removing one-vertex extensions (in
the current subgraph) until it can no more be done. This terminology was introduced in [36], where
they only considered the removals of twin and pendant vertices. Also, the clique-width of graphs
that are totally decomposed by the above pruning process (i.e., with their pruned subgraph being
a singleton) was studied in [45] 3. First, we show that the gotten subgraph is “almost” independent
of the removal ordering, i.e., there is a unique pruned subgraph of G (up to isomorphism). The
latter can be derived from the following (easy) lemma:

Lemma 7. Let G = (V,E) be a graph and let v, v′ ∈ V be one-vertex extensions of G. If v, v′ are
not pairwise twins then v′ is a one-vertex extension of G \ v.

Proof. We need to consider several cases. If v′ is either isolated or universal in G then it stays
so in G \ v. If v′ is pendant in G then it is either pendant or isolated in G \ v. Similarly, if v′ is
anti-pendant in G then it is either anti-pendant or universal in G \ v. Otherwise, v′ has a twin u
in G. By the hypothesis, u 6= v. Then, we have that u, v′ stay pairwise twins in G \ v.

3They also considered anti-twins in [45]. Their integration to this framework remains to be done.
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Corollary 1. Every graph G = (V,E) has a unique pruned subgraph up to isomorphism.

Proof. Suppose for the sake of contradiction that G has two non-isomorphic pruned subgraphs.
W.l.o.g., G is a minimum counter-example. In particular, for every one-vertex extension v of G, we
have that G \ v has a unique pruned subgraph up to isomorphism. Therefore, there exist v, v′ ∈ V
such that: v, v′ are one-vertex extensions of G, and the pruned subgraphs of G\v and G\v′ are non
isomorphic. We claim that at least one of the following must hold: v is not a one-vertex extension
of G \ v′, or v′ is not a one-vertex extension of G \ v. Indeed, otherwise, both the pruned subgraphs
of G \ v and of G \ v′ would be isomorphic to the pruned subgraph of G \ {v, v′}. By Lemma 7, it
implies that v, v′ are pairwise twins in G. However, since G \ v and G \ v′ are isomorphic, so are
their respective pruned subgraphs. A contradiction.

For many graph classes a pruning sequence can be computed in linear-time. We observe that
the same can be done for any graph (up to a logarithmic factor).

Proposition 1. For every G = (V,E), a pruned subgraph, and a corresponding pruning sequence,
can be computed in O(n+m log n)-time.

Proof. By Corollary 1, we are left with greedily searching for, then eliminating, the one-vertex
extensions. We can compute the ordered degree sequence of G in O(n + m)-time. Furthermore,
after any vertex v is eliminated, we can update this sequence in O(|N(v)|)-time. Hence, up to
a total update time in O(n + m), at any step we can detect and remove in constant-time any
vertex that is either universal, isolated, pendant or anti-pendant. Finally, in [36] they proposed a
trie data-structure supporting the following two operations: suppression of a vertex; and detection
of true or false twins (if any). The total time for all the operations on this data-structure is in
O(n+m log n) [36].

We will term “pruned modular decomposition” of a graph G the collection of the pruned sub-
graphs for all the quotient subgraphs in the modular decomposition of G (see Fig. 3 for an il-
lustration). Note that there is a unique pruned modular decomposition of G up to isomorphism
and that it can be computed in O(n + m log n)-time by Proposition 1 (applied to every quotient
subgraph in the modular decomposition separately). Furthermore, we remark that most cases of
one-vertex extensions imply the existence of non trivial modules, and so, they cannot exist in the
prime quotient subgraphs of the modular decomposition. Nevertheless, such vertices may appear
after removal of pendant or anti-pendant vertices, e.g., in the bull graph.

3.1. Data structures and basic operations

Let H be any graph, Hpr be a pruned subgraph of H, and (v1, v2, . . . , vq) be a corresponding
pruning sequence. Let H0 := H and, for every 1 ≤ j ≤ q, let Hj := H \{v1, v2, . . . , vj}. An efficient
implementation of our reduction rules in this paper (see the next Sec. 4) requires the following two
dual operations to be executed on all the quotient subgraphs of the modular decomposition:

• For every 1 ≤ j ≤ q, construct Hj = Hj−1 \ {vj} from Hj−1;

• For every 1 ≤ j ≤ q, construct Hj−1 from Hj = Hj−1 \ {vj}.

If we order the adjacency list so that v1, v2, . . . , vq appear first, then both operations can be per-
formed in O(degHj−1(vj)) time, and so, in total O(|V (H)|+ |E(H)|) time. Ordering the adjacency
list, being given some ordering of the vertex-set, requires O(|V (H)|+ |E(H)|) time and space.
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Figure 3: An illustration of the pruned modular decomposition

4. Reduction rules

Let 〈G′,P,F〉 be any instance of Module Matching. Suppose that v1, the vertex corre-
sponding to M1 in G′, is a one-vertex extension. In order to avoid handling explicitly with some
degenerate situations, we always assume in what follows p = |P| ≥ 3 (if p ≤ 2, then we rely
on a previous result from [12] in order to handle with quotient subgraphs of constant size; see
Sec. 4.4). Under these assumptions, we present reduction rules to a smaller instance 〈G∗,P∗,F∗〉
where |P∗| < |P|. Set ∆m(G′, G∗) = ∆m(G′) −∆m(G∗). Each of our rules can be implemented
to run in O(∆m(G′, G∗))-time. In Section 4.1 we recall the rules introduced in [12, Sec. 5.2] for
universal and isolated modules (explicitly) and for false or true twin modules (implicitly). Our
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main technical contributions are the reduction rules for pendant and anti-pendant modules (in
Sections 4.2 and 4.3, respectively), which are surprisingly the most intricate.

4.1. Simple cases

We introduce two local operations on a matching, first used in [48] for cographs. Let F ⊆ E be
a matching and let M ⊆ V be a module.

Operation 1 (MATCH). While there are x ∈M, y ∈ N(M) exposed, add {x, y} to F .

Operation 2 (SPLIT). While there are x, x′ ∈M, y, y′ ∈ N(M) such that x and x′ are exposed,
and {y, y′} ∈ F , replace {y, y′} in F by {x, y}, {x′, y′}.

Let G = H1 ⊕H2 be the join4 of the two graphs H1, H2 and let F1, F2 be maximum matchings
for H1, H2, respectively. The “MATCH and SPLIT” technique consists in applying Operations 1
then 2 to M = V (H1) and F = F1∪F2, thereby obtaining a new matching F ′, then to M = V (H2)
and F = F ′. We observe that the cardinality of this matching can be computed in O(1) time. In
fact, as pointed out to us by a reviewer, if |M1| ≤ |M2| then the final matching has cardinality
min{b(|M1|+ |M2|)/2c , |M1| + |F2|}. However, some of our reduction rules require to know the
matching instead of just its cardinality. We postpone our complexity analysis of this ‘MATCH
and SPLIT” technique to Sec. 4.1.1. Based on the latter, we design the following rules:

Reduction rule 1 (see also Reduction rules in [12], Sec. 5.2). Suppose v1 is isolated in G′. We set
G∗ = G′ \ v1, P∗ = P \ {H1}, and F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching
of G∗(P∗) = G[V \M1]. We output F ∗ ∪ F1.

Reduction rule 2 (see also Reduction rules in [12], Sec. 5.2). Suppose v1 is universal in G′. We
set G∗ = G \ v1, P∗ = P \ {H1}, F∗ = F \ {F1}. Furthermore, let F ∗ be a maximum matching of
the substitution G∗(P∗) = G[V \M1]. We apply the “MATCH and SPLIT” technique to M1, F1

with V \M1, F
∗.

Reduction rule 3. Suppose v1, v2 are false twins in G′. We set G∗ = G′ \ v1, P∗ = {H1 ∪H2} ∪
(P \ {H1, H2}), F∗ = {F1 ∪F2}∪ (F \ {F1, F2}). We output a maximum matching of G∗(P∗) = G.

Reduction rule 4. Suppose v1, v2 are true twins in G′. Let F ∗2 be the matching of H1⊕H2 obtained
from the “MATCH and SPLIT” technique applied to M1, F1 with M2, F2. We set G∗ = G \ v1,
P∗ = {H1 ⊕H2} ∪ (P \ {H1, H2}), F∗ = {F ∗2 } ∪ (F \ {F1, F2}). We output a maximum matching
of G∗(P∗) = G.

Reduction rules 1 and 3 are straightforward. The correctness of Reduction rules 2 and 4 can
be readily proved from the following result:

Lemma 8 (Lemma 5.13 in [12]). Let G = G1 ⊕G2 be the join of two graphs G1, G2 and let F1, F2

be maximum matchings for G1, G2, respectively. For F = F1 ∪ F2, applying the “MATCH and
SPLIT” technique to V (G1), then to V (G2) leads to a maximum matching of G.

4We recall that the join of two graphs G1, G2 is obtained from these two graphs by adding all possible edges
between V (G1) and V (G2).
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4.1.1. Complexity analysis

In Reduction rules 1, 2, 3 and 4 we replace G′ by G∗ := G′ \ v1. Up to some linear-time pre-
processing for ordering the adjacency list, the removal of v1 can be done in O(degG′(v1)) time, and
so in O(∆m(G′, G∗)) (i.e., see Sec. 3.1). From now on, we exclude the cost of removing vertex v1
from our complexity analysis.

• In particular, Reduction rule 1 takes O(1)-time.

• Reduction rule 3 also takes O(1) time, plus the cost of computing a canonical ordering for
M1∪M2 w.r.t. F1∪F2. For that, using Property 2, we scan the canonical ordering of M1 until
there is no more exposed vertex. Then, we make of the last exposed vertex in this ordering
(if any) the predecessor of the first vertex in the canonical ordering of M2; in the same way,
we make of the first matched vertex in this ordering (if any) the successor of the last vertex
in the canonical ordering of M2. – Note that conversely, if we store a copy of the canonical
ordering of M1, then during a post-processing phase, the original canonical ordering of M2

can be retrieved. – The running time is in O(n1). Since we can further assume v1, v2 are not
isolated in G′ (otherwise, we apply Reduction rule 1), then we have n1 = O(∆m(G′, G∗)).

• Furthermore, as explained in Section 2.2.1, for all the matchings considered we assume their
so called “canonical ordering” to be given (Property 2). Then, the complexity of Reduction
rule 2 is dominated by the Match and Split operations. Specifically, we scan the canonical
orderings of M1 and of the modules in its neighbourhood (i.e., there are O(∆m(G′, G∗))
different canonical orderings to access). We can use these canonical orderings in order to
output the desired exposed vertices, resp. the desired matched edges, for applying our rules.
Doing so, every such operation adds, in O(1)-time, one or two edges in the matching with
one end in M1. Observe that there cannot be more than O(n1) operations. Furthermore,
∆m(G′)−∆m(G∗) ≥ n1n2 = Ω(n1). Hence, Reduction rule 2 takes O(∆m(G′, G∗))-time.

• Finally, the complexity analysis of Reduction rule 4 is similar to the one above for Reduction
rule 2, plus the time needed for computing a canonical ordering for M1 ∪ M2 w.r.t. the
matching F ∗2 . For that, using Property 1, it is sufficient to scan M1 ∪M2, that can be done
in O(n1 + n2) time by Lemma 3. – Note that, within the same amount of time, we can store
a copy of the original canonical orderings of M1,M2. – Recall that, since v1v2 is an edge of
G′, we have n1 + n2 = O(n1n2) = O(∆m(G′, G∗)).

4.2. Anti-pendant

Suppose v1 is anti-pendant in G′. W.l.o.g., v2 is the unique vertex that is nonadjacent to v1 in
G′. By Lemma 6, we can also assume w.l.o.g. that E(Hi) = Fi for every i. In this situation, we
start applying Reduction rule 1, i.e., we set G∗ = G′ \ v1, P∗ = P \ {H1}, F∗ = F \ {F1}. Then,
we obtain a maximum matching F ∗ of G \M1 (i.e., by applying our reduction rules to this new
instance). Finally, from F1 and F ∗, we compute a maximum matching F of G, using an intricate
procedure. We detail this procedure next.

First phase: pre-processing. Our correctness proofs in what follows will assume that some
additional properties hold on the matched vertices in F ∗. So, we start correcting the initial matching
F ∗ so that it is the case. For that, we introduce two “swapping” operations. Recall that v2 is the
unique vertex that is nonadjacent to v1 in G′.
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Operation 3 (REPAIR). While there exist x2, y2 ∈M2 such that {x2, y2} ∈ F2 and y2 is exposed
in F ∗, we replace any edge {x2, w} ∈ F ∗ by {x2, y2}.

Let F ′ := REPAIR(F ∗).

Operation 4 (ATTRACT). While there exist x2 ∈ M2 exposed and {u,w} ∈ F ′ such that
u ∈ NG(M2), w /∈M2, we replace {u,w} by {u, x2}.

Let F ′′ = ATTRACT (F ′) and F (0) = F1 ∪ F ′′. Summarizing, we get:

Definition 2. A matching F of G is good if it satisfies the following two properties:

1. every vertex matched by F1 ∪ F2 is also matched by F ;

2. either every vertex in M2 is matched, or there is no matched edge in NG(M2)×NG(M1).

Fact 1. F (0) is a good matching of G.

Indeed, the first and second conditions are enforced, respectively, by Operations 3 and 4.

Main phase: a modified Match and Split. We now apply the following three operations
sequentially:

1. Match(M1, F
(0)) (Operation 1). Doing so, we obtain a larger good matching F (1).

2. Split(M1, F
(1)) (Operation 2). Doing so, we obtain a larger good matching F (2).

3. the operation Unbreak, defined in what follows (see also Fig. 4 for an illustration):

M

M

N(M )

1

1

2

x

x y z

u w

1

2 2 2

Figure 4: An augmenting path of length 5 with ends x1, x2. Matched edges are drawn in bold.

Operation 5 (Unbreak). While there exist x1 ∈M1 and x2 ∈M1 ∪M2 exposed, and there
also exist {y2, z2} ∈ F2 \ F (2), we replace any two edges {y2, u}, {z2, w} ∈ F (2) by the three
edges {x2, u}, {y2, z2} and {w, x1}.

We will prove below that F (2) is a good matching of G (Claim 1), and so, the two edges
{y2, u}, {z2, w} ∈ F (2) that are required for the operation Unbreak always exist. Further-
more doing so, we obtain a larger matching F (3).

The resulting matching F (3) is not necessarily maximum. However, this matching satisfies the
following crucial property:

Lemma 9. No vertex of M1 can be an end in an F (3)-augmenting path.

Proof. Let x1 ∈ M1 be exposed. Suppose by contradiction x1 is an end of some F (3)-augmenting
path P = (x1 = u1, u2, . . . , u2`). W.l.o.g., P is of minimum length. We will derive a contradiction
from the following invariants:
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Claim 1. The following properties hold for every 0 ≤ j ≤ 3:

1. F (j) is a good matching of G;

2. If u2i, u2i+1 ∈ NG(M1) and {u2i, u2i+1} ∈ F (3) then we also have {u2i, u2i+1} ∈ F (j);

3. F1 ⊆ F (j).

Proof. Since we only increase the successive matchings using augmenting paths, we keep the
property that V (F1 ∪ F2) ⊆ V (F (j)). In fact, since we only consider the exposed vertices in M1

for our operations, we have the stronger Property 3 that F1 ⊆ F (j). Furthermore, our successive
operations do not create any new exposed vertex in M2 nor any new matched edge in NG(M1) ×
NG(M1), and so, both Properties 1 and 2 also hold. �

In what follows, we divide the proof in three claims.

Claim 2. u2` ∈M1 ∪M2.

Proof. Suppose for the sake of contradiction u2` /∈ M1 ∪M2, or equivalently u2` ∈ N(M1). Then,
we could have continued the first step Match(M1, F

(0)) by matching x1, u2` together, that is a
contradiction. �

Next, we derive a contradiction by proving u2` /∈M1 ∪M2.

Claim 3. u2` /∈M1.

Proof. Suppose for the sake of contradiction u2` ∈M1. There are two cases.

1. Case u2, u3 ∈ N(M1). Since {u2, u3} ∈ F (3) we have by Claim 1 {u2, u3} ∈ F (1). In particular,
we could have replaced {u2, u3} by {u2, x1}, {u3, u2`} during the second step of the main phase
(i.e., Split(M1, F

(1))), that is a contradiction.

2. Thus, let us now assume u2 ∈ N(M1) (necessarily) but u3 /∈ N(M1). By minimality of P , we
have u4 /∈ N(M1) (otherwise, P ′ = (x1, u4, u5, . . . , u2`) would be a shorter augmenting path
than P ). We claim that it implies u3 /∈M1. Indeed, otherwise we should also have u4 ∈M1,
and so, {u3, u4} ∈ F1 since we assume that M1 induces a matching. However, {u3, u4} /∈ F (3),
whereas we have by Claim 1 that F1 ⊆ F (3). A contradiction. Therefore, as claimed, u3 /∈M1.
We deduce from the above that u3 ∈ M2. Similarly, since u4 /∈ N(M1) ⊇ N(M2) we get
u4 ∈ M2. Altogether combined (and since M2 induces a matching), {u3, u4} ∈ F2 \ F (3).
Then, we could have continued the step Unbreak with x1 ∈M1 and u2` ∈M1 exposed, and
{u3, u4} ∈ F2 \ F (3), that is a contradiction.

As a result, u2` /∈M1. �

Claim 4. u2` /∈M2.

Proof. Suppose for the sake of contradiction u2` ∈M2. First we prove u2, u3 ∈ N(M1). Indeed, since
u1 is exposed and F1 ⊆ F (3) by Claim 1 we have that u2 ∈ N(M1). Furthermore, if u3 /∈ N(M1)
then we could prove as before (Claim 3, Case 2) {u3, u4} ∈ F2 \F (3); it implies that we could have
continued the step Unbreak with x1 ∈ M1 and u2` ∈ M2 exposed, and {u3, u4} ∈ F2 \ F (3), that
is a contradiction. Therefore, as claimed, u2, u3 ∈ N(M1).

Now, consider the edge {u2`−2, u2`−1} ∈ F (3). Since u2` ∈ M2 is exposed and by Claim 1 we
have V (F2) ⊆ V (F (3)), u2` /∈ V (F2). Furthermore, since E(H2) = F2 we have u2`−1 /∈ M2. There
are two cases.
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1. Suppose u2`−2 ∈ M1. Since u2`−2 is matched to u2`−1 /∈ M1 and F1 ⊆ F (3) by Claim 1, we
have that u2`−2 /∈ V (F1). Furthermore, we claim that the edge {u2`−2, u2`−1} was added to
the matching during the second step of the main phase (i.e., Split(M1, F

(1))).
In order to prove this subclaim, we only need to decide the first step where u2`−2 was matched
to any vertex; indeed, our above operations can only consider vertices in M1 that are exposed.
We observe that u2`−2, u2`−1 could not possibly be matched together during the first step
since otherwise, we could have also matched u2`−1 with u2`, thereby contradicting that F ′′

is a maximum-cardinality matching of G \ M1. In addition, recall that we proved above
u2, u3 ∈ N(M1). By Claim 1, {u2, u3} ∈ F (1). It implies that u2`−2, u2`−1 were matched
together during the second step since, otherwise, this second step could have continued with
x1, u2`−2 ∈M1 exposed and {u2, u3} ∈ F (1). Therefore, the subclaim is proved.
Then, before the second step of the main phase happened, vertex u2`−1 was matched to some
other vertex in NG(M1). However, since u2`−1 ∈ NG(M2) and u2` ∈M2 is exposed the latter
contradicts that F (1) is good, and so, Claim 1.

2. Thus from now on assume u2`−2 /∈M1. By Claim 1 we have that F (3) is good, and so, since
u2`−1 ∈ NG(M2) and u2` ∈ M2 is exposed we have u2`−2 ∈ M2. Furthermore, u2`−3 /∈ M2

since, otherwise, the final step of the main phase (Unbreak) could have continued with
x1 ∈ M1 and u2` ∈ M2 exposed, and {u2`−3, u2`−2} ∈ F2 \ F (3), that is a contradiction.
However, it implies that P ′ = (x1 = u1, u2, u3, . . . , u2`−3, u2`) is a shorter augmenting path
than P , thereby leading to another contradiction.

As a result, u2` /∈M2. �

Overall since u2` ∈M1∪M2 by Claim 2 but u2` /∈M1∪M2 by Claims 3 and 4, the above proves
that x1 cannot be an end in any F (3)-augmenting path.

Finalization phase: breaking some edges in F1. Intuitively, the matching F (3) may not be
maximum because we sometimes need to borrow some edges of F1 in augmenting paths. So, we
complete our procedure by performing the following two operations: Let U1 contain all the exposed
vertices in N(M1). Consider the subgraph G[M1 ∪ U1] = G[M1] ⊕ G[U1]. The set U1 is a module
of this subgraph. We apply Split(U1, F

(3)) in G[M1 ∪ U1]. Doing so, we obtain a larger good
matching F (4). Then, we apply LocalAug, defined next (see also Fig. 5 for an illustration):
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Figure 5: An augmenting path of length 7 with ends x2, c. Matched edges are drawn in bold.

Operation 6 (LocalAug). While there exist x2 ∈ M2 and c ∈ N(M1) exposed, and there also
exist {x1, y1} ∈ F1 ∩ F (4) and {y2, z2} ∈ F2 \ F (4), we do the following:

• we remove {x1, y1} and any edge {a, y2}, {b, z2} from F (4);

• we add {x2, a}, {y2, z2}, {b, x1} and {y1, c} in F (4).
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We will observe below that F (4) is a good matching of G (Fact 2). In particular, the two edges
{y2, a}, {z2, b} ∈ F (4) that are required for the operation LocalAug always exist. Furthermore
doing so, we obtain a larger matching F (5).

Lemma 10. F (5) is a maximum-cardinality matching of G.

Proof. Suppose for the sake of contradiction that there exists an F (5)-augmenting path P =
(u1, u2, . . . , u2`). W.l.o.g., P is of minimum size. We start with two useful facts.

Fact 2. F (4) is a good matching of G.

Fact 3. F (5) is a good matching of G.

Indeed, since we obtain F (4), then F (5), from the good matching F (3) by using augmenting
paths, necessarily V (F2) ⊆ V (F (4)) ⊆ V (F (5)) (first condition of Def. 2). Furthermore, neither the
Split operations between M1 and U1, resp. Operation 6, can create a new matched edge within
NG(M2) × NG(M1); finally, we cannot create a new exposed vertex in M2 (second condition of
Def. 2). Then, we divide the proof into the following claims.

Claim 5. u1, u2` /∈M1

Proof. Suppose for the sake of contradiction u1 ∈M1 (the case u2` ∈M1 is symmetrical to this one).
Since F (3) and F (5)∆P are matchings, the symmetric difference F (3)∆(F (5)∆P ) is a disjoint union
of alternating cycles, alternating paths and isolated vertices. In particular, since F (5)∆P can be
obtained from F (3) by using augmenting paths, the symmetric difference F (3)∆(F (5)∆P ) is exactly
a disjoint union of isolated vertices and of augmenting paths that can be used for obtaining F (5)∆P
from F (3). One of these paths must contain u1. As a result, there is also an F (3)-augmenting path
with an end in M1, thereby contradicting Lemma 9. The latter proves, as claimed, u1, u2` /∈M1. �

Claim 6. There is no exposed vertex in N(M1).

Proof. Suppose for the sake of contradiction N(M1) 6⊆ V (F (5)). In particular N(M1) 6⊆ V (F (4)).
We will prove in this situation there can be only one vertex in N(M1) that is left exposed by F (4).
Then, we will derive a contradiction by proving that we can apply the LocalAug operation.

First, we observe that the main phase of our procedure must terminate after its very first
step Match(M1, F

(0)). Indeed, after this step there can be no more exposed vertex in M1 (i.e.,
because otherwise we could have continued the Match operations using the exposed vertices of
N(M1)). Hence, the other rules of our main step cannot be applied. Then, we apply the operation
Split(U1, F

(3)) in G[M1 ∪ U1] in order to further match some vertices in N(M1) to the vertices in
M1. Doing so, we get the following two important properties for F (4):

1. if a vertex of N(M1) is matched to a vertex of M1, this vertex was left exposed by F ′′;

2. F ′′ ⊆ F (4).

Let Q = (w1, w2, . . . , w2q) be a minimum-length F (4)-augmenting path. Such path exist since F (5),
and so, F (4), is not maximum. Let i0 be the minimum index i such that wi ∈ M1. The latter
is well-defined since otherwise, by the above Property 2 Q would be an F ′′-augmenting path in
G \M1, thereby contradicting the maximality of F ′′. Furthermore, w1, w2q /∈ M1, and so, i0 > 1
(the proof is the same as for Claim 5). More generally, we have that i0 is even since, if it were not
the case, by the above Property 1, we would have that (w1, w2, . . . , wi0−1) is an F ′′-augmenting
path in G \M1, thereby again contradicting the maximality of F ′′. There are two cases:
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1. Case there exists an edge {x1, y1} ∈ F1 ∩ F (4). Then, there is exactly one exposed vertex
c ∈ NG(M1) (otherwise, the step Split(U1, F

(3)) in G[M1 ∪ U1] could have been continued).
W.l.o.g., w1 6= c (otherwise, we start the augmenting path from w2q). Since w1 /∈ M1, it
implies w1 ∈M2. We consider the alternating subpath (w1, w2, w3) in Q. Since w2 ∈ NG(M2),
we get w2 /∈M1. Furthermore, since i0 is even, we have w3 /∈M1 by minimality of i0. Finally,
since we have: w1 ∈ M2 is exposed, w2 ∈ N(M2) is matched to w3 and, by Fact 2, F (4) is
good, we get that w3 /∈ N(M1). Altogether combined, w3 ∈M2. We also have w4 ∈M2 since
otherwise, Q′ = (w1, w4, w5, . . . , w2q) would be a shorter augmenting path than Q, thereby
contradicting the minimality of Q. As a result, {w3, w4} ∈ F2 \ F (4). However, in this case
there is at least one possibility for applying the operation LocalAug, namely: with w1 ∈M2

and c ∈ N(M1) exposed, {x1, y1} ∈ F1 ∩F (4) and {w3, w4} ∈ F2 \F (4). It implies that we do
apply the operation LocalAug at least once, i.e., F (4) 6= F (5). In particular, c is matched
by F (5) (because it is the only exposed vertex of N(M1) that we can use for Operation 6),
that is a contradiction.

2. Case F1 ∩ F (4) = ∅. In particular, wi0+1 /∈ M1. Let j0 be the maximum j ≥ i0 + 1
such that wi0+1, wi0+2, . . . , wj /∈ M1. We have j0 < 2q since otherwise, by the above
Property 1, (wi0+1, . . . , w2q) would be an F ′′-augmenting path in G \M1, thereby contra-
dicting the maximality of F ′′. Thus, wj0+1 ∈ M1. Furthermore, j0 is even since other-
wise, Q′ = (w1, . . . , wi0−1, wj0+1, . . . , w2q) would be a shorter F (4)-augmenting path than
Q, thereby contradicting the minimality of Q. However, then we have by the above Prop-
erty 1, (wi0+1, . . . , wj0) that is an F ′′-augmenting path in G \M1, thereby contradicting the
maximality of F ′′.

Overall, the above proves as claimed that there is no exposed vertex in N(M1). �

It follows from Claims 5 and 6 that u1, u2` ∈ M2. Furthermore we have u1 ∈ M2 is exposed,
{u2, u3} is matched and u2 ∈ NG(M2). Since, by Fact 3, F (5) is good, we have u3 /∈ N(M1).
Equivalently, u3 ∈M1 ∪M2. The following claim will be instrumental in deriving a contradiction.

Claim 7. F2 ⊆ F (5).

Proof. Suppose for the sake of contradiction there exists {x2, y2} ∈ F2 \ F (5). We prove that
F2 \F (5) ⊆ F2 \F ′′. Indeed, after the two first steps of the main phase (i.e., the Match and Split
operations between M1 and N(M1)) we have F2 \ F (2) = F2 \ F ′′. The operation Unbreak adds
edges of F2 into the matching, hence F2 \F (3) ⊆ F2 \F ′′. Then, after the operation Split(U1, F

(3))
in G[M1 ∪ U1] we have F2 \ F (4) = F2 \ F (3) ⊆ F2 \ F ′′. Finally, the operation LocalAug
adds edges of F2 into the matching, hence F2 \ F (5) ⊆ F2 \ F ′′. However, since F (0) is good,
we have V (F2) ⊆ V (F ′′). It implies there exist w,w′ ∈ N(M2) such that {x2, w}, {y2, w′} ∈ F ′′.
In particular we have that (u1, w, x2, y2, w

′, u2`) is an F ′′-augmenting path in G \ M1, thereby
contradicting the maximality of F ′′. �

Now, there are two cases.

• Case u3 ∈ M2. We have u4 /∈ N(M2) since otherwise, P ′ = (u1, u4, u5, . . . , u2`) would be
a shorter augmenting path than P , thereby contradicting the minimality of P . Therefore,
{u3, u4} ∈ F2 \ F (5). The latter contradicts Claim 7.

• Case u3 ∈ M1. By maximality of F ′′, u2 was matched in F ′′ (otherwise, we could have
added {u1, u2} in F ′′). Therefore, the edge {u2, u3} was not matched during the operation
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Match(M1, F
(0)) nor during the operation Split(U1, F

(3)) in G[M1∪U1]. Furthermore, this
edge was not matched during the operation Split(M1, F

(1)) either since otherwise, u2 would
have been matched in F (1) with some other vertex in N(M1); since u1 ∈ M2 is exposed and
u2 ∈ N(M2), the latter would contradict that F (1) is good (Claim 1). As a result, the edge
{u2, u3} was matched during the Unbreak operation or the LocalAug operation. Both
subcases imply the existence of some edge {x2, y2} ∈ F2 \ F ′′. As in the previous case, the
latter contradicts the maximality of F ′′.

4.2.1. Complexity analysis

Each step of our procedure is corresponding to a while loop. We briefly review each step, and
we explain how we can implement them in total O(∆m(G′, G∗)) time.

• Operation 3 (Repair): We scan all the vertices w ∈ NG(M2). By Lemma 3 (or using the
adjacency list of G′ and the canonical orderings), this can be done in O(|NG(M2)|) time. If
w is matched in F ∗, then we access in constant-time to the vertex x2 to which it is paired
(Property 1). Furthermore, if x2 ∈ M2, then we check whether it is matched in F2, and
if it is the case, then we can access in constant-time to the vertex y2 to which it is paired
(Property 2). Note that in order to decide whether x2 ∈ M2, it is sufficient to mark all the
vertices of NG(M2) during a first scan of this neighbour set (we could also use the least-
common ancestor approach of Lemma 2). Finally, if y2 is exposed in F ∗, then we perform a
Repair operation, with x2, y2. Overall, this takes total time O(|NG(M2)|).

• Operation 4 (Attract): Recall that we have access to a canonical ordering for F2. In
particular, we can decide in constant-time whether there exists an exposed vertex x2 ∈ M2

w.r.t. F2, and if so we can output one also in constant time (Property 2). We scan all the
vertices w ∈ NG(M2) (in O(|NG(M2)|) time, using Lemma 3). If w is matched in F ′, then
we access in constant-time to the vertex u to which it is paired (Property 1). Furthermore, if
u /∈M2 (that can be checked by marking all the vertices of NG(M2) during a first scan), then
we want to check whether there exists an exposed vertex of M2, but w.r.t. F ′ (not F2). For
that, we scan the exposed vertices of M2, w.r.t. F2, until there is no more or we found one
which is also exposed in F ′. Note that it can only take O(|NG(M2)|) total time throughout
the whole phase: indeed, if a vertex is exposed in F2, but not in F ′, then it is matched with
a vertex of NG(M2). Overall, this takes total time in O(|NG(M2)|).

• Operations 1 and 2 (Match(M1, F
(0)), Split(M1, F

(1)), Split(U1, F
(3)) in G[M1∪U1]): We

explained in Sec. 4.1 how we can implement them in O(∆m(G′, G∗)) time.

• Operation 5 (Unbreak): We explained before how, in total O(|NG(M2)|) time, we can have
access to an exposed vertex of M2 (if any). We can proceed similarly with M1, i.e., in total
O(|NG(M1)|) time, we can have access to an exposed vertex of M1. Therefore, up to an
O(|NG(M1)|)-time additional processing, the running time of this phase is the one for finding
unmatched edges of F2. As we cannot say much about the size of M2, we need a trickier
method in order to enumerate these edges. Namely, we scan all the vertices w ∈ NG(M2)
(again, this can be done in O(|NG(M2)|) time, using Lemma 3). If w is matched in F ′′, then
we access in constant-time to the vertex x2 to which it is paired (Property 1). Furthermore,

20



if x2 ∈ M2 (checkable in O(1) time if we first mark all the vertices of NG[M1] during a first
scan), then we check whether it is matched in F2, and if it is the case, then we can access in
constant-time to the vertex y2 to which it is paired (Property 2). Finally, if y2 is matched in
F ′′, then we can access in constant time to the vertex u to which it is paired. Overall, this
takes total time O(|NG[M1]|).

• Operation 6 (LocalAug): We can access, at any moment, to an exposed vertex of M2, in
total O(|NG(M2)|) time for the whole phase. In the same way, if we scan NG(M1) once (in
O(|NG(M1)|) time, using Lemma 3), then it becomes possible to have access in constant-time
to an exposed vertex of NG(M1). Now, in order to have access to an edge of F1 ∩ F (4) (if
any), we use the canonical ordering of F1. Note that from this point on in the algorithm,
we cannot add an edge of F1 in the matching if it were not already present. Therefore, it is
sufficient to scan each edge of F1 at most once, and so this takes total O(|M1|) time for the
whole phase. We are left with scanning the unmatched edges of F2, which we explained how
to do in total time O(|NG(M2)|).

Overall, the total running-time of the procedure is in O(|NG[M1]|), that is in O(∆m(G′, G∗)).

4.3. Pendant

Suppose v1 is pendant in G′. W.l.o.g., v2 is the unique vertex that is adjacent to v1 in G′. This
last case is arguably more complex than the others since it requires both a pre-processing and a
post-processing treatment on the matching.

First phase: greedy matching. We apply the “Match and Split” technique to M1. If there
remains an exposed vertex x1 ∈M1, and an edge {x2, y2} ∈ F2, then we also add an edge {x1, x2}
to the current matching (thus, removing {x2, y2} from F2). We call the latter a “replacement
operation”, that is quite similar to Attract in Sec. 4.2. Doing so, we obtain a set F1,2 of matched
edges between M1 and M2. Note that this matching F1,2 results from the ‘Match and Split”
technique applied to M1, to which we possibly added one more edge {x1, x2}.

Our first result in this section is that there always exists an optimal solution that contains F1,2.

Lemma 11. There is a maximum matching of G that contains all edges in F1,2.

Proof. Let M1 = (u1, u2, . . . , un1) and M2 = (w1, w2, . . . , wn2) be canonically ordered w.r.t. F1, F2

(cf. Sec. 2). Furthermore, let u1, u2, . . . , uk be the maximal sequence of exposed vertices in M1

with k ≤ n2. We observe that F1,2 is obtained by greedily matching ui with wi. Then, let F
be any maximum-cardinality matching of G that can be obtained from F1,2 using augmenting
paths. By construction, u1, u2, . . . , uk are matched by F . In particular, since every ui is isolated in
H1 = G[M1], it is matched by F to some vertex in M2. So, let A2 ⊆M2 be the vertices matched by
F with a vertex in V \M2 (possibly, in M1). Since M2 is a module, we can always assume that A2

induces a prefix (w1, w2, . . . , wj) of the canonical ordering (i.e., see [12, Lemma 5.2]). Finally, let
B2 ⊆ V \M2, |B2| = |A2|, be the set of vertices matched by F with a vertex of A2. Note that we
have u1, u2, . . . , uk ∈ B2. Since M2 is a module, there are all possible edges between A2 and B2. As
a result, we can always replace the matched edges between A2, B2 by any perfect matching between
these two sets without changing the cardinality of F . It implies that we can assume w.l.o.g. every
ui is matched to wi.
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By Lemma 11, we can remove V (F1,2), the set of vertices incident to an edge of F1,2, from G. We
stress that during this phase, all the operations except maybe the last one increase the cardinality
of the matching. Furthermore, the only possible operation that does not increase the cardinality
of the matching is the replacement of an edge in F2 by an edge in F1,2. Doing so, there are three
cases. If M2 ⊆ V (F1,2) then M1 \ V (F1,2) is isolated. We apply Reduction rule 1. If M1 ⊆ V (F1,2)
then M1 is already eliminated. We call these two first cases pathological. The interesting case is
when both M1 \ V (F1,2) and M2 \ V (F1,2) are nonempty. In particular, we obtain through the
replacement operation the following stronger property:

Property 3. All vertices in M1 are matched by F1.

We will assume Property 3 to be true after First Phase.

Second phase: virtual split edges. We complete the previous phase by performing a Split
between M2,M1 (Operation 2). That is, while there exist two exposed vertices x2, y2 ∈ M2 and
a matched edge {x1, y1} ∈ F1 we replace {x1, y1} by {x1, x2}, {y1, y2} in the current matching.
However, we encode the Split operation using virtual edges in H2. Formally, we add a virtual edge
{x2, y2} in H2 that is labeled by the corresponding edge {x1, y1} ∈ F1. Let H∗2 and F ∗2 be obtained
from H2 and F2 by adding all the virtual edges. We set G∗ = G′ \ v1, P∗ = {H∗2} ∪ (P \ {H1, H2})
and F∗ = {F ∗2 } ∪ (F \ {F1, F2}).

Intuitively, virtual edges are used in order to shorten the augmenting paths crossing M1.

Third phase: post-processing. Let F ∗ be a maximum-cardinality matching of the substitution
G∗(P∗) (i.e., obtained by applying our reduction rules to the new instance). We construct a
matching F for G as follows. We add in F all the non virtual edges in F ∗. For every virtual
edge {x2, y2}, let {x1, y1} ∈ F1 be its label. If {x2, y2} ∈ F ∗ then we add {x1, y2}, {x2, y1} in F ,
otherwise we add {x1, y1} in F . In the first case, we say that we confirm the Split operation,
whereas in the second case we say that we cancel it. Finally, we complete F with all the edges of
F1 that do not label any virtual edge (i.e., unused during the second phase).

Lemma 12. F is a maximum-cardinality matching of G.

The above result is proved by contrapositive. More precisely, we prove intricate properties on
the intersection of shortest augmenting paths with pendant modules. Using these properties and
the virtual edges, we could transform any shortest F -augmenting path into an F ∗-augmenting path,
that is a contradiction.

Proof. Suppose for the sake of contradiction that F is not maximum. Let P = (u1, u2, . . . , u2`)
be a shortest F -augmenting path. In order to derive a contradiction, we will transform P into an
F ∗-augmenting path in G∗(P∗). For that, we essentially need to avoid passing by M1, using instead
the virtual edges. In the first part of the proof, we show that P intersects M1 in at most one edge
(Claim 11). We need a few preparatory claims in order to prove this result.

First we observe that no end of P can be in M1:

Claim 8. M1 ⊆ V (F ). In particular, u1, u2` /∈M1.

Proof. According to Property 3, all vertices in M1 are matched by F1. Our procedure during the
third phase ensures that V (F1) ⊆ V (F ), and so, M1 ⊆ V (F ). �

Then, we prove that for every {x1, y1} ∈ F1 we have either x1, y1 /∈ V (P ) or {x1, y1} ∈ E(P ).
This result follows from the combination of Claims 9 and 10.
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Claim 9. Let {x1, y1} ∈ F1. Either x1, y1 ∈ V (P ) or x1, y1 /∈ V (P ).

Proof. Suppose for the sake of contradiction x1 ∈ V (P ) but y1 /∈ V (P ). Up to reverting the path
P we have x1 = u2i+1 for some i. Then, since we have y1 /∈ V (P ) and M1 induces a matching,
u2i+2 /∈ M1. It implies u2i+2 ∈ M2. Furthermore, our construction ensures that u2i (the vertex
matched with x1) was left exposed by F2. Indeed, u2i must be an end of a virtual edge (cf. Second
phase). Since E(H2) = F2 it implies u2i−1 /∈ M2. Finally, since u2i−1 ∈ NG(M2) and M2 is
a module, P ′ = (u1, u2, . . . , u2i−1, u2i+2, . . . , u2`) is a shorter augmenting path than P , thereby
contradicting the minimality of P . Therefore, as claimed, either x1, y1 ∈ V (P ) or x1, y1 /∈ V (P ). �

Claim 10. Let ui, uj ∈ V (P ) ∩M1, j > i, such that {ui, uj} ∈ F1. Then, j = i+ 1.

Proof. The result trivially holds if {ui, uj} ∈ F . Thus, we assume from now on {ui, uj} /∈ F . We
need to consider the following cases:

• Case i odd, j even. Since P ′ = (u1, u2, . . . , ui−1, ui, uj , uj+1, . . . , u2`) is also an augmenting
path, we get j = i+ 1 by minimality of P .

• Case i odd, j odd. Note that uj+1 /∈ M1 since we assume {ui, uj} ∈ F1 and M1 in-
duces a matching. Then, since uj+1 ∈ NG(M1) and M1 is a module we have that P ′ =
(u1, u2, . . . , ui−1, ui, uj+1, . . . , u2`) is a shorter augmenting path than P , thereby contradict-
ing the minimality of P .

• Case i even, j even (obtained from the previous case by reversing the augmenting path).
Note that ui−1 /∈M1 since we assume {ui, uj} ∈ F1 and M1 induces a matching. Then, since
ui−1 ∈ NG(M1) and M1 is a module we have that P ′ = (u1, u2, . . . , ui−1, uj , uj+1, . . . , u2`) is
a shorter augmenting path than P , thereby contradicting the minimality of P .

• Case i even, j odd. As before, we have ui−1, uj+1 /∈ M1, that implies ui−1, uj+1 ∈ M2. We
observe that {ui+1, uj−1} is a virtual edge labeled by {ui, uj}. In particular, ui+1, uj−1 are
isolated in M2, and so, ui+2, uj−2 /∈ M2. It implies, since ui+2, uj−2 ∈ NG(M2) and M2 is a
module, P ′ = (u1, u2, . . . , ui−1, ui+2, . . . , uj−2, uj+1, . . . , u2`) is shorter augmenting path than
P , thereby contradicting the minimality of P .

Overall the first case implies, as claimed, j = i+ 1, whereas all other cases lead to a contradiction.
Therefore, j = i+ 1. �

Finally, our last preparatory claim is that P can cross the module M1 in at most one edge.

Claim 11. |E(P ) ∩ F1| ≤ 1.

Proof. Suppose by contradiction there exist {ui, ui+1}, {uj , uj+1} ∈ F1 ∩ E(P ), for some i < j.
Since M1 induces a matching, ui−1, uj−1 /∈M1. There are three cases.

• Case i, j even. Then, P ′ = (u1, . . . , ui−1, uj , uj+1, . . . , u2`) is a shorter augmenting path than
P , thereby contradicting the minimality of P .

• Case i, j odd. Then, P ′ = (u1, . . . , ui, uj−1, uj , . . . , u2`) is a shorter augmenting path than P ,
thereby contradicting the minimality of P .
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• Case i even, j odd (Case i odd, j even is symmetrical to this one). Then,
P ′ = (u1, . . . , ui−1, uj+1, . . . , u2`) is a shorter augmenting path than P , thereby contradicting
the minimality of P .

As a result, |E(P ) ∩ F1| ≤ 1. We note that in order to prove this result, we did not use the fact
that M1 is pendant. �

Let {ui0 , ui0+1} be the unique edge in E(P )∩F1. Such edge must exist since otherwise, P would
also be an F ∗-augmenting path. In order to derive a contradiction, we are left to replace {ui0 , ui0+1}
with a virtual edge. We prove next that it can be easily done if i0 is odd, i.e., {ui0 , ui0+1} /∈ F .
Indeed, in such case we observe that {ui0−1, ui0+2} is the virtual edge that is labeled by {ui0 , ui0+1}.
Furthermore, {ui0−1, ui0+2} ∈ F ∗ since we confirmed the Split. Therefore, we will assume from
now on that i0 is even, i.e., {ui0 , ui0+1} ∈ F .

We will need the following observation:

Claim 12. The vertices ui0−1, ui0+2 are the only vertices in M2 ∩ V (P ).

Proof. Suppose for the sake of contradiction this is not the case. By symmetry, we can assume the
existence of an index j < i0 − 1 such that uj ∈ M2. Furthermore, j is even since otherwise, P ′ =
(u1, . . . , uj , ui0 , ui0+1, . . . , u2`) would be a shorter augmenting path than P , thereby contradicting
the minimality of P . For the same reason as above, we also have uj−1 /∈ M2. However, since
uj−1 ∈ NG(M2) and M2 is a module, it implies that P ′ = (u1, . . . , uj−1, ui0+2, . . . , u2`) would be a
shorter augmenting path than P , thereby contradicting the minimality of P . �

There are three cases.

1. Case ui0−1, ui0+2 /∈ V (F ∗2 ) (left exposed by F ∗2 ). There exists a virtual edge {x2, y2} that is
labeled by {ui0 , ui0+1} (otherwise, the second phase could have continued with ui0−1, ui0+2 and
{ui0 , ui0+1}). The two of x2, y2 cannot be matched together in F ∗ since we have {ui0 , ui0+1} ∈
F . Nevertheless, since x2, y2 are adjacent in the substitution G∗(P∗), at least one of the two
vertices, say x2, is matched by F ∗. There are two subcases.
(a) Subcase y2 is exposed. Let {w, x2} ∈ F ∗. Since w 6= y2 we have w /∈ M2. Then,

P ∗ = (u1, u2, . . . , ui0−1, w, x2, y2) is an F ∗-augmenting path, thereby contradicting the
maximality of F ∗.

(b) Subcase y2 is matched. Let {w, x2}, {w′, y2} ∈ F ∗. As before, w,w′ /∈ M2. Then,
P ∗ = (u1, u2, . . . , ui0−1, w, x2, y2, w

′, ui0+2, . . . , u2`) is an F ∗-augmenting path, thereby
contradicting the maximality of F ∗.

2. Case {ui0−1, ui0+2} ∈ F ∗2 . We have {ui0−1, ui0+2} /∈ F ∗ (otherwise, since ui0−1, ui0+2 are non-
adjacent in P , this edge {ui0−1, ui0+2} should be virtual; but then, its label should also be con-
tained in V (P ) and, since it cannot be ui0 , ui0+1, the latter would contradict Claims 9, 10, 11).
Hence, we have that P ∗ = (u1, u2, . . . , ui0−1, ui0+2, . . . , u2`) is an F ∗-augmenting path, thereby
contradicting the maximality of F ∗.

3. Case {ui0−1, w} ∈ F ∗2 for some w 6= ui0+2 (Case {ui0+2, w} ∈ F ∗2 for some w 6= ui0−1 is
symmetrical to this one). By Claim 12, w /∈ V (P ). There are two subcases.
(a) Subcase w is exposed. Then, P ∗ = (u1, u2, . . . , ui0−1, w) is an F ∗-augmenting path,

thereby contradicting the maximality of F ∗.
(b) Subcase w is matched. Let {w,w′} ∈ F . As before, w′ /∈ M2. Furthermore, w′ /∈ M1

(otherwise, the edge {ui0−1, w} should be virtual; but then, ui0−2 ∈ M1, thus con-
tradicting Claims 9, 10, 11). Then, P ∗ = (u1, u2, . . . , ui0−1, w, w

′, ui0+2, . . . , u2`) is an
F ∗-augmenting path, thereby contradicting the maximality of F ∗.
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Summarizing, by contrapositive we get F ∗ maximum for G∗(P∗) =⇒ F maximum for G.

4.3.1. Complexity analysis

We address the time complexity of our reduction rule phase by phase.

• First Phase. The desired matching F1,2 can be computed in O(|F1,2|) time (and so, in O(n1)
time), using the canonical orderings at M1 and M2. On our way, we can update the canonical
ordering of M1 by choosing as a new head for the list the cell where we stopped after having
computed F1,2 (if we do not fall in a pathological case, then this is the first vertex that is
matched by F1 ). We proceed similarly in order to update the canonical ordering of M2. –
Note that in doing so, we can easily retrieve the original canonical orderings of M1,M2 after
Third phase (post-processing). –

• Second Phase. Recall that we assume that all vertices ofM1 are matched by F1 (Property 3).
Therefore, using the canonical ordering of M1, we can compute in O(1) time an edge {x1, y1}
of F1. In order to create virtual edges, we scan the canonical ordering of M2 until we reach
the last vertex left exposed by F2. It can be done in O(n2) time, and so, in O(∆m(G′, G∗))
time. Let x2, y2 ∈M2 be the two last exposed vertices in this canonical ordering, if any. We
add a virtual edge {x2, y2} simply by modifying the auxiliary integer variables of these two
vertices in our implementation of the canonical ordering (i.e., see Sec. 2.2.1); on our way,
we also modify our internal representation of the matching of G (i.e., as a global linear-size
array) in order to insert in it the virtual edge {x2, y2}. Note that if we know how many
virtual edges there are, then finding their respective labels is easy: indeed, the label of the
last virtual edge – in the canonical ordering of M2 – is the first edge of F1 – in the canonical
ordering of M1 –, and so forth. Therefore, we only need to keep track of the number of virtual
edges, say in an auxiliary integer variable.

• Third phase. Our above construction ensures that the number k′1 of virtual edges is known,
and that the virtual edges are exactly the k′1 first matched edges in the (modified) canonical
ordering of M2. We can output this set of virtual edges by scanning the canonical ordering
of M2, in O(n2) time, and so, in O(∆m(G′, G∗)) time. On our way, we modify the auxiliary
integer variables in our implementation of this canonical ordering (i.e., see Sec. 2.2.1) in
order to remove the virtual edges from the matching F ∗2 . Recall that our construction of
virtual edges also allows us to retrieve their labels, in O(1) time per virtual edge, using the
canonical ordering of M1. Now, we just need to scan these virtual edges and their labels,
using Property 1, in order to either confirm or cancel each split.

Therefore, the total running time is in O(∆m(G′, G∗)).

4.4. Main result

Our framework consists in applying any reduction rule presented in this section until it can no
more be done. Then, we rely on the following result:

Theorem 2 (Theorem 5.7 in [12]). Module Matching can be solved, for any 〈G′,P,F〉 in
O(∆µ · p4)-time.

We are now ready to state our main result in this paper (the proof of which directly follows
from all the previous results in this section).
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Theorem 3. Let G = (V,E) be a graph. Suppose that, for every prime subgraph H ′ in the modular
decomposition of G, its pruned subgraph has order at most k. Then, Maximum Matching can be
solved for G in O(k4 · n+m log n)-time.

Proof. By Lemma 5, it suffices to solve Module Matching for any 〈H ′,P,F〉, with H ′ in the
modular decomposition of G, in time O(p+ ∆m · log p+k4 ·∆µ). For that, we start computing the
pruned subgraph Hpr of H ′, and a corresponding pruning sequence. By Proposition 1, it can be
done in O(p+ ∆m · log p)-time. We assume in what follows that Hpr has at least two vertices (if it
is not the case, then we abort the pruning sequence as soon as there remain exactly two vertices).
This is a technical assumption needed in order to apply some of our intermediate operations on the
modular decomposition tree without having to consider explicitly some degenerate situations (i.e.,
see Sec. 2.1.1). Then, we follow the pruning sequence and at each step, we apply the reduction
rule that corresponds to the current one-vertex extension. Specifically, let (v1, v2, . . . , vq) be the
pruning sequence. Let H0 := H ′.

1. For every 1 ≤ j ≤ q, we transform the instance 〈Hj−1,Pj−1,F j−1〉 that we are currently
considering for a new instance 〈Hj ,Pj ,F j〉, where Hj := Hj−1 \ vj . On our way, we apply
some pre-processing rule, that is specified by the Reduction rule corresponding to vj .

2. We solve Module Matching on the reduced instance 〈Hpr,Ppr,Fpr〉.
3. Finally, for every 1 ≤ j ≤ q, we compute a solution for 〈Hj−1,Pj−1,F j−1〉 from a solution

for 〈Hj ,Pj ,F j〉. For that, we apply a post-processing rule, that is specified by the Reduction
rule corresponding to vj .

In Sec. 3.1, we explained how, after ordering the adjacency list of H ′, we can compute Hj from
Hj−1 and vice versa, for any 1 ≤ j ≤ q. It takes total time in O(∆m). The application of all
our reduction rules (both the pre-processing rules and the post-processing rules) also takes total
O(∆m) time; see Sec. 4.1, 4.2 and 4.3 for a detailed analysis. Finally, we stress that if H ′ is
degenerate (complete or edgeless) then Hpr is trivial, otherwise by the hypothesis Hpr has order
at most k. As a result, by Theorem 2 we can solve Module Matching on the reduced instance
in O(∆µ · k4)-time.

5. Applications

We conclude this paper presenting applications and refinements of our main result to some
graph classes. Recall that cographs are exactly the graphs that are totally decomposable by mod-
ular decomposition [11]. We start showing that several distinct generalizations of cographs in the
literature are totally decomposable by the pruned modular decomposition.

Distance-hereditary graphs. A graph G = (V,E) is distance-hereditary if it can be reduced
to a singleton by pruning sequentially the pendant vertices and twin vertices [2]. Conversely, G
is co-distance hereditary if it is the complement of a distance-hereditary graph, i.e., it can be
reduced to a singleton by pruning sequentially the anti-pendant vertices and twin vertices. In both
cases, the corresponding pruning sequence can be computed in linear-time [17, 20]. Furthermore,
since the algorithm from [17] fails in linear time if the input is not distance-hereditary, we may also
decide in linear time in which case we are (i.e., either distance-hereditary or co-distance hereditary).
Therefore, we can derive the following result from our framework:

Proposition 2. Maximum Matching can be solved in linear-time on graphs that can be modularly
decomposed into distance-hereditary graphs and co-distance hereditary graphs.
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We stress that even for distance-hereditary graphs, we may need to use the reduction rule of
Section 4.3 for pendant modules. Indeed, as we follow the pruning sequence, we may encounter
twin vertices and merge them into a single module. It means that, even in the simpler case of
distance-hereditary graphs, we need to handle with modules instead of just handling with vertices.
In the same way, even for co-distance hereditary graphs, we may need to use the reduction rule of
Section 4.2 for anti-pendant modules.

Trees are a special subclass of distance-hereditary graphs. We say that a graph has modular
treewidth at most k if every prime quotient subgraph in its modular decomposition has treewidth
at most k. In particular, graphs with modular treewidth at most one are exactly the graphs that
can be modularly decomposed into trees5. We stress the following consequence of Proposition 2:

Corollary 2. Maximum Matching can be solved in linear-time on graphs with modular-treewidth
at most one.

The case of graphs with modular treewidth k ≥ 2 is left as an intriguing open question.

Tree-perfect graphs. Two graphs G1, G2 are P4-isomorphic if there exists a bijection from G1 to
G2 such that a 4-tuple induces a P4 in G1 if and only if its image in G2 also induces a P4 [9]. The
notion of P4-isomorphism plays an important role in the study of perfect graphs (e.g., see [9, 46]).
A graph is tree-perfect if it is P4-isomorphic to a tree [6]. We prove the following result:

Proposition 3. Tree-perfect graphs are totally decomposable by the pruned modular decomposition.
In particular, Maximum Matching can be solved in linear-time on tree-perfect graphs.

Our proof is based on a deep structural characterization of tree-perfect graphs [6]. First we need
to introduce a few additional graph classes. Given a vertex-ordering (v1, v2, . . . , vn) let N<i(vi) =

Figure 6: Examples of tree-perfect graphs [6]. The sets Q,R, S represent modules substituting the vertices q, r, vn.

N(vi)∩{v1, v2, . . . , vi−1}. A graph is termed elementary if it admits a vertex-ordering (v1, v2, . . . , vn)
such that, for every i:

N<i(vi) =

{
{v1, v2, . . . , vi−2} if i is odd

{vi−1} otherwise.

5Our definition is more restricted than the one in [43] since they only impose the quotient subgraph G′ to have
bounded treewidth.
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Note that such ordering as above is a pruning sequence by pendant and anti-pendant vertices. Let
us define the classes Cj , j = 1, 2, 3 as all the graphs that can be obtained from an elementary graph,
with ordering (v1, v2, . . . , vn), by adding the three new vertices p, q, r and the following set of edges:

• (for all classes) {p, vi}, {q, vi}, {r, vi} for every i > 1 odd;

• (only for C1) {v1, q}, {p, r} and {v2, p};

• (only for C2) {p, q}, {p, r}, {q, r}, {v1, q} and {v2, r};

• (only for C3) {p, q}, {p, r} and {v1, r}.

The graphs H1, H2 are illustrated in Fig. 6

Tree-perfect graphs are fully characterized in [6], and a linear-time recognition algorithm can be
derived from this characterization. We will only use a weaker form of this result:

Theorem 4 ( [6]). A graph G = (V,E) is a tree-perfect graph only if every nontrivial module
induces a cograph and the quotient graph G′ is in one of the following classes or their complements:
trees; elementary graphs; C1 ∪ C2 ∪ C3; H1 or H2.

Proof of Proposition 3. Let G = (V,E) be a tree-perfect graph. By Theorem 4 every nontrivial
module induces a cograph. It implies that all the subgraphs in the modular decomposition of G,
except maybe its quotient graph G′, are cographs, and so, totally decomposable by the modular
decomposition. We are left with proving that G′ is totally decomposable by the pruned modular
decomposition. The latter is immediate whenever G is a tree, H1, H2 or a complement of one
of these graphs. Furthermore, we already observed that elementary graphs can be reduced to a
singleton by pruning pendant and anti-pendant vertices sequentially. Therefore elementary graphs
and their complements are also totally decomposable by the pruned modular decomposition.

C

C

C1 2

3

pq rv v1 2

v v1 2

q r

p

v2 v1 r p q

Figure 7: Small tree-perfect graphs with 5 vertices.

Finally, we prove that graphs in C1 ∪ C2 ∪ C3 are totally decomposable (this will prove the same
for their complements). Recall that every graph G′ ∈ Cj , j = 1, 2, 3 can be obtained from an
elementary graph H with ordering (v1, v2, . . . , vn) by adding three new vertices p, q, r and a set of
specified edges. Furthermore, for every odd i, resp. for every even i, we have that vi is anti-pendant,
resp. pendant, in H \ {vi+1, . . . , vn}. Since p, q, r are made adjacent to every vi for i > 1 odd,
and nonadjacent to every vi for i > 2 even, this above property stays true in G′ \ {vi+1, . . . , vn}.
As a result, we can remove the vertices vn, vn−1, . . . , v3 sequentially. We are left with studying the
subgraph induced by p, q, r, v1, v2. The latter subgraph is a path if G′ ∈ C1 ∪ C3, otherwise it is a
house (cf. Fig. 7). In both cases, such subgraph can be totally decomposed by pruning pendant
and anti-pendant vertices sequentially.

The case of unicycles. We end up this section with a refinement of our framework for the special
case of unicyclic quotient graphs (a.k.a., graphs with exactly one cycle). We stress that unicycles
are a special case of graphs of treewidth two.
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Proposition 4. Maximum Matching can be solved in linear-time on the graphs that can be
modularly decomposed into unicycles.

For that, we reduce the case of unicycles to the case of cycles (iteratively removing pendant
modules). Then, we test for all possible numbers of matched edges between two adjacent modules.
Doing so, we reduce the case of cycles to the case of paths.

Proof. By Lemma 5, it suffices to show that on every instance 〈G′,P,F〉 such that G′ is a unicycle,
we can solve Module Matching in O(∆m)-time. Recall that G′ is a unicycle if it can be reduced
to a cycle by pruning the pendant vertices sequentially. Therefore, in order to prove the result, we
only need to prove it when G′ is a cycle.
Given an edge e = {vi, vj} ∈ E(G′), our strategy consists in fixing the number µi,j of matched edges
with one end in Mi and the other end in Mj . By [12, Lemma 5.2], we can always assume that the
ends of these µi,j edges are the µi,j first vertices in a canonical ordering of Mi (w.r.t. Fi), and in
the same way, the µi,j first vertices in a canonical ordering of Mj (w.r.t. Fj). We can remove these
above vertices from Mi,Mj and update the matchings Fi, Fj accordingly. Doing so, we can remove
the edge {vi, vj} from G′. Then, since G′ \ e is a path, we can systematically apply the reduction
rule for pendant modules (Section 4.3). Overall, we test for all possible number of matched edges
between Mi and Mj and we keep any one possibility that gives the largest matching.
In order to apply our strategy, we choose any edge e such that |Mi| is minimized. Doing so, there
can only be at most O(ni) = O(∆m/p) possibilities for µi,j , where p = |V (G′)|. However, we are
not done yet as we now need to test for every possibility in O(p)-time. A naive implementation of
this test, using the reduction rule of Section 4.3, would run in O(∆m)-time. We propose a faster
implementation that only computes the cardinality of the solution (i.e., not the matching itself).
The latter is enough in order to compute the optimum value for µi,j . Then, once this value is fixed,
we can run the naive implementation in order to compute a maximum-cardinality matching.

W.l.o.g., a smallest-cardinality module is M1, i.e., we have i = 1, j = p and e = {v1, vp}. For every
t let nt = |Mt|. Furthermore, let µt = |Ft|. Note that there are exactly nt− 2µt vertices in Mt that
are left exposed by Ft. We also maintain a counter µ representing the cardinality of the current
matching. Initially µ = µ1,p. Then, we proceed as follows:

• We decrease n1 by µ1,p. If µ1,p > n1−2µ1, then we also decrease µ1 by d(µ1,p − n1 + 2µ1) /2e.
We proceed similarly for Mp. After that, we can remove e from G′. We have that G′ \ e is
isomorphic to the path (v1, v2, . . . , vp). This first step takes constant-time.

Note that we decrease n1 by µ1,p in order to simulate the removal of the µ1,p first vertices
in a canonical ordering of M1 w.r.t. F1. If µ1,p ≤ n1 − 2µ1 then we only removed exposed
vertices and there is nothing else to change. Otherwise, we also need to update µ1.

• Then, for every 1 ≤ t < p, we simulate the reduction rule of Section 4.3 sequentially. More
precisely:

1. Let kt = min{nt − 2µt, nt+1}. We decrease nt, nt+1 by kt, while we increase µ by kt.
Furthermore, if kt > nt+1 − 2µt+1, then we decrease µt+1 by d(kt − nt+1 + 2µt+1) /2e.
Three cases might occur:

– If kt = nt, then we continue directly to the next vertex vt+1.

– If kt = nt+1, then we increase µ by µt. We continue directly to the next vertex vt+1.

– Otherwise, we go to Step 2.

29



Let us justify a posteriori these above operations that we perform on integer variables
(in total O(1) time). For that, we observe that kt is the maximum number of exposed
vertices in Mt that can be matched with a vertex of Mt+1 in the first phase of the
reduction rule, i.e., the cardinality of the matching Ft,t+1. Since during this phase,
we remove V (Ft,t+1) from Mt ∪Mt+1, we need to update nt, nt+1 accordingly. In the
same way, since we proved that there always exists a maximum matching containing
Ft,t+1 (Lemma 11), we also need to update the size µ of the current matching. Then,
as before, if kt ≤ nt+1 − 2µt+1 then we only remove exposed vertices from Mt+1 and
so, there is nothing else to be done. Otherwise, we also need to update µt+1. We fall
in a degenerate case if kt = nt or kt = nt+1. In the former case, we do not modify the
value of µ, however in the latter case (Mt is now an isolated module) we can increase
this value by µt. For both degenerate cases, we ignore the second and third phases of
the rule, hence we continue directly to the next vertex vt+1.

2. Let k′t = min{b(nt+1 − 2µt+1)/2c , µt}. We increase µt+1 by exactly k′t.
Indeed, k′t is the number of virtual edges that we create during the second phase.

3. Finally, in order to simulate the third phase, we claim that we only need to increase µ
by exactly µt.
Indeed, after a solution F ∗t was obtained for (vt+1, . . . , vp) the reduction rule proceeds
as follows. Either we confirm a Split operation, i.e., we replace a virtual matched edge
in F ∗t by two edges between Mt,Mt+1; or we cancel the Split operation, i.e., we add
an edge of Ft in the current matching. In both cases, the cardinality of the solution
increases by one. Then, all the edges of Ft that were not used during the second phase
are added to the current matching. Overall, we have as claimed that the cardinality of
the solution increases by exactly µt.

The procedure ends for t = p. In this situation, the quotient subgraph is reduced to a single node,
and so, we only need to increase the current size µ of the matching by µp. Summarizing, since all
the steps of this procedure take constant-time, the total running-time is in O(p).

6. Open problems

The pruned modular decomposition happens to be an interesting add up in the study of Max-
imum Matching algorithms. An exhaustive study of its other algorithmic applications remains
to be done. Moreover, another interesting question is to characterize the graphs that are totally
decomposable by this new decomposition. We note that our pruning process can be seen as a
repeated update of the modular decomposition of a graph after some specified modules (pendant,
anti-pendant) are removed. However, we can only detect a restricted family of these new modules
(i.e., universal, isolated, twins). A fully dynamic modular decomposition algorithm could be helpful
in order to further refine our framework.
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