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PARAMETRIC INFERENCE FOR SMALL VARIANCE AND LONG TIME
HORIZON MCKEAN-VLASOV DIFFUSION MODELS.

V. GENON-CATALOT(1), C. LARÉDO(2)

Abstract. Let (Xt) be solution of a one-dimensional McKean-Vlasov stochastic differential
equation with classical drift term V (α, x), self-stabilizing term Φ(β, x) and small noise amplitude
ε. Our aim is to study the estimation of the unknown parameters α, β from a continuous
observation of (Xt, t ∈ [0, T ]) under the double asymptotic framework ε tends to 0 and T tends
to infinity. After centering and normalization of the process, uniform bounds for moments with
respect to t ≥ 0 and ε are derived. We then build an explicit approximate log-likelihood leading
to consistent and asymptotically Gaussian estimators with original rates of convergence: the
rate for the estimation of α is either ε−1 or

√
Tε−1, the rate for the estimation of β is

√
T .
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1. Introduction

We develop an approximate likelihood approach for estimating the unknown parameters of a
dynamical model subject to three sources of forcing: the geometry of the state space is described
by a potential term V (α, x), a Brownian motion with small noise allows to include small random
pertubations and a self-stabilization term Φ(β, x). Such processes appear when describing the
limit behaviour of a large population of interacting particles with an interaction function between
the dynamical systems. More precisely, we study the inference for the one-dimensional process

(1) dXt = V (α,Xt)dt− b(θ, t, ε,Xt)dt+ εdWt, X0 = x0,

where (Wt) is a Wiener process, x0 is deterministic known,

(2) b(θ, t, ε, x) =

∫
R

Φ(β, x− y)uθ,εt (dy),

uθ,εt (dy) := uθ,ε,x0
t (dy) is the distribution of Xt := Xθ,ε,x0

t , V : R × R → R , Φ : R× R → R are
deterministic Borel functions and θ = (α, β) ∈ Θ = Θα × Θβ ⊂ R2 is an unknown parameter.
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email:catherine.laredo@inrae.fr
.

1



2 V. GENON-CATALOT, C. LARÉDO

A solution of (1) is the couple (Xt, u
θ,ε
t (dy))t≥0 composed of the stochastic process (Xt) and the

family of distributions (uθ,εt ). The function x→ b(θ, t, ε, x) depends on θ, t, ε, the starting point
x0 and uθ,εt . When defined, the process (1) is a time-inhomogeneous Markov process known as
self-stabilizing diffusion, nonlinear stochastic differential equation, or McKean-Vlasov stochastic
differential equation.

These models were first described by McKean (1966) and arised in Statistical Physics for the
modeling of granular media by interacting particle systems (see e.g. Benedetto et al, 1997). Due
to their growing importance, many fundamental probabilistic tools for their study were developed
later (see e.g. Gärtner (1988), Sznitman (1991) for a survey, Méléard, (1996), Benachour et al.
(1998a, 1998b), Malrieu (2003) and many others). Herrmann et al. (2008) were concerned with
small noise properties and large deviations results for these processes.

However, except Kasonga (1990), the statistical inference for such models remained unstudied
for many years. Since 2010, the fields of application of self-stabilizing non linear differential equa-
tions progressively encompassed Statistical Physics and these equations were shown to describe
collective and observable dynamics in other application fields such as Mathematical Biology (see
e.g. Baladron et al. (2012)), Mogilner and Edelstein-Keshet (1999)), Epidemics Dynamics with
two levels of mixing (see Ball and Sirl (2020), Forien and Pardoux (2020)), Finance (see refer-
ences in Giesecke et al. (2020)). Several authors were concerned by statistical studies. Kasonga
(1990), Gesiecke et al. (2020), Della Maestria and Hoffmann (2020) are interested in inference
based on the direct observation of large interacting particle sytems.

Inference for stochastic differential equations (SDEs) (Φ(β, x) ≡ 0) based on the observation
of sample paths on a time interval [0, T ] has been widely investigated. Authors consider contin-
uous or discrete observations, parametric or nonparametric inference under various asymptotic
frameworks: small diffusion asymptotics on a fixed time interval; long time interval, especially
for ergodic models; observation of n i.i.d. paths with large n. Among many studies, we refer
first to several textbooks: Kutoyants (1984, 2004), Iacus (2010), Kessler et al. (2012), Höpfner
(2014). Second, among the many papers on the topic, we can quote: Genon-Catalot (1990),
Larédo (1990), Yoshida (1992a-b), Hoffmann (1999), Sørensen and Uchida (2003), Gobet et al.
(2004), Dalalyan (2005), Dalalyan and Reiss (2007), Comte et al. (2007), Gloter and Sørensen
(2009), Genon-Catalot and Larédo (2014), Guy et al. (2014), Comte and Genon-Catalot (2020).
Moreover, these works have opened the field of inference for more complex stochastic differen-
tial equations: diffusions with jumps (see e.g. Masuda (2007), Schmisser (2019), Amorino and
Gloter (2020)), SDEs driven by Lévy processes (see e.g. Masuda (2019)), diffusions with mixed
effects (see e.g. Piccini et al. (2010), Delattre et al. (2013, 2018)), stochastic partial differential
equations (see e.g. Cialenco (2017), Altmeyer and Reiss (2020)).

Now, the convergence as N tends to infinity of systems of N interacting particules has been
investigated. One of the most important limiting processes is the class of Mc-Kean Vlasov dif-
fusion processes (see it e.g. Sznitman (1991), Méléard (1996)). Therefore, it is a worthwhile
stochastic model to study from the statistical point of view.
In Genon-Catalot and Larédo (2020), the statistical inference based on the continuous observa-
tion on a fixed time interval [0, T ] of (1) is investigated. Estimation of (α, β) is studied as ε→ 0.
It appears that only α can be consistently estimated in this framework but not β. Assuming
that n i.i.d. sample paths are observed on the fixed interval [0, T ], that ε → 0 and n tends to
infinity, both parameters are estimated but they have different rates,

√
nε−1 for α,

√
n for β.
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In the present paper, we study the parametric inference of (α, β) for the Mc-Kean Vlasov
model (1) assuming that (Xt) is continuously observed on [0,T] in the new double asymptotic
framework ε → 0, T → ∞. Up to our knowledge, this framework has not been studied before.
As a side result, the inference for classical SDEs in this asymptotic framework is obtained.

In Section 2, we study probabilistic properties of the process (Xt). We prove that all the
moments of ε−1(Xt−xt(α)) are uniformly bounded in t ≥ 0, ε ≤ 1 (Theorem 2), that the Gaussian
approximating process of (Xt) as ε→ 0 obtained in Genon-Catalot and Larédo (2020) holds on
R+ and that the remainder terms of this approximation have moments uniformly bounded in
t ≥ 0, ε ≤ 1 (Theorem 3). This requires some additional assumptions: we assume that there
is a unique x∗(α) such that V (α, x∗(α)) = 0 and that this value is an attractive point for the
ordinary differential equation xt(α) = x0 +

∫ t
0 V (α, xs(α))ds.

In Section 3, we define an approximate log-likelihood and study its properties together with the
associated estimators as ε→ 0 and T → +∞ in such a way that ε

√
T → 0. Two cases have to be

distinguished. Either, Case (1), dx
∗

dα (α) 6≡ 0 or Case (2), dx
∗

dα (α) ≡ 0. In the two cases, we obtain
that the estimators of (α, β) are consistent. In Case (1), the estimator of α is asymptotically
Gaussian with the fast rate

√
Tε−1 while in Case (2), its rate is ε−1. In both cases, the parameter

β is estimated at rate
√
T . (Theorems 4-5-6). Section 4 gives some concluding remarks. Proofs

are gathered in Section 5. Throughout the paper, we assume that ε ≤ 1.

2. Probabilistic properties

2.1. Assumptions and recap of previous results. We consider the following assumptions:
• [H0] For all α, β, the functions x→ V (α, x) and x→ Φ(β, x) are locally Lipschitz.
• [H1] Either, Φ(β, .) ≡ 0 for all β, or for all β the function x→ Φ(β, x) is odd, increasing
and grows at most polynomially: there exist K(β) > 0 and r(β) ∈ N such that
|Φ(β, x)− Φ(β, y)| ≤ |x− y|(K(β) + |x|r(β) + |y|r(β)), x, y ∈ R.
• [H2-k] The functions x → V (α, x) and x → Φ(β, x) have continuous partial derivatives
up to order k and these derivatives have polynomial growth: for all α, β, and all i, i ≤ k,
there exist constants k(α) > 0, k(β) > 0 and integers γ(α) ≥ 0, γ(β) ≥ 0, such that

∀x ∈ R, |∂
iV

∂xi
(α, x)| ≤ k(α)(1 + |x|γ(α)), |∂

iΦ

∂xi
(β, x)| ≤ k(β)(1 + |x|γ(β)).

• [H3] For all α, the function x→ V (α, x) is continuously differentiable and

there exists KV (α) > 0 such that ∀x ∈ R,
∂V

∂x
(α, x) ≤ −KV (α).

• [H4] There exists x∗(α) such that V (α, x∗(α)) = 0.
Note that the case Φ(β, x) ≡ 0 corresponds to a classical stochastic differential equation which
under [H3]-[H4] admits a unique invariant distribution.

Let us recall some results of Herrmann et al. (2008) where Equation (1) is studied in the more
general case of X0 a random variable, independent of (Wt) with distribution µ. Under [H0]-[H1]
and [H3], if EX8q2

0 < +∞ where q = [(r(β)/2) + 1], then, for all θ, there exists a drift term
b(θ, t, ε, x) = bµ(θ, t, ε, x) such that (1) admits a unique strong solution (Xt = Xθ,ε,µ

t ) satisfying
b(θ, t, ε, x) =

∫
R Φ(β, x − y)uθ,ε,µt (dy) and X is the unique strong solution of (1). Moreover, for

all n ∈ {1, . . . , 4q2}, whenever EX2n
0 < +∞, supt≥0 EX2n

t < +∞. Since we assume here that
X0 = x0 is deterministic, this yields that, for all n ∈ N, supt≥0 EX2n

t < +∞. Under [H3], x∗(α)
in [H4] is the unique value such that V (α, x∗(α)) = 0.
Under [H0]-[H1] and [H3], the process (Xt) admits a unique invariant distribution for all fixed
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ε > 0 (see e.g. Cattiaux et al. (2008)).

In a previous paper, we have studied the process (Xt) on a fixed time interval [0, T ]. Let us
recall the results that we need in the sequel. First, properties of continuity and differentiability of
b(θ, t, ε, x) defined in (2) with respect to ε and x at (θ, t, 0, x) can be derived from the assumptions.

Lemma 1. (Genon-Catalot and Larédo (2020)) Assume [H0]-[H1], [H2-2], [H3] and that X0 =
x0 is deterministic.Then
(i) For all θ, t ≥ 0, (ε, x)→ b(θ, t, ε, x) is continuously differentiable on [0,+∞)× R.
(ii) limε→0 b(θ, t, ε, x) = Φ(β, x− xt(α)).
(iii) At ε = 0, ∂b

∂ε(θ, t, 0, x) = 0 and ∂b
∂x(θ, t, 0, x) = ∂φ

∂x (β, x− xt(α)).

Property (ii) is also proved in Hermann et al. (2008).
Next, the asymptotic properties of (Xt) on a fixed time interval [0, T ] as ε→ 0 have been studied.
Consider the ordinary differential equation associated to ε = 0.

(3) dxt(α) = V (α, xt(α))dt, x0(α) = x0.

As ε tends to 0, (Xt) converges uniformly in probability on [0, T ] to xt(α). Moreover, setting

(4) a(θ, t) =
∂V

∂x
(α, xt(α))− ∂Φ

∂x
(β, 0),

define (gt(θ)) the Ornstein-Uhlenbeck process

(5) dgt(θ) = a(θ, t)gt(θ)dt+ dWt, g0(θ) = 0.

Note that ∂Φ
∂x (β, 0) ≥ 0 so that, under [H3], a(θ, t) ≤ −(KV (α) + ∂Φ

∂x (β, 0)) < 0. Then, the
following expansion of (Xt) with respect to ε holds.

Theorem 1. (Genon-Catalot and Larédo (2020)) Assume [H0], [H1] and [H2-3], then

(6) Xt = xt(α) + εgt(θ) + ε2Rεt (θ),

where the remainder term Rεt (θ) has moments uniformly bounded on [0, T ].

Equation (5) can be solved

(7) gt(θ) =

∫ t

0
exp (

∫ t

s
a(θ, u)du)dWs =

∫ t

0
eA(θ,t)−A(θ,s)dWs, where

(8) A(θ, t) =

∫ t

0
a(θ, u)du.

In order to illustrate the results, we considered the following explicit example.

Example 1. Consider the model where V (α, x) = −αx,Φ(β, x) = β x with α > 0, β ≥ 0. We
have b(θ, t, ε, x) = β(x− Eθ(Xt)), and equation (1) writes:

dXt = −αXtdt− β(Xt − Eθ(Xt))dt+ εdWt, X0 = x0.

We easily check that Eθ(Xt) = x0e
−αt and (1) can be solved explicitely:

(9) Xt = x0e
−αt + εe−(α+β)t

∫ t

0
e(α+β)s)dWs.

The remainder term Rεt (θ) is here equal to 0.
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2.2. Statement of probabilistic results. Under the assumptions of Section 2.1, we can extend
the previous results and prove uniform bounds on R+.

Theorem 2. Let (Xt) denote the solution of (1) and xt(α) the solution of (3).
(i) Assume [H0]-[H1], [H3]. Then, for all n ≥ 1, there exists a constant δ(α, n) such that

∀ε ∈ (0, 1], ∀t ≥ 0, Eθ
(
Xt − xt(α)

ε

)2n

≤ δ(α, n).

(ii) If moreover [H2-2] and [H4] hold, there exists a constant δ(α) > 0 such that,

∀ε ∈ (0, 1] ∀t ≥ 0, ε−2|Eθ(Xt − xt(α))| ≤ δ(α).

In the special case where V (α, x) = −αx, Eθ(Xt) = xt(α).

Remark 1. We can easily check that, under [H0], [H3]-[H4],

(10) (xt(α)− x∗(α))2 ≤ (x0 − x∗(α))2 exp (−2KV (α)t).

Therefore xt(α) converges as t→ +∞ to x∗(α) with exponential rate.

Remark 2. It follows immediately from Theorem 2 and Remark 1 that, under [H0]-[H1], [H3]-
[H4], Xt → x∗(α) in probability as t → +∞ and ε → 0. Therefore the Dirac measure δx∗(α)

appears as the limit of the distribution of (Xt) as t→ +∞.

Remark 3. The bounds δ(α, n) and δ(α) depend on θ only through α. From the proofs, we
have that δ(α, n) = (nK−1

V (α))n and that δ(α) is a function of B(α), k(α), γ(α),K−1
V (α), where

B(α) = supt≥0 |xt(α)| < +∞. These bounds increase in each of its variables (see (33) and (36)).
Thus, if these quantities are upper bounded by constants independent of α, the bounds of Theorem
2 are uniform in α.

We also have that the remainder term Rεt (θ) defined in (6) has moments uniformly bounded on
R+.

Theorem 3. Under [H0]-[H1], [H2-3], [H3]-[H4], the expansion Xt = xt(α) + εgt(θ) + ε2Rεt (θ)
holds on R+ and Rεt (θ) satisfies

sup
t≥0,ε∈(0,1]

Eθ|Rεt (θ)| = O(1) and for all p ≥ 1, sup
t≥0,ε∈(0,1]

Eθ(Rεt (θ)− EθRεt (θ))2p = O(1).

Remark 4. Note that Eθg2
t (θ) is uniformly bounded on R+. Indeed, using the explicit expression

of gt(θ) given in (7) and the property that, under [H3], for s ≤ t, A(θ, t)−A(θ, s) ≤ −KV (α)(t−
s), we get Eθg2

t (θ) =
∫ t

0 exp [2(A(θ, t)−A(θ, s))]ds ≤ (2KV (α))−1.

Define

(11) D(θ, t, ε, x) = b(θ, t, ε, x)− Φ(β, x− xt(α)).

The following corollary dealing with D(θ, t, ε,Xt) is a crucial tool for the statistical study. As
for Rεt (θ), uniform bounds hold for D(θ, t, ε,Xt).

Corollary 1. Assume [H0]-[H1], [H2-3], [H3]-[H4]. Then D(θ, t, ε,Xt) defined in (11) satisfies,

(12) sup
t∈R+, ε∈(0,1]

ε−2 |EθD(θ, t, ε,Xt)| = O(1),

(13) ∀p ≥ 1, sup
t∈R+, ε∈(0,1]

ε−6pEθ(D(θ, t, ε,Xt)− EθD(θ, t, ε,Xt))
2p = O(1).

Remark 5. The constants O(1) in Theorem 3 and Corollary 1 are independent of θ if the
constants k(α), k(β), γ(α), γ(β),K−1

V (α), B(α) are upper bounded independently of θ (see Remark
3).
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3. Estimation when both ε tends to 0 and T tends to infinity

As it is usual in statistics, we consider the canonical space associated with the observation
of (Xt)t∈[0,T ], (Ω,F , (Ft, t ∈ [0, T ]),Pθ), where Ω = C([0, T ]) is the space of continuous real-
valued functions defined on [0, T ] endowed with the Borel σ-field associated with the uniform
convergence on [0, T ], (Xt, t ∈ [0, T ]) is the canonical process (Xt(ω) = ω(t)), (Ft, t ∈ [0, T ]) is
the canonical filtration and Pθ is the distribution of (1) on C([0, T ]).
In this section, we study the estimation of (α, β) from a continuous observation (Xt, t ∈ [0, T ])
and, in addition to [H0]-[H1], [H3]-[H4], we assume

• [S0] The parameter set is Θ = Θα×Θβ where Θα,Θβ are bounded closed intervals. The
true value of the parameter is θ0 = (α0, β0) and belongs to Θ̊.
• [S1] The function (α, x)→ V (α, x) (resp. (β, x)→ Φ(β, x)) is defined and continuous on

Uα×R (resp. Uβ×R), and all the derivatives (α, x)→ ∂i+jV

∂xi∂αj
(α, x), (β, x)→ ∂i+jΦ

∂xi∂βj
(β, x)

exist, are continuous on Uα × R (resp. Uβ × R), where Uα, Uβ are open intervals con-
taining respectively Θα,Θβ , and have polynomial growth with respect to x: there exist
a constant K > 0 and a nonnegative integer k such that

∀(α, β) ∈ Θ,∀x ∈ R,∀i, j ≥ 0, | ∂
i+jV

∂xi∂αj
(α, x)|+ | ∂

i+jΦ

∂xi∂βj
(β, x)| ≤ K(1 + |x|k).

• [S2] There exists KV > 0 such that : ∀α ∈ Θα,KV (α) ≥ KV > 0. (see [H3])
Assumption [S0] is standard in parametric inference and used only for consistency. Assuming
the existence of derivatives of any order is not necessary but it simplifies the exposure.
The uniformity of the constants K, k,KV in [S1]-[S2] is only required for the consistency part.
As Θα,Θβ are supposed to be compact, this is not a strong assumption.

By the relation V (α, x∗(α)) = 0, the function α → x∗(α) is continuous so, as Θα is compact,
supα∈Θα |x

∗(α) = A < +∞. Therefore, under [S2], supα∈Θα supt≥0 |xt(α)| = B < +∞. In view
of Remarks 3 and 5, under [S1]-[S2], all the bounds of Theorems 2, 3 and Corollary 1 are not
only uniform in t, ε but also in θ.

3.1. Approximate likelihood. The Girsanov formula holds for nonlinear self-stabilizing diffu-
sions and the log-likelihood associated with the observation of (Xt, t ∈ [0, T ]) is

`ε,T (θ) =
1

ε2

∫ T

0
(V (α,Xs)− b(θ, s, ε,Xs)) dXs −

1

2ε2

∫ T

0
(V (α,Xs)− b(θ, s, ε,Xs))

2 ds.

It contains the term b(θ, s, ε,Xs) which is involved for the estimation of θ. However, for small ε,
b(θ, t, ε,Xt) =

∫
Φ(β, x− y)uθ,εt (dy) is close to Φ(β, x− xt(α)) (see Lemma 1). Therefore, as in

Genon-Catalot and Larédo (2020), we consider an approximate log-likelihood where we replace
b(θ, s, ε, x) by Φ(β, x− xt(α)) and set

(14) Λε,T (θ) =
1

ε2

∫ T

0
H(θ, s,Xs)dXs −

1

2ε2

∫ T

0
H2(θ, s,Xs)ds, with

(15) H(θ, s, x) = V (α, x)− Φ(β, x− xs(α)).

This approximate log-likelihood is easier to study. We have previously obtained that asymptotic
efficiency is kept for α with this approximate log-likelihood and that β cannot be estimated
on a fixed time interval [0, T ] (see Genon-Catalot and Larédo (2020)). Therefore, to estimate
both parameters, we have to combine two asymptotic frameworks. In Genon-Catalot and Larédo
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(2020), we considered n i.i.d. paths of process (1) with ε→ 0 and n→ +∞. Here, we investigate,
for the observation of one path, the combination of ε→ 0 and T → +∞.

3.2. Preliminary results. Let us set

(16) `(α) = −∂V
∂x

(α, x∗(α)) ≥ KV (α) ≥ KV > 0, `(α, β) = `(α) +
∂Φ

∂x
(β, 0) ≥ `(α).

Proposition 1. Assume [H0], [H3],[H4]. The triplet (xt(α), ∂xt∂α (α, t), ∂
2xt
∂α2 (α, t)) converges to

(x∗(α), dx
∗

dα (α), d
2x∗

dα2 (α)) exponentially fast with rate exp (−`(α)t) as t tends to infinity.

We also need to specify the asymptotic behaviour of functionals of the time inhomogeneous
process (gt(θ)) defined by( 5) in Theorem 1 or by (7).

Proposition 2. Assume [H0]-[H1], [H3]-[H4]. Then, (gt(θ)) satisfies as T →∞,
(i) 1

T

∫ T
0 [gt(θ)]

2dt→L2(Pθ) [2`(α, β)]−1,

(ii) 1
T

∫ T
0 gt(θ)dt→Pθ 0,

(iii) If the function h : R+ → R+ satisfies limt→+∞ h(t) = 0, then 1√
T

∫ T
0 gt(θ)h(t)dt→Pθ 0.

3.3. Rates of convergence. We may now study the joint estimation of (α, β).
The asymptotic distribution of (Xt) as t→∞ and ε→ 0 is the Dirac measure δx∗(α) (see Remark
2). As detailed below, the estimation of α varies according to the property that x∗(α) depends
on α or not. Indeed, for all α, V (α, x∗(α)) ≡ 0, thus

(17)
d

dα
(V (α, x∗(α)) =

∂V

∂α
(α, x∗(α)) +

∂V

∂x
(α, x∗(α))

dx∗

dα
(α) ≡ 0.

Now, by [H3], ∂V∂x (α, x∗(α)) = −`(α) 6≡ 0. Therefore two cases are to be distinguished:
(1) dx∗

dα (α) 6≡ 0 ⇔ ∂V
∂α (α, x∗(α)) 6≡ 0.

(2) dx∗

dα (α) ≡ 0 ⇔ ∂V
∂α (α, x∗(α)) ≡ 0: x∗(α) = x∗ does not depend on α.

Let us remark that Example 1 presented in Section 2.1 belongs to Case (2).

According to these two cases, we set

(18) D
(1)
ε,T =

(
ε√
T

0

0 1√
T

)
, D

(2)
ε,T =

(
ε 0
0 1√

T

)
, Jε,T (θ) = −

(
∂2Λε,T
∂α2 (θ)

∂2Λε,T
∂β∂α (θ)

∂2Λε,T
∂β∂α (θ)

∂2Λε,T
∂β2 (θ)

)
.

Theorem 4. Case (1) (dx
∗

dα (α) 6≡ 0). Assume [H0]-[H1], [H3]-[H4], [S1] and ∂2Φ
∂β∂x(β, 0) 6= 0.

Then, if ε→ 0, T → +∞ in such a way that ε
√
T → 0, the following holds: under Pθ,

(19) D
(1)
ε,T


∂Λε,T
∂α (θ)

∂Λε,T
∂β (θ)

 =


ε√
T

∂Λε,T
∂α (θ)

1√
T

∂Λε,T
∂β (θ)

→L N2(0,J (1)(θ)),

where

(20) J (1)(θ) =

`2(α, β)

(
∂V
∂α

(α,x∗(α))

`(α)

)2

0

0

(
∂2Φ
∂β∂x

(β,0)
)2

2`(α,β)


and `(α), `(α, β) are defined in (16). Moreover, the matrix −D(1)

ε,TJε,T (θ)D
(1)
ε,T = J (1)(θ)+oP (1).
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Theorem 5. Case (2) (∀α, x∗(α) = x∗). Assume [H0]-[H1], [H3]-[H4], [S1], ∂2Φ
∂β∂x(β, 0) 6= 0

and x0 6= x∗. If ε→ 0, T → +∞ in such a way that ε
√
T → 0, then under Pθ,

(21) D
(2)
ε,T


∂Λε,T
∂α (θ)

∂Λε,T
∂β (θ)

 =

 ε
∂Λε,T
∂α (θ)

1√
T

∂Λε,T
∂β (θ)

→L N2(0,J (2)(θ)),

where

(22) J (2)(θ) =

∫ +∞
0 [∂V∂α (α, xs(α)) + ∂Φ

∂x (β, 0)∂xs∂α (α, s))]2ds 0

0

(
∂2Φ
∂β∂x

(β,0)
)2

2`(α,β)


and `(α, β) is defined in (16). Moreover, the matrix −D(2)

ε,TJε,T (θ)D
(2)
ε,T = J (2)(θ) + oP (1).

In Theorem 5, the additional condition x0 6= x∗ appears as a minimal assumption. Indeed,
since x∗ does not depend on α, x0 = x∗ implies that, for all α and all s ≥ 0, xs(α) = x∗ and,
using (17), the term J (2)(θ)11 = 0. In Case (2), the integrand in J (2)(θ)11 tends to 0 as s tends
to ∞. This convergence is exponential (see Proposition 1), so that J (2)(θ)11 is finite.
We stress that Theorems 4 and 5 show that the estimation of α and β have different rates of
convergence. While in both cases, β is estimated at rate

√
T , according to the assumptions α is

estimated at rate
√
Tε−1 or ε−1.

We can check that these rates hold also for α when Φ(β, .) ≡ 0,(i.e. for classical stochastic
differential equations), the condition ∂2Φ

∂β∂x(β, 0) 6= 0 being required only for β. This yields the
corollary stated below.

Corollary 2. Assume that Φ(β, .) ≡ 0 (classical stochastic differential equation) and [H0],
[H3],[H4] and [S1]. The contrast Λε,T (θ) is equal to the exact log-likelihood `ε,T (α) (it depends
only on α). Then, if ε→ 0, T → +∞ in such a way that ε

√
T → 0, the following holds:

If dx∗

dα (α) 6≡ 0, under Pα,

ε√
T
`′T (α)→D N (0,

[
∂V

∂α
(α, x∗(α))

]2

),
ε2

T
`′′T (α)→ −

[
∂V

∂α
(α, x∗(α))

]2

.

If dx∗

dα (α) ≡ 0 and x0 6= x∗, under Pα,

ε`′T (α)→D N (0,

∫ +∞

0

[
∂V

∂α
(α, xs(α))

]2

ds), ε2`′′T (α)→ −
∫ +∞

0

[
∂V

∂α
(α, xs(α))

]2

ds.

Up to our knowledge, these statistical results are also new for classical stochastic differential
equations. Indeed, for ergodic diffusion processes with fixed diffusion term ε, the rate of con-
vergence for α is

√
T as T tends to infinity, while on a fixed time interval [0, T ], as ε tends to

0, the rate of estimation for α is ε−1. With the double asymptotics ε → 0 and T → +∞, it is
unexpected to obtain a rate of convergence for α which is either ε−1

√
T or ε−1. This distinction

depends on the fact that the fixed point x∗(α) of the ODE depends on α or not.

3.4. Asymptotic properties of estimators.
Consider the approximate likelihood Λε,T defined in (14),(15) and let (α̂ε,T , β̂ε,T ) denote the

maximum pseudo-likelihood estimator defined as any solution of

(23) (α̂ε,T , β̂ε,T ) = arg max
(α,β)∈Θα×Θβ

Λε,T (α, β).
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Define the three functions using (16),

(24) Λ
(1)
1 (α, α0, β) = −1

2
(V (α, x∗(α0))− Φ(β, x∗(α0)− x∗(α)))2 ,

(25) Λ
(2)
1 (α, α0, β) = −1

2

∫ +∞

0
[V (α, xs(α0))− V (α0, xs(α0))− Φ(β, xs(α0)− xs(α))]2 ds,

(26) Λ2(α0, β, β0) = −1

2

(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)

)2 1

2`(α0, β0)
.

Lemma 2. Assume [H0], [H1], [H3], [H4], [S0], [S1]. Then, as ε→ 0 and T → +∞ in such a
way that ε

√
T → 0, the following holds in probability under Pθ0:

(i) Case (1)(dx
∗

dα (α) 6≡ 0). Uniformly with respect to (α, β) ∈ Θα ×Θβ,
ε2

T (Λε,T (α, β)− Λε,T (α0, β))→ Λ
(1)
1 (α, α0, β).

(ii) Case (2)(dx
∗

dα (α) ≡ 0). Uniformly with respect to (α, β) ∈ Θα ×Θβ,
ε2(Λε,T (α, β)− Λε,T (α0, β))→ Λ

(2)
1 (α, α0, β) .

(iii) Both cases. Uniformly with respect to β ∈ Θβ
1
T (Λε,T (α0, β)− Λε,T (α0, β0))→ Λ2(α0, β, β0).

Let us determine the identifiability assumptions associated with Lemma 2.
Case (1): Assume that ∀β, Λ

(1)
1 (α, α0, β) = 0. This implies

∀β, V (α, x∗(α0)) = Φ(β, x∗(α0)− x∗(α)).

As Φ(β, .) is an increasing function, this yields that

V (α, x∗(α0)) = 0 and Φ(β, x∗(α0)− x∗(α)) = 0.

Since Φ(β, x) = 0 implies x = 0, the last equality implies x∗(α) = x∗(α0).
Consider now the case of standard SDE : Φ(β, .) ≡ 0. The condition V (α, x∗(α0)) = 0 implies
x∗(α) = x∗(α0) by the uniqueness of the fixed point.
For β, the identifiability assumption is straightforward since `(α0, β0) > 0.
Therefore, we deduce the identifiability assumptions for Case (1):

• [S3] x∗(α) = x∗(α0)⇒ α = α0 .
• [S4] ∂Φ

∂x (β, 0) = ∂Φ
∂x (β0, 0)⇒ β = β0.

Consider now Case (2) where for all α, x∗(α) = x∗.
If x0 = x∗, xs(α0) = xs(α) = x∗ for all s ≥ 0. Thus, Λ

(2)
1 (α, α0, β) = 0.

Assume now that x0 6= x∗. The term under the integral in (25) converges to 0 exponentially fast
(see Proposition 1). Hence, Λ

(2)
1 (α, α0, β) is well defined and finite. This leads to the following

identifiability assumption of α in Case (2):
• [S5] x0 6= x∗; {s → V (α, xs(α0)) − V (α0, xs(α0)) ≡ 0 and s → xs(α) − xs(α0) ≡ 0} ⇒
{α = α0}.

Nothing changes for β.
If Φ(β, .) ≡ 0, then [S5] has to be changed into:
[S5b]: x0 6= x∗; {s→ V (α, xs(α0))− V (α0, xs(α0)) ≡ 0 ⇒ {α = α0}.

The inference for (α, β) is a two-rate statistical problem. According to Gloter and Sørensen
(2009, Section 4.4.1), the proof of the consistency of (α̂ε,T , β̂ε,T ) relies on three steps: (1) Prove
that α̂ε,T is consistent; (2) Prove that ε−1

√
T (α̂ε,T − α0) in Case (1), ε−1(α̂ε,T − α0) in Case
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(2)) is Pθ0- tight; (3) Prove that β̂ε,T is consistent. The proof of the asymptotic normality is
then obtained standardly based on Theorems 4 and 5.

Theorem 6. Assume [H0], [H1], [H3], [H4], [S0], [S1] and that ε→ 0 and T → +∞ in such a
way that ε

√
T → 0.

Case (1) (dx
∗

dα (α) 6≡ 0). Assume moreover that [S3]-[S4] hold. Then (α̂ε,T , β̂ε,T ) is consistent
and, under Pθ0,(√

T
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0, [J (1)(θ0)]−1), where J 1)(θ) is defined in (20).

Case (2) (∀α, x∗(α) = x∗). Assume moreover that [S4]-[S5] hold. Then (α̂ε,T , β̂ε,T ) is consistent
and, under Pθ0,( 1

ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0, [J (2)(θ0)]−1), where J (2)(θ) is defined in (22).

Let us consider simple examples that illustrate these results.

Example 1 (continued): Let V (α, x) = −αx, Φ(β, x) = βx, α > 0, β > 0.
As x∗(α) = x∗ = 0, we are in Case (2). The contrast is equal to the exact log-likelihood, and as
ε→ 0, T → +∞ with ε

√
T → 0, applying Theorem 5 yields that, under Pθ,(

ε
∂`ε,T
∂α (θ)

1√
T

∂`ε,T
∂β (θ)

)
→L N2(0,J (2)(θ)) with J (2)(θ) =

(
x2

0

∫∞
0 (1 + sβ)2e−2αsds 0

0 1
2(α+β)

)
.

The functions Λ
(2)
1 (α, α0, β) and Λ2(α0, β, β0) are explicit.

Λ
(2)
1 (α, α0, β) = −x2

0

(α+ β)2 + α0α

4α0α(α0 + α)
(α− α0)2, Λ2(α0, β, β0) = − (β − β0)2

4(α0 + β0)
.

Hence, the two identifiability assumptions [S4], [S5] are satisfied and( 1
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0,J (2)(θ0)−1).

Example 2 : Consider the slightly different case V (α, x) = −αx+ 1, Φ(β, x) = βx, α > 0, β > 0.
We have x∗(α) = α−1. We are in Case (1) : ∂V

∂α (α, x∗(α)) = −α−1 6= 0. Applying Theorem 4 to
Λε,T , which is the exact log-likelihood(

ε√
T

∂`ε,T
∂α (θ)

1√
T

∂`ε,T
∂β (θ)

)
→L N2(0,J (1)(θ)) with J (1)(θ) =

(
(α+β)2

α4 0
0 1

2(α+β)

)
.

We have:

Λ
(1)
1 (α, α0, β) = −(α+ β)2

2α2
0α

2
(α− α0)2, Λ2(α0, β, β0) = − (β − β0)2

4(α0 + β0)
.

Hence, the two identifiability assumptions [S4], [S5] are satisfied and(√
T
ε (α̂ε,T − α0)√
T (β̂ε,T − β0)

)
→L N2(0,J (1)(θ0)−1).
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Example 3 : Let V (α, x) = −αx and arbitrary Φ. We are in Case (2), x∗(α) = x∗ = 0, `(α) = α
and

Λ
(2)
1 (α, α0, β) = −1

2

∫ ∞
0

[x0(α0 − α)e−α0s − φ(β, x0(e−α0s − e−αs))]2ds

(27) Λ2(α0, β, β0) = −1

2
(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0))2 × 1

2(α0 + ∂Φ
∂x (β0, 0))

.

By [S4]-[S5], Λ
(2)
1 (α, α0, β) = 0 iff x0 = x∗ or α = α0 and Λ2(α0, β, β0) = 0 iff β = β0. Theorem

6 implies the consistency and the asymptotic normality of Case (2).

Example 4: For Φ(β, x) = β(x3 + x), ∂2Φ
∂β∂x(β, 0) = 1. Therefore, β can be estimated. But if

Φ(β, x) = βx3, then ∂2Φ
∂β∂x(β, 0) = 0, and by this method, we cannot estimate β.

4. Concluding remarks

In this paper, we consider the one-dimensional McKean-Vlasov process (Xt) given by (1) with
small noise ε, under assumptions ensuring existence and uniqueness of solutions. We are inter-
ested in the statistical estimation of the unknown parameters α, β present in the classical drift
term V (α, x) and in the self-stabilizing term Φ(β, x). In a previous paper (Genon-Catalot and
Larédo (2020)), we have shown that, on the basis of one trajectory continuously observed on a
time interval [0, T ], while it is possible to estimate consistently α as ε tends to 0, it is not possible
to estimate β if T is kept fixed. This is why in this paper, we consider the double asymptotic
framework ε→ 0 and T → +∞. This requires some additional assumptions on the model ([H3]-
[H4]). In particular, we assume that there is a unique x∗(α) such that V (α, x∗(α)) = 0 and this
value is an attractive point for the ordinary differential equation xt(α) = x0 +

∫ t
0 V (α, xs(α))ds.

We stress that this double asymptotic framework has never been studied even for classical sto-
chastic differential equations (corresponding to Φ(β, .) ≡ 0).
In a first part, we study probabilistic properties of the process (Xt). We prove that all the mo-
ments of ε−1(Xt−xt(α)) are uniformly bounded in t ≥ 0, ε ≤ 1, that the Gaussian approximating
process of (Xt) as ε → 0 obtained in Genon-Catalot and Larédo (2020) holds on R+ and that
the remainder terms of this approximation have moments uniformly bounded in t ≥ 0, ε ≤ 1.
In a second part, we define a contrast (approximate log-likelihood) and prove the consistency and
asymptotic normality of the corresponding maximum contrast estimators as ε→ 0 and T → +∞
in such a way that ε

√
T → 0. For the estimation of α, two cases have to be distinguished. Either

Case (1), dx
∗

dα (α) 6≡ 0 or Case (2), dx
∗

dα (α) ≡ 0. In Case (1), the estimator of α is asymptotically
Gaussian with the fast rate

√
Tε−1 while in Case (2), its rate is ε−1. In both cases, the param-

eter β is estimated at rate
√
T . This confirms the fact that a double asymptotic is needed for

estimating both α and β on the basis of one trajectory.
We did not study here the asymptotic efficiency of our estimators since this can be proved as
in our previous paper (Genon-Catalot and Larédo, 2020, Section 6) by means of an asymptotic
equivalence of experiments property.
Extensions of this work could be to consider multidimensional Mc-Kean Vlasov models of the
more general form (see e.g. Méléard (1996), Sznitmann (1991):

dXt = b(θ, t,Xt, u
θ,c
t )dt+ εσ(c, t,Xt, u

θ,c
t )dWt.

where θ, c is are unknown parameters, uθ,ct is the distribution of Xt.
Another direction would be to study, for discrete observations of McKean-Vlasov diffusions,
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the estimation of both parameters in the drift and in the diffusion coefficient as in Gloter and
Sorensen (2009) and Guy et al. (2014).

5. Appendix

5.1. Proofs of Section 2.
Proof of Theorem 2. Let

(28) ζt = (Xt − xt(α)/ε with distribution νεt (dz).

We have

dζt = ε−1(V (α,Xt)− V (α, xt(α)))dt− 1

ε

(∫
Φ(β,Xt − y)uθ,εt (dy)

)
dt+ dWt, so that

ζ2
t = 2

∫ t

0
ζsdWs+2

∫ t

0
ζs ε

−1[V (α,Xs)−V (α, xs(α)]ds−2ε−1

∫ t

0
ζs

(∫
Φ(β,Xs − y)uθ,εs (dy)

)
ds+t.

This implies, setting mε
2(t) := Eθζ2

t ,

(29) mε
2(t) = 2

∫ t

0
Eθ[ζs

1

ε
(V (α,Xs)−V (α, xs(α)))]ds−2

ε

∫ t

0
Eθ[ζs

∫
Φ(β,Xs−y)uθ,εs (dy)]ds+t.

Using (28) and Φ(β,Xs − y) = Φ(β,Xs − xs − (y − xs)), we get

2Eθ
(
ζsε
−1

∫
Φ(β,Xs − y)uθ,εs (dy)

)
=

2

ε

∫
z

∫
Φ(β, ε(z − z′))ενεs(dz)νεs(dz′)

=

∫
(z − z′)

∫
Φ(β, ε(z − z′))νεs(dz)νεs(dz′) ≥ 0.

Therefore, since Φ(β,Xs − y) = Φ(β, ε(ζs − y−xs
ε ), we get

2Eθ
(
ζsε
−1

∫
Φ(β,Xs − y)us(dy)

)
= 2ε−1

∫
z

∫
Φ(β, ε(z − z′))ενεs(dz′) νεs(dz)

=

∫
(z − z′)

∫
Φ(β, ε(z − z′))νεs(dz)νεs(dz′) ≥ 0.

Differentiating (29) and using [H3], we get (mε
2)′(t) ≤ −2KV (α)mε

2(t) + 1.
Now, we can use the following property which holds for f(.) a C1(R+,R) function: If there exists
` > 0 such that

(30) {t ≥ 0, f(t) > `} ⊂ {t ≥ 0, f ′(t) < 0} then sup
t≥0

f(t) ≤ f(0) ∨ `.

Thus, choosing ` = 1
2KV (α) yields, since mε

2(0) = 0,

(31) sup
t≥0

mε
2(t) ≤ 1

2KV (α)
.

Let us now study mε
2n(t) := Eθζ2n

t . We have

(32) ζ2n
t = 2n

∫ t

0
ζ2n−1
s dζs + n(2n− 1)

∫ t

0
ζ2n−2
s ds.

Analogously, for n ≥ 1, using that Φ(β, .) is odd,

2nEθ
(
ζ2n−1
s

1

ε

∫
Φ(β,Xs − y)uθ,εs (dy)

)
= 2nε−1

∫
z2n−1

∫
Φ(β, ε(z − z′))ενεs(dz)νεs(dz′)

= n

∫
(z2n−1 − z′2n−1)

∫
Φ(β, ε(z − z′))νεs(dz)νεs(dz′) ≥ 0.
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The first term of dζs in (32) satisfies under [H3],

Eθ[ζ2n−1
s

1

ε
(V (α,Xs)− V (α, xs(α)))] = Eθ[ζ2n−2

s ζs
1

ε
(V (α,Xs)− V (xs(α)))] ≤ −KV (α)Eθζ2n

s .

Therefore, applying the Hölder inequality to f(x) = x1−1/n, we get

(mε
2n(t))′ ≤ −2nKV (α) mε

2n(t)+n(2n−1)mε
2n−2(t) ≤ −2nKV (α) mε

2n(t)+n(2n−1)(mε
2n(t))1−1/n.

Choosing δ(α, n) = ( n
KV (α))n, we have that, for x ≥ δ(α, n), −2nKV (α)x+n(2n− 1)x1−1/n < 0.

Thus, as mε
2n(0) = 0, applying (30) yields

(33) sup
t≥0

mε
2n(t) ≤ δ(α, n),

where δ(α, n) does not depend on ε and β.

It remains to study EθXt − xt(α). We have,

Eθ(Xt − xt(α)) =

∫ t

0
Eθ (V (α,Xs)− V (α, xs(α))) ds−

∫ t

0
Eθb(θ, s, ε,Xs)ds.

Let (Xs) be an independent copy of (Xs). Then,

(34) Eθb(θ, s, ε,Xs) = Eθ
∫

Φ(β,Xs − y)uθ,εs (dy) = Eθ(Φ(β,Xs −Xs)) = 0,

since Φ(β, .) is odd and since the distribution of Xs −Xs is symmetric.
Now, a Taylor expansion at xs(α) yields

Eθ(V (α,Xs)− V (α, xs(α)) = Eθ(Xs − xs(α))
∂V

∂x
(α, xs(α)) +Rs, with

Rs =

∫ 1

0
(1− u)Eθ

(
(Xs − xs(α))2∂

2V

∂x2
(α, xs(α) + u(Xs − xs(α)))

)
du.

Therefore,

f(θ, t) := EθXt − xt(α) =

∫ t

0
(EθXs − xs(α))

∂V

∂x
(α, xs(α))ds+

∫ t

0
Rs ds.

Differentiating with respect to t, we get that ∂f
∂t (θ, t) = ∂V

∂x (α, xt(α))f(θ, t) + Rt, f(θ, 0) = 0.
Consequently,

(35) f(θ, t) =

∫ t

0
Rs exp

(∫ t

s

∂V

∂x
(α, xu(α))du

)
ds.

Using [H2-2], |Rs| ≤ k(α)Eθ
(
(Xs − xs(α))2(1 + |xs(α)|γ(α) + |Xs − xs(α)|γ(α))

)
.

Under [H3], [H4], xt(α) is uniformly bounded on R+ by B(α) (see Remark 1). Using the first
part, Eθ(Xt − xt(α))2 ≤ ε2

2KV (α) . By the Hölder inequality,

Eθ|Xt − xt(α)|2+γ(α) ≤ ε2+γ(α)(mε
2+2γ(α)(t))

1− γ(α)
2+2γ(α) .

Therefore, for ε ≤ 1, |Rs| ≤ ε2C(α) where C(α) = k(α)
2KV (α)(1+B(α)γ(α)+2(1+γ(α))(1+γ(α)

KV (α) )
γ(α)

1+γ(α) )

is independent of t, ε. Hence,

(36) |f(θ, t)| = |EθXt − xt(α)| ≤ ε2C(α)

∫ t

0
exp (−KV (α)(t− s))ds ≤ C(α)

KV (α)
ε2. 2
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If V (α, x) = −αx, then EθXt = x0 − α
∫ t

0 EθXsds, thus EθXt = x0 exp (−αt) = xt(α).

Proof of Theorem 3 .
By (6), we have Rεt (θ) = ε−2(Xt − xt(α)− εgt(θ)). Therefore, using (1), (3), (4) and (5),

dRεt (θ) =
1

ε2
(V (α,Xt)− V (α, xt(α))− b(θ, t, ε,Xt)− εa(θ, t)gt(θ)) dt

=
1

ε2
[(Xt − xt(α)− εa(θ, t)gt(θ))] dt+ ν(θ, t, ε,Xt)dt

= a(θ, t)Rεt (θ)dt+ ν(θ, t, ε,Xt)dt, Rε0(θ) = 0, where

ν(θ, t, ε,Xt) =
1

ε2
((V (α,Xt)− V (α, xt(α))− b(θ, t, ε,Xt))− (Xt − xt(α))a(θ, t)) = T1(t)+T2(t),

with T1(t) = ε−2
(
V (α,Xt)− V (α, xt(α))− (Xt − xt(α))∂V∂x (α, xt(α))

)
,

T2(t) = −ε−2

(∫
Φ(β,Xt − y)uθ,εt (dy)− ∂Φ

∂x
(β, 0)(Xt − xt(α))

)
.(37)

The equation satisfied by Rεt (θ) can be solved and we get, using (4) and (7),

(38) Rεt (θ) =

∫ t

0
ν(θ, s, ε,Xs) exp (

∫ t

s
a(θ, u)du)ds.

Let us first study T1(t). A Taylor expansion at point xt(α) yields, using Assumption [H2-2],

T1(t) = ε−2(Xt − xt(α))2

∫ 1

0
(1− u)

∂2V

∂x2
(α, xt(α) + u(Xt − xt(α)))du,(39)

|T1(t)| ≤ k(α)ε−2(Xt − xt(α))2(1 + |xt(α)|γ(α) + |Xt − xt(α)|γ(α)).

Therefore, since xt(α) is uniformly bounded, applying Theorem 2 yields that, for all p ≥ 1,

Eθ|T1(t)|2p = O(1) uniformly on t ≥ 0, ε > 0.

For T2(t), we have −ε2T2(t) =
∫ (

Φ(β,Xt − y)− ∂Φ
∂x (β, 0)(Xt − xt(α))

)
uθ,εt (dy).

A Taylor expansion at point 0 yields, noting that ∂2Φ
∂x2 (β, 0) = 0,

Φ(β,Xt − y)− ∂Φ

∂x
(β, 0)(Xt − xt(α)) =

∂Φ

∂x
(β, 0)(xt(α)− y) + ρ1(Xt, y),

where

(40) ρ1(Xt, y) =
1

2
(Xt − y)3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt − y))du.

Therefore, T2(t) = −ε−2 ∂Φ
∂x (β, 0))(xt(α)− EθXt)− ε−2

∫
ρ1(Xt, y)uθ,εt (dy) = T21(t) + T22(t).

Let us study first EθT2(t) = T21(t) + EθT22(t). For the second term, we can write, for Xt an
independent copy of Xt,

Eθ
∫
ρ1(Xt, y)uθ,εt (dy) =

1

2
Eθ
(

(Xt −Xt)
3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt −Xt))du

)
.

Under [H2-3], x→ x3 ∂3Φ
∂x3 (β, ux) is well defined and odd so that

(41) Eθ
∫
ρ1(Xt, y)uθ,εt (dy) = Eθ(ρ1(Xt, Xt)) = 0.
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Therefore, EθT22(t) = 0. For T21(t) which is deterministic, applying Theorem 2 (ii) yields

|T21(t)| ≤ δ(α)
∂Φ

∂x
(β, 0) = O(1) uniformly on t ≥ 0, ε > 0.

Therefore |EθT2(t)| = |T21(t)| is also uniformly bounded for t ≥ 0, ε > 0.
Consider now T2(t) − EθT2(t). Using (41), it is equal to T22(t) = −ε−2

∫
ρ1(Xt, y))uθ,εt (dy).

Hence, if (X̄t) is an independent copy of (Xt),

Eθ(T2(t)− EθT2(t))2p = ε−4pEθ(ρ1(Xt, X̄t)
2p).

Now, by [H2-3] and (40)

Eθ(ρ1(Xt, X̄t)
2p) = 2−2pEθ

(
(Xt −Xt)

6p(

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt −Xt))du)2p

)
≤ 2−2pEθ

(
|Xt −Xt|6p(k(β)(1 + |Xt −Xt|γ(β)))2p

)
≤ k2p(β)2−1Eθ

(
|Xt −Xt|6p(1 + |Xt −Xt|2pγ(β)))

)
.

By splitting Xt −Xt into Xt − xt(α) + xt(α))−Xt we get that

Eθ(ρ1(Xt, X̄t)
2p) ≤ k2p(β)

(
Eθ(26p−1(Xt − xt(α))6p) + Eθ(26p+2pγ(β)−1(Xt − xt(α))6p+2pγ(β))

)
≤ Cp(α, β)ε6p,

where Cp(α, β) depends on p, k(β) and K−1
V (α). Applying Theorem 2 yields that, uniformly on

t > 0, ε > 0,
Eθ (T2(t)− EθT2(t))2p ≤ ε2pC ′p(α, β).

Joining these inequalities there exist constants δ(α, β), δp(α, β) such that for all t ≥ 0, ε > 0,

Eθ|ν(θ, t, ε,Xt)| ≤ δ(α, β); Eθ (ν(θ, t, ε,Xt)− Eθν(θ, t, ε,Xt))
2p ≤ δp(α, β).

Now, using (16), (8) and [H3],
∫ t
s a(θ, u)du = A(θ, t)−A(θ, s) ≤ −K(θ)(t− s) with

(42) K(θ) = K(α, β) = KV (α) +
∂Φ

∂x
(β, 0) > 0.

Therefore (38) yields that

Eθ|Rεt (θ)| ≤
∫ t

0
Eθ|ν(θ, s, ε,Xs)|e−K(θ)(t−s)ds ≤ δ(α, β)

K(θ)
.

Consider now Eθ(Rεt (θ)− EθRεt (θ))2p. Equation (38) yields

(Rεt (θ)−EθRεt (θ))2p ≤
∫ t

0
(ν(θ, t, ε,Xt)− Eθν(θ, t, ε,Xt))

2p ep(A(θ,t)−A(θ,s))ds

(∫ t

0
e

p
2p−1

(A(θ,t)−A(θ,s))
ds

)2p−1

This yields, using the inequality for A(θ, s), that

Eθ(Rεt (θ)− EθRεt (θ))2p ≤ (
2p− 1

2pK(θ)
)2p−1

∫ t

0
Eθ(ν(θ, s, ε,Xs)− Eθν(θ, s, ε,Xs)))

2pe−pK(θ)(t−s)ds.

Therefore, this expectation is uniformly bounded on t ≥ 0, ε > 0. 2

Proof of Corollary 1 . We have D(θ, t, ε,Xt) =
∫

(Φ(β,Xt − y) − Φ(β,Xt − xt(α)))uθ,εt (dy).
Similarly to the study of T2(t), a Taylor expansion of Φ(β, .) yields, using (40),

Φ(β,Xt − y)− Φ(β,Xt − xt(α)) =
∂Φ

∂x
(β, 0))(xt(α)− y) + ρ1(Xt, y)− ρ2(Xt), with
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(43) ρ2(Xt) =
1

2
(Xt − xt(α))3

∫ 1

0
(1− u)2∂

3Φ

∂x3
(β, u(Xt − xt(α)))du.

Therefore, D(θ, t, ε,Xt) = ∂Φ
∂x (β, 0))(xt(α)− EθXt) +

∫
ρ1(Xt, y)uθ,εt (dy)− ρ2(Xt). Using (41),

EθD(θ, t, ε,Xt) =
∂Φ

∂x
(β, 0))(xt(α)− EθXt)− Eθρ2(Xt).

By Theorem 2, Eθ|ρ2(Xt)| . ε3O(1). This yields (12).
Moreover, as for the upper bound of T2(t), Eθ|ρ1(Xt, X̄t)|2p . Eθ|Xt −Xt|6p . ε6p.
By Theorem 2, uniformly on t > 0, Eθ|ρ2(Xt)|2p . Eθ|Xt − xt(α)|6p ≤ ε6pO(1).
Joining these two inequalities, we get (13). 2

5.2. Proofs of Section 3. We start with two preliminary propositions useful for the inference.
Proof of Proposition 1.
Set x1(t) = xt(α), x2(t) = ∂xt

∂α (α, t), x3(t) = ∂2xt
∂α2 (α, t) and x(t) = [x1(t)x2(t)x3(t)]′. Then, x(t)

is solution of the ordinary differential equation

(44) dx(t) = B(x(t))dt, B(x(t)) = [B1(x(t)) B2(x(t)) B3(x(t))]′

whereB1(x) = V (α, x1), B2(x) = ∂V
∂α (α, x1)+∂V

∂x (α, x1)x2, andB3(x) = ∂2V
∂α2 (α, x1)+[∂V∂x (α, x1)+

2 ∂2V
∂x∂α(α, x1)]x2 + ∂V

∂x (α, x1)x2
2 + ∂V

∂x (α, x1)x3. We easily check that B(x∗) = 0 for x∗ = [x∗1 x
∗
2 x
∗
3]′

with, using (16) for `(α),

x∗1 = x∗(α), x∗2 =
1

`(α)

∂V

∂α
(α, x∗1),(45)

x∗3 =
1

`(α)

(
∂2V

∂α2
(α, x∗1) + [

∂V

∂x
(α, x∗1) + 2

∂2V

∂x∂α
(α, x∗1)]x∗2 +

∂V

∂x
(α, x∗1)x∗2)2

)
.(46)

To check if this point is asymptotically stable, we compute DB(x∗) = [∂Bi∂xj
(x∗)]1≤i,j≤3. The

matrix DB(x) is triangular with diagonal elements equal to −`(α) < 0. Thus, the eigenvalues of
DB(x∗) are negative which implies that x∗ is asymptotically stable for (44). Thus x(t) converges
as t→ +∞ to x∗ with exponential rate exp (−`(α)t) (see e.g. Hirsch and Smale, 1974). 2

Note that α → x∗(α) is C∞ on Uα. As Θα is compact, dx∗

dα (α) and d2x∗

dα (α) are uniformly
bounded on Θα as well as x∗(α).

Proof of Proposition 2.
Proof of (i): Consider the process (gt) such that dgt = −λgtdt + dWt, gt(0) = 0 with λ > 0.
It is standard that gt = exp (−λt)

∫ t
0 exp (λs)dWs and that (gt) is a positive recurrent diffusion

with invariant distribution N (0, 1/(2λ)). By the ergodic theorem, 1
T

∫ T
0 g2

sds converges a.s. to
(1/2λ). This implies, by the central limit theorem for martingales, that 1√

T

∫ T
0 gsdWs converges

in distribution to N (0, (1/2λ)). Moreover, one easily gets

E(
1

T

∫ T

0
g2
sds) =

1

T

∫ T

0
Eg2

sds =
1

2λ
+ o(1).

We can also compute

E
1

T 2

(∫ T

0
g2
sds

)2

=
1

T 2

∫
[0,T ]2

E(g2
sg

2
t )dsdt.
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Now, if (X,Y ) ∼ N2(0,Σ) with Σ =

(
σ2 α
α τ2

)
, then E(X2Y 2) = σ2τ2 + 2α2. Applying this

property to the centered Gaussian process (gt), E(g2
sg

2
t ) = 2cov2(gs, gt) + Eg2

sEg2
t . Therefore,

(47) E
1

T 2

(∫ T

0
g2
sds

)2

=

(
1

T

∫ T

0
Eg2

sds

)2

+ CT (λ).

where

(48) CT (λ) =
2

T 2

∫
[0,T ]2

cov2(gs, gt)dsdt =
4

T 2

∫
0≤s≤t≤T

cov2(gs, gt)dsdt.

For s ≤ t, cov(gs, gt) =
∫ s

0 exp−λ(t− u+ s− u)du = 1
2λ (exp (λ(s− t)− exp (λ(s+ t)).

By elementary computations, we see that CT (λ) = 1
TO(1) so that

E
(

1

T

∫ T

0
g2
sds−

1

T

∫ T

0
Eg2

sds

)2

→ 0.

With this direct calculus, we have obtained that 1
T

∫ T
0 g2

sds→L2
1

2λ .

We rely on this approach to prove Proposition 2 for the process gt(θ). Using (4) , (8) and (42),
we have that under [H3], for u ≤ t,

(49) A(θ, t)−A(θ, u) ≤ −K(θ)(t− u).

Moreover, by (7), gt(θ) =
∫ t

0 e
A(θ,t)−A(θ,s)dWs. Equations (47)-(48) hold for gt(θ),

Eθ
1

T 2

(∫ T

0
[gs(θ)]

2ds

)2

=

(
1

T

∫ T

0
Eθ[gs(θ)]2ds

)2

+ C̃T (θ) with

C̃T (θ) = 4
T 2

∫
0≤s≤t≤T cov2

θ(gs(θ), gt(θ))dsdt. For s ≤ t, using (42) and (49)

covθ(gs(θ), gt(θ)) =

∫ s

0
eA(θ,t)+A(θ,s)−2A(θ,u)du ≤

∫ s

0
exp [−(K(θ)(t− u+ s− u))]du.

Therefore C̃T (θ) ≤ CT (K(θ)). Finally, using (47)-(48),

Eθ
(

1

T

∫ T

0
[gs(θ)]

2ds− 1

T

∫ T

0
Eθ[gs(θ)]2ds

)2

≤ CT (K(θ)) =
1

T
O(1).

Thus,

(50)
1

T

∫ T

0
[gs(θ)]

2ds− 1

T

∫ T

0
Eθ[gs(θ)]2ds→L2 0.

Now, the function t → ∂V
∂x (α, xt(α)) is continuous. Under [H3]-[H4], as t → +∞, xt(α) →

x∗(α), and ∂V
∂x (α, xt(α))→ ∂V

∂x (α, x∗(α)) = −`(α) ≤ −KV (α) < 0. Therefore,

∀h > 0, ∃t0 > 0, ∀t ≥ t0, −`(α)− h < ∂V

∂x
(α, xt(α)) < −`(α) + h.

It follows, using (16), that for all t, s such that t ≥ s ≥ t0,

(51) −(`(α, β) + h)(t− s) ≤ A(θ, t)−A(θ, s) ≤ −(`(α, β)− h)(t− s).
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Choose h > 0 such that `(α, β)− h > 0. We have, using (7), Eθ(gt(θ)2) = e2A(θ,t)
∫ t

0 e
−2A(θ,s)ds.

Hence, Eθ(T−1
∫ T

0 [gt(θ)]
2dt) = T1 + T2 + T3 where

T1 =
1

T

∫
0≤s≤t≤t0

e2(A(θ,t)−A(θ,s)dsdt, T2 =
1

T

∫
0≤s≤t0,t0≤t≤T

e2(A(θ,t)−A(θ,s))dsdt,

T3 =
1

T

∫
t0≤s≤t≤T

e2(A(θ,t)−A(θ,s))dsdt.

As T tends to infinity, T1 = o(1). For T2 we have,

T2 =
1

T

∫ t0

0
e−2(A(θ,s)−A(θ,t0))ds×

∫ T

t0

e2(A(θ,t)−A(θ,t0))dt.

Now, using (51),∫ T

t0

e2(A(θ,t)−A(θ,t0))dt ≤
∫ T

t0

e−2(`(α,β)−h)(t−t0)dt ≤ 1

2(`(α, β)− h)
.

Therefore 0 ≤ T2 ≤ 1
TO(1) and T2 → 0 as T →∞. Now, let us examine T3:

T3 ≤
1

T

∫ T

t0

ds

∫ T

s
e−2(`(α,β)−h)(t−s)dt =

1

2(`(α, β)− h)T

(
T − t0 −

1− e−2(`(α,β)−h)(T−t0)

2(`(α, β)− h)

)
.

Therefore, limT→+∞T3 ≤ 1
2(`(α,β)−h) . Analogously, limT→+∞T3 ≥ 1

2(`(α,β)+h) .
Therefore, T3 → 1

2(`(α,β) so that

Eθ(
1

T

∫ T

0
[gt(θ)]

2dt)→ 1

2`(α, β)
as T →∞.

Using (50), the first item is proved.

Proof of (ii): Let ZT =
∫ T

0 gt(θ)dt. Using (7) and interchanging the order of integrations yields:

ZT =

∫ T

0
gt(θ)dt =

∫ T

0
eA(θ,t)

∫ t

0
e−A(θ,s)dWsdt =

∫ T

0
e−A(θ,s)dWs

∫ T

s
eA(θ,t)dt.

Therefore, ZT is centered and, using(49)

EZ2
T =

∫ T

0
e−2A(θ,s)ds

(∫ T

s
eA(θ,t)dt

)2

=

∫ T

0
ds

(∫ T

s
eA(θ,t)−A(θ,s)dt

)2

≤
∫ T

0
ds

(∫ T

s
e−K(θ)(t−s)ds

)2

≤
∫ T

0
ds

(
1− e−K(θ)(T−s)

K(θ)

)2

≤ T

K2(θ)
.

Therefore, we find that EZ2
T . T and T−1ZT tends to 0 in probability as T tends to infinity.

Proof of (iii): As limt→+∞ h(t) = 0, for all h > 0, there exists T0 > 0 such that for all T ≥ T0,
|h(t)| ≤ h. So, we split

1√
T

∫ T

0
h(s)gs(θ)ds =

1√
T

∫ T0

0
h(s)gs(θ)ds+

1√
T

∫ T

T0

h(s)gs(θ)ds = oP (1) +
1√
T
Z(T0, T ),with
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Z(T0, T ) =

∫ T

T0

h(s)eA(θ,s)

(∫ T0

0
e−A(θ,u)dWu +

∫ s

T0

e−A(θ,u)dWu

)
ds

=

∫ T0

0
e−A(θ,u)dWu

∫ T

T0

h(s)eA(θ,s)ds+

∫ T

T0

e−A(θ,u)dWu

∫ T

u
h(s)eA(θ,s)ds = ZT,1 + ZT,2.

For the first term of Z(T0, T ), ZT,1, using (49) yields

|
∫ T

T0

h(s)eA(θ,s)ds| ≤ h
∫ T

T0

e−K(θ)sds ≤ h

K(θ)
e−(K(θ)T0 = hOP (1).

Hence E(ZT,1)2 = h2O(1). For the second term of Z(T0, T ), we write

E(ZT,2)2 =

∫ T

T0

e−2A(θ,u)du

(∫ T

u
h(s)eA(θ,s)ds

)2

=

∫ T

T0

du

(∫ T

u
h(s)eA(θ,s)−A(θ,u)ds

)2

≤ h2

∫ T

T0

du

(∫ T

u
e−K(θ)(s−u)ds

)2

≤ (T − T0)h2 1

K(θ)2
.

Therefore, for all T ≥ T0, 1
T E(Z(T0, T ))2 . h2

T +h2. Hence, limT→+∞
1√
T

∫ T
0 gs(θ)h(s)ds = 0. 2

Proof of Theorem 4. Recall that H(θ, s, x) = V (α, x)− Φ(β, x− xs(α)). Thus, using (11),

(52) dXs = εdWs +H(θ, s,Xs)ds−D(θ, s, ε,Xs)ds.

The derivatives of H with respect to the parameters are given by:
∂H

∂α
(θ, s,Xs) =

∂V

∂α
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂xs
∂α

(α, s),

∂H

∂β
(θ, s,Xs) = −∂Φ

∂β
(β,Xs − xs(α))

∂2H

∂α2
(θ, s,Xs) =

∂2V

∂α2
(α,Xs) +

∂Φ

∂x
(β,Xs − xs(α))

∂2xs
∂α2

(α, s)− ∂2Φ

∂x2
(β,Xs − xs(α))

(
∂xs
∂α

(α, s)

)2

∂2H

∂β2
(θ, s,Xs) = −∂

2Φ

∂β2
(β,Xs − xs(α)),

∂2H

∂α∂β
(θ, s,Xs) =

∂2Φ

∂x∂β
(β,Xs − xs(α))

∂xs
∂α

(α, s).

Note that for the convergence in distribution stated in Theorem 4, it is enough to prove that

ε√
T

∂Λε,T
∂α

(θ) = `(α, β)
∂V
∂α (α, x∗(α))

`(α)

WT√
T

+ oP (1),(53)

1√
T

∂Λε,T
∂β

(θ) = − ∂2Φ

∂β∂x
(β, 0))

1√
T

∫ T

0
gs(θ)dWs + oP (1).(54)

Indeed, the bracket of the two stochastic integrals above is equal, up to a constant, to T−1
∫ T

0 gs(θ)ds
and tends to 0 as T tends to infinity by Proposition 5.
Moreover, as T−1

∫ T
0 [gs(θ)]

2ds tends to [2`(α, β)]−1, by the central limit theorem for martingales,
1√
T

∫ T
0 gs(θ)dWs converges in distribution to N (0, [2`(α, β)]−1).

The proof of (53)-(54) relies on the following Lemma:

Lemma 3. Let F (θ, s, x) a continuous function on Θ×R+ ×R, differentiable with respect to x
and assume that there exist C > 0 and a nonnegative integer c such that,

(55) ∀θ ∈ θ, ∀s ≥ 0, |F (θ, s, x)| ≤ C(1 + |x|c) and |∂F
∂x

(θ, s, x)| ≤ C(1 + |x|c).
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Then, for T ≥ 1, ε ≤ 1, D(θ, s, ε, x) given in (11), the following holds.

(i) E
∫ T

0 (F (θ, s,Xs)− F (θ, s, xs(α)))2ds ≤ C1(θ, F ) T ε2.

(ii) E
∣∣∣∫ T0 F (θ, s,Xs)D(θ, s, ε,Xs)ds

∣∣∣ ≤ C2(θ, F ) T ε2.

(iii) If
∫ +∞

0 |F (θ, s, xs(α))|ds < +∞, then E
∣∣∣∫ T0 F (θ, s,Xs)D(θ, s, ε,Xs)ds

∣∣∣ ≤ C3(θ, F )(ε2 +

ε3T ).

where the constants Ci(θ, F ) only depend on F and θ.

Note that the functions F (θ, s, x) = H(θ, s, x), ∂H∂α (θ, s, x), ∂
2H
∂α2 (θ, s, x) satisfy (55) under [S1] so

that Lemma 3 holds for these functions.

We now start the proof of (53)-(54).

Derivative of the contrast with respect to α
Replacing dXs by its expression, we get (see (11), (14), (15) and (52)):

∂Λε,T
∂α

(θ) =
1

ε2

(∫ T

0

∂H

∂α
(θ, s,Xs)dXs −

∫ T

0
H(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
,

=
1

ε

∫ T

0

∂H

∂α
(θ, s,Xs)dWs −

1

ε2

(∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds

)
.(56)

Let us define

(57)
∂H

∂α
(θ, x∗(α)) =

∂V

∂α
(α, x∗(α)) +

∂Φ

∂x
(β, 0)

dx∗

dα
(α).

Then

∂H

∂α
(θ, s, xs(α))−∂H

∂α
(θ, x∗(α)) =

∂V

∂α
(α, xs(α))−∂V

∂α
(α, x∗(α))+

∂Φ

∂x
(β, 0)

(
∂xs
∂α

(α, s)− dx∗

dα
(α)

)
.

Therefore ∂H
∂α (θ, x∗(α)) is the limit of ∂H∂α (θ, s, xs(α)) as s→∞. Since we are in Case (1), (17)

yields using (16) that ∂V
∂α (α, x∗(α)) = `(α)dx

∗

dα (α) 6= 0 and

∂H

∂α
(θ, x∗(α)) = `(α, β)

dx∗

dα
(α) =

`(α, β)

`(α)

∂V

∂α
(α, x∗(α)) 6= 0.

Consequently, we can write

ε√
T

∂Λε,T
∂α

(θ) =
WT√
T

∂H

∂α
(θ, x∗(α))

+
1√
T

∫ T

0

(
∂H

∂α
(θ, s, xs(α))− ∂H

∂α
(θ, x∗(α)))

)
dWs(58)

+
1√
T

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)
dWs(59)

− 1

ε
√
T

(∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds

)
.(60)



INFERENCE FOR MCKEAN-VLASOV MODELS 21

Using Proposition 1 and [S1], ∂H∂α (θ, s, xs(α))− ∂H
∂α (θ, x∗(α)) converges exponentially fast to 0 so

that
∫ +∞

0

(
∂H
∂α (θ, s, xs(α))− ∂H

∂α (θ, x∗(α))
)2
ds < +∞. Thus,∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, x∗(α))

)
dWs →T→+∞

∫ +∞

0

(
∂H

∂α
(θ, s, xs(α))− ∂H

∂α
(θ, x∗(α))

)
dWs.

Therefore, (58) is OP (1/
√
T ) and tends to 0. By Lemma 3 (i),

1

T
Eθ
∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)2

ds . ε2,

so that (59) is OP (ε). Lemma 3 (ii) yields

1

ε
√
T
Eθ
∫ T

0

∣∣∣∣∂H∂α (θ, s,Xs)D(θ, s, ε,Xs)

∣∣∣∣ ds . ε
√
T ,

so that (60) is also oP (1) under the condition ε
√
T → 0. So we find that

(61)
ε√
T

∂Λε,T
∂α

(θ) =
WT√
T

∂H

∂α
(θ, x∗(α)) + oP (1) = `(α, β)

∂V
∂α (α, x∗(α))

`(α)

WT√
T

+ oP (1),

which gives (53).

Derivative of the contrast with respect to β
We have:

∂Λε,T
∂β

(θ) =
1

ε2

∫ T

0

∂H

∂β
(θ, s,Xs)dXs −

1

ε2

∫ T

0
H(θ, s,Xs)

∂H

∂β
(θ, s,Xs)ds

= −1

ε

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))dWs +

1

ε2

∫ T

0

∂Φ

∂β
(β,Xs − xs(α))D(θ, s, ε,Xs)ds(62)

:= T1 + T2.(63)

Since x→ ∂Φ
∂β (β, x) is an odd function, ∂Φ

∂β (β, 0) = 0, so

(64)
∂Φ

∂β
(β, x) = x

∂2Φ

∂β∂x
(β, 0) + x2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, ux)du.

Replacing x by Xs − xs(α)) = εgs(θ) + ε2Rεs(θ) yields that

T1 = − ∂2Φ

∂β∂x
(β, 0)

(∫ T

0
gs(θ)dWs

)
− T11,

with

T11 = ε

∫ T

0
Rεs(θ)dWs − ε−1

∫ T

0
(Xs − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))du dWs.

Thus,
1√
T
T1 = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0
gs(θ)dWs

)
− 1√

T
T11.

We have, by Theorem 3,

Eθ
∫ T

0
(Rεs(θ))

2ds ≤ 2Eθ
∫ T

0
(Rεs(θ)− EθRεs(θ))2ds+ 2

∫ T

0
(EθRεs(θ))2ds . TO(1),
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where O(1) does not depend on T and ε. This implies

1

T
Eθ
(
ε

∫ T

0
Rεs(θ)dWs

)2

=
ε2

T
Eθ
∫ T

0
(Rεs(θ))

2ds .
ε2

T
× T = ε2.

Then, using [S1],

1

T
Eθ
(
ε−1

∫ T

0
(Xs − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))du dWs

)2

.

1

ε2T
Eθ
(∫ T

0
(Xs − xs(α))4(1 + (Xs − xs(α))2cds

)
.

1

ε2T
× ε4T = ε2.

Therefore,
1√
T
T1 = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0
gs(θ)dWs

)
+OP (ε).

For T2, we have using (64),

T2 =
∂2Φ

∂β∂x
(β, 0)

1

ε2

∫ T

0
(Xs − xs(α))D(θ, s, ε,Xs)ds

+
1

ε2

∫ T

0
(Xs − xs(α))2

∫ 1

0
(1− u)

∂3Φ

∂β∂x2
(β, u(Xs − xs(α)))duD(θ, s, ε,Xs)ds.

We split D(θ, s, ε,Xs) = EθD(θ, s, ε,Xs) + D(θ, s, ε,Xs) − EθD(θ, s, ε,Xs) and use Corollary 1
and Theorem 2. The main term of |T2|/

√
T is 1

ε2
√
T
|
∫ T

0 (Xs − xs(α))EθD(θ, s, ε,Xs)ds|. Taking
the expectation of this term yields

Eθ
1

ε2
√
T
|
∫ T

0
(Xs − xs(α))EθD(θ, s, ε,Xs)ds| ≤

1√
T
ε−2 sup

s,ε
|EθD(θ, s, ε,Xs)|

∫ T

0
Eθ|Xs − xs(α)|ds . 1√

T
O(1)× εT = O(1)× ε

√
T .

Finally, T2/
√
T = ε

√
TOP (1).

Therefore,

1√
T

∂Λε,T
∂β

(θ) = − ∂2Φ

∂β∂x
(β, 0)

(
1√
T

∫ T

0
gθ(s)dWs

)
+ oP (1).

This yields (54). Hence the first part of Theorem 4, is proved.

It remains to study the limit of the matrix D(1)
ε,TJε,T (θ)D

(1)
ε,T = −

(
ε2

T
∂2Λε,T
∂α2 (θ) ε

T
∂2Λε,T
∂β∂α (θ)

ε
T
∂2Λε,T
∂β∂α (θ) 1

T
∂2Λε,T
∂β2 (θ)

)
.

We have:

ε2

T

∂2Λε,T
∂α2

(θ) =
1

T

∫ T

0

∂2H

∂α2
(θ, s,Xs)dXs −

1

T

∫ T

0
H(θ, s,Xs)

∂2H

∂α2
(θ, s,Xs)ds

− 1

T

∫ T

0
(
∂H

∂α
(θ, s,Xs))

2ds = T1 + T2 + T3 with
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T1 = ε
T

∫ T
0

∂2H
∂α2 (θ, s,Xs)dWs; T2 = − 1

T

∫ T
0

∂2H
∂α2 (θ, s,Xs)D(θ, s, ε,Xs)ds; T3 = − 1

T

∫ T
0

(
∂H
∂α (θ, s,Xs)

)2
ds.

For T1, we write

T1 =
ε

T

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs +

ε

T

∫ T

0

(
∂2H

∂α2
(θ, s,Xs)−

∂2H

∂α2
(θ, s, xs(α))

)
dWs.

Noting that ∂2Φ
∂x2 (β, x) is odd,

∂2H

∂α2
(θ, s, xs(α)) =

∂2V

∂α2
(α, xs(α)) +

∂Φ

∂x
(β, 0))

∂2xs
∂α2

(α, s).

This function is uniformly bounded thanks to Proposition 1. Therefore, using Lemma 3,

EθT 2
1 .

ε2

T 2
× (T + ε2T ) =

ε2

T
(1 + ε2) = o(1).

By Lemma 3, Eθ(|T2| . 1
T × ε

2T = ε2.
For the last and main term T3, we write (see (57)):

T3 = − 1

T

∫ T

0

[(
∂H

∂α
(θ, s,Xs)

)2

−
(
∂H

∂α
(θ, s, xs(α))

)2
]
ds

− 1

T

∫ T

0

[(
∂H

∂α
(θ, s, xs(α))

)2

−
(
∂H

∂α
(θ, x∗(α))

)2
]
ds−

(
∂H

∂α
(θ, x∗(α))

)2

.

For the first term, we use Lemma 3 to prove that it is oP (1). For the second term, we use that(
∂H
∂α (θ, s, xs(α))

)2 converges to
(
∂H
∂α (θ, x∗(α))

)2 with exponential rate and this implies that this
second term is o(1). Hence T3 tends to −

(
∂H
∂α (θ, x∗(α))

)2
.

Joining these results, we have proved that
ε2

T

∂2Λε,T
∂α2

(θ) tends to −
(
∂H
∂α (θ, x∗(α))

)2.
Let us now study

1

T

∂2Λε,T
∂β2

(θ). Using that
∂2H

∂β2
(θ, s,Xs) = −∂

2Φ

∂β2
(β,Xs − xs(α)) yields

1

T

∂2Λε,T
∂β2

(θ) = − 1

εT

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))dWs +

1

ε2T

∫ T

0

∂2Φ

∂β2
(β,Xs − xs(α))D(θ, s, ε,Xs)ds

− 1

ε2T

∫ T

0

(
∂Φ

∂β
(θ,Xs − xs(α))

)2

ds = S1 + S2 + S3.

The following relation is analogous to (64):

(65)
∂2Φ

∂β2
(β, x) = x

∂3Φ

∂β2∂x
(β, 0) + x2

∫ 1

0
(1− u)

∂4Φ

∂β2∂x2
(β, ux)du.

Substituting x by Xs − xs(α) = εgs(θ) + ε2Rε(s), we get that the main term of S1 is

S11 = − 1

εT

∫ T

0
(Xs − xs(α))

∂3Φ

∂β2∂x
(β, 0)dWs = OP (

1√
T

),

as, using Proposition 5,(i), EθS2
11 = OP (1/T ). For S2, we split as previously

D(θ, s, ε,Xs) = EθD(θ, s, ε,Xs) + D(θ, s, ε,Xs) − EθD(θ, s, ε,Xs) and find that the main term
of S2 is

S22 =
1

ε2T

∫ T

0
(Xs − xs(α))

∂3Φ

∂β2∂x
(β, 0)EθD(θ, s, ε,Xs)ds,
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where |EθS22| . ε using Corollary 1 and Theorem 2.
The limit is obtained by S3 whose main term is (see (64))

S33 = − 1

ε2T

∫ T

0

(
(Xs − xs(α))

∂2Φ

∂β∂x
(β, 0)

)2

ds = −
(
∂2Φ

∂β∂x
(β, 0)

)2
1

T

∫ T

0
g2
s(θ)ds+ oP (1).

Therefore, Proposition 5, (i) yields that S33 tends to −
(
∂2Φ
∂β∂x(β, 0)

)2
/(2(`(α, β)). Joining these

results, we get that the same holds for 1
T
∂2Λε,T
∂β2 (θ).

It remains to study the off diagonal term (ε/T )
∂2Λε,T
∂α∂β (θ). We have

ε

T

∂2Λε,T
∂α∂β

(θ) =
1

T

∫ T

0

∂2H

∂α∂β
(θ, s,Xs)dWs −

1

εT

∫ T

0
D(θ, s, ε,Xs)

∂2H

∂α∂β
(θ, s,Xs)ds

− 1

εT

(∫ T

0

∂H

∂β
(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
= T1 + T2 + T3

where
∂2H

∂α∂β
(θ, s,Xs) =

∂2Φ

∂x∂β
(β,Xs − xs(α))

∂xs
∂α

(α, s),
∂H

∂β
(θ, s,Xs) = −∂Φ

∂β
(β,Xs − xs(α)).

As before, the main term of T1 is 1
T

∫ T
0

∂2H
∂α∂β (θ, s, xs(α))dWs = 1

T

∫ T
0

∂2Φ
∂x∂β (β, 0)∂xs∂α (α, s)dWs.

Therefore, since ∂xs
∂α (α, s) is uniformly bounded, EθT 2

1 = 1
TO(1) and T1 = OP ( 1√

T
).

For T2, by Lemma 3, |EθT2| . 1
εT ε

2T = ε.

For T3, we have, using (64),

T3 = − ∂2Φ

∂β∂x
(β, 0)

1

T

∫ T

0
gs(θ)

∂H

∂α
(θ, s, xs(α))ds+ oP (1).

Now, setting h(s) = ∂H
∂α (θ, s, xs(α))− ∂H

∂α (θ, x∗(α), we have

1

T

∫ T

0
gs(θ)

∂H

∂α
(θ, s, xs(α))ds =

∂H

∂α
(θ, x∗(α))

1

T

∫ T

0
gs(θ)ds+

1

T

∫ T

0
gs(θ)h(s)ds.

Since xs(α)→ x∗(α), h(s)→ 0, Proposition 5 yields that both terms above converge to 0.
To conclude, we have obtained

ε

T

∂2Λε,T
∂β∂α

(θ) = oP (1).

The proof of Theorem 4 is now complete.2

Proof of Theorem 5 Let us set

(66) h(θ, s) =
∂V

∂α
(α, xs(α)) +

∂Φ

∂x
(β, 0)

∂xs
∂α

(α, s) =
∂H

∂α
(θ, s, xs(α)).

Here, for the convergence in distribution, it is enough to prove

ε
∂Λε,T
∂α

(θ) =

∫ T

0
h(θ, s)dWs + oP (1)(67)

1√
T

∂Λε,T
∂β

(θ) =
∂2Φ

∂β∂x
(β, 0))

1√
T

∫ T

0
gs(θ)dWs + oP (1).(68)
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Indeed, the bracket of the two stochastic integrals is equal, up to a constant, to 1√
T

∫ T
0 gs(θ)h(θ, s)ds.

We are in Case (2): using (17), it corresponds to ∂H
∂α (θ, x∗(α)) = 0. Therefore, by Proposition

1, h(θ, s) converges exponentially fast to ∂H
∂α (θ, x∗(α) = 0 and

∫ +∞
0

(
∂H
∂α (θ, s, xs(α))

)2
ds < +∞.

Proposition 5 yields that 1√
T

∫ T
0 gs(θ)h(θ, s)ds tends to 0.

Let us prove (67). We now have (see (56)):

ε
∂Λε,T
∂α

(θ) =

∫ T

0

∂H

∂α
(θ, s, xs(α))dWs +

∫ T

0

(
∂H

∂α
(θ, s,Xs)−

∂H

∂α
(θ, s, xs(α))

)
dWs

−1

ε

∫ T

0

∂H

∂α
(θ, s,Xs)D(θ, s, ε,Xs)ds = T1 + T2 + T3.(69)

Since Eθ(T 2
1 ) <∞, T1 →

∫ +∞
0

∂H
∂α (θ, s, xs(α))dWs as T →∞.

By Lemma 3, Eθ(T 2
2 ) . ε2T = o(1) under the condition ε

√
T → 0.

As
∫ +∞

0

∣∣∂H
∂α (θ, s, xs(α))

∣∣ ds < +∞, Lemma 3 (iii) yields that E|T3| . ε+ ε2T = o(1).
This achieves the proof of (67).
The study of 1√

T

∂Λε,T
∂α (θ) is similar to its study in Theorem 4.The proof of (68) is complete.

Now we study the limit of the normalized matrixD(2)
ε,TJε,T (θ)D

(2)
ε,T = −

 ε2 ∂
2Λε,T
∂α2 (θ) ε√

T

∂2Λε,T
∂β∂α (θ)

ε√
T

∂2Λε,T
∂β∂α (θ) 1

T
∂2Λε,T
∂β2 (θ)

 .

We have

ε2∂
2Λε,T
∂α2

(θ) = ε

∫ T

0

∂2H

∂α2
(θ, s,Xs)dWs −

∫ T

0

∂2H

∂α2
(θ, s,Xs)D(θ, s, ε,Xs)ds−

∫ T

0

(
∂H

∂α
(θ, s,Xs)

)2

ds

= T1 + T2 + T3.

For the first term, we write

T1 = ε

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs + ε

∫ T

0

(
∂2H

∂α2
(θ, s,Xs)−

∂2H

∂α2
(θ, s, xs(α))

)
dWs.

We have that ∂2H
∂α2 (θ, s, xs(α)) = ∂2V

∂α2 (α, xs(α))+ ∂Φ
∂x (β, 0))∂

2xs
∂α2 (α, s), which is uniformly bounded

on R+. Thus,

Eθ
(
ε

∫ T

0

∂2H

∂α2
(θ, s, xs(α))dWs

)2

. ε2T = o(1).

The second term of T1 is ruled by Lemma 3 (i) and is εoP (1). Next, Eθ|T2| . Tε2 by Lemma 3
(ii).

Eθ|
∫ T

0

∂2H

∂α2
(θ, s,Xs)D(θ, s, ε,Xs)ds| . ε2T.

Finally, we can check, using Lemma 3 (i), that the main term of T3 is, using (66),
∫ T

0 h2(θ, s)ds,
where h(θ, s) converges exponentially fast to 0. Therefore,∫ T

0

(
∂H
∂α (θ, s,Xs)

)2
ds→

∫ +∞
0 h2(θ, s)ds < +∞, so that

ε2∂
2Λε,T
∂α2

(θ)→ −
∫ +∞

0

(
∂H

∂α
(θ, s, xs(α))

)2

ds.



26 V. GENON-CATALOT, C. LARÉDO

The study of 1
T
∂2Λε,T
∂β2 (θ) is the same as for Theorem 4. It remains to study

ε√
T

∂2Λε,T
∂α∂β

(θ) =
1√
T

∫ T

0

∂2H

∂α∂β
(θ, s,Xs)dWs −

1

ε
√
T

∫ T

0
D(θ, s, ε,Xs)

∂2H

∂α∂β
(θ, s,Xs)ds

− 1

ε
√
T

(∫ T

0

∂H

∂β
(θ, s,Xs)

∂H

∂α
(θ, s,Xs)ds

)
= T1 + T2 + T3.

The proof is essentially analogous to the study of ∂2Λε,T
∂α∂β (θ) in the previous theorem. We point

out the differences.

The main term of T1 is
1√
T

∫ T

0

∂2Φ

∂x∂β
(β, 0)

∂xs
∂α

(α, s)dWs.

We are in Case (2) so that ∂xs
∂α (α, s) converges exponentially fast to dx∗

dα (α) = 0. Therefore,∫ +∞
0

(
∂xs
∂α (α, s)

)2
< +∞. Consequently, T1 =

1√
T
OP (1).

For T2, the main term is
1

ε
√
T

∫ T

0
D(θ, s, ε,Xs)

∂2H

∂α∂β
(θ, s, xs(α))ds.

Using that
∂2H

∂α∂β
(θ, s, xs(α)) =

∂2Φ

∂x∂β
(β, 0)

∂xs
∂α

(α, s) is integrable, we get by Lemma 3 (iii),

Eθ[T2| .
1

ε
√
T

(ε2 + ε3T ) = o(1).

It remains to study T3. Using (64) and (66),

T3 = − 1

ε
√
T

(∫ T

0

∂2Φ

∂x∂β
(β, 0)(Xs − xs(α))

∂H

∂α
(θ, s, xs(α))ds

)
ds+ oP (1)

= − ∂2Φ

∂x∂β
(β, 0)

1√
T

∫ T

0
gs(θ)h(θ, s)ds+ oP (1).

As h(θ, s)→ 0 as s tends to infinity, 1√
T

∫ T
0 gs(θ)h(θ, s)ds = oP (1) by Proposition 2.

We have obtained that
ε√
T

∂2Λε,T
∂β∂α

(θ) = oP (1). So the proof of Theorem 5 is complete. 2

Proof of Lemma 3.
Proof of (i) A Taylor expansion yields:

F (θ, s,Xs)− F (θ, s, xs(α)) = (Xs − xs(α))

∫ 1

0

∂F

∂x
(α, xs(α) + u(Xs − xs(α)))du.

Hence

(F (θ, s,Xs)−F (θ, s, xs(α)))2 ≤ 3C2ε2

(
(Xs − xs(α))2

ε2
(1 + sup

s≥0
|xs(α)|2c) + ε2c (Xs − xs(α))2+2c

ε2+2c

)
.

By Theorem 2, we get, using that s→ xs(α) is uniformly bounded on R+ by B(α),
(70)

Eθ
∫ T

0
(F (θ, sXs)− F (θ, s, xs(α)))2 ds ≤ 3C2ε2T

(
δ(α, 1)(1 +B2c(α)) + ε2cδ(α, 1 + c)

)
= C1(α, F )ε2T.

This achieves the proof of (i).



INFERENCE FOR MCKEAN-VLASOV MODELS 27

Proof of (ii) For the second inequality, we split

Eθ
∫ T

0
F (θ, s,Xs)Ds(θ, s, ε,Xs)ds = A1 +A2 +A3 +A4, with

A1 = Eθ
∫ T

0
F (θ, s, xs(α))EθD(θ, s, ε,Xs)ds,

A2 = Eθ
∫ T

0
F (θ, s, xs(α)) (D(θ, s, ε,Xs)− EDθ(θ, s, ε,Xs)) ds,

A3 = Eθ
∫ T

0
(F (θ, s,Xs)− F (θ, s, xs(α)))EθD(θ, s, ε,Xs)ds

A4 = Eθ
∫ T

0
(F (θ, s,Xs)− F (θ, s, xs(α))) (D(θ, s, ε,Xs)− EDθ(θ, s, ε,Xs)) ds

Since xs(α) is uniformly bounded byB(α), we get, using that F (θ, s, x) ≤ C(1+|x|c), |F (θ, s, xs(α))| ≤
C(1 +Bc(α)) = C(α). Thererore, using Corollary 1

|A1| ≤ sup
s≥0
|EθD(θ, s, ε,Xs)|

∫ T

0
|F (θ, s, xs(α))| ds ≤ ε2T ×

[
sup
s≥0
|F (θ, s, xs(α))| ds

]
≤ C(α)ε2T

|A2| ≤
∫ T

0
|F (θ, s, xs(α))|Eθ |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)| ds

≤ ε3[

∫ T

0
|F (θ, s, xs(α))|

[
Eθε−6 |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)|2

]1/2
ds . ε3T.

For A3, we have using (i),

|A3| ≤ sup
s≥0
|EθD(θ, s, ε,Xs)|×Eθ

[
T

∫ T

0
|F (θ, s,Xs)− F (θ, s, xs(α)|2

]1/2

ds . ε2
√
T×(ε2T )1/2 . ε3T.

For A4, we write:

|A4| ≤
∫ T

0
Eθ [|F (θ, s,Xs)− F (θ, s, xs(α))|| (D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)) |] ds

≤ ε3

∫ T

0
ds
[
Eθ |F (θ, s,Xs)− F (θ, s, xs(α))|2 Eθ

∣∣ε−6D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)
∣∣2]1/2

.

We have, using (i), Eθ |F (θ, s,Xs)− F (θ, s, xs(α))|2 .
[
Eθ(Xs − xs(α))2

]1/2 ≤ ε.
Therefore, by Theorem 2 and Corollary 1 , |A4| . ε4T.
Finally, joining these inequalities yield (ii).

Proof of (iii) Since
∫∞

0 |F (θ, s, xs(α))| ds <∞, we can bound differently A1 and A2.

|A1| ≤ sup
s≥0
|EθD(θ, s, ε,Xs)|

∫ T

0
|F (θ, s, xs(α))| ds . ε2.

Analogously, for A2,

|A2| ≤ [

∫ T

0
|F (θ, s, xs(α))|Eθ |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)| ds

≤ ε3 sup
s≥0

(
Eθ[ε−6 |D(θ, s, ε,Xs)− EθD(θ, s, ε,Xs)|2]

)1/2
[

∫ +∞

0
|F (θ, s, xs(α))| ds . ε3.
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The terms A3, A4 are bounded as previously. Thus |A1 +2 +A3 +A4| . ε2 + ε3T.

It remains to look at the three functions H(θ, s, x), ∂H∂α (θ, s, x), ∂
2H
∂α2 (θ, s, x). Using [S1]-[S2], as

B = supα,t |xt(α)| < +∞, we easily check (55) for H(θ, s, x). By [S2] and Proposition 1, we also
have supα,t |∂xt∂α (α, t)| < +∞ and supα,t |∂

2xt
∂α2 (α, t)| < +∞. Therefore, we can check that (55)

holds for the two other functions. 2

Proof of Lemma 2 We have to study under Pθ0 :

ε2Λε,T (α, β) =

∫ T

0
H(θ, s,Xs)(V (α0, Xs)ds− b(θ0, s,Xs))ds+ εdWs −

1

2

∫ T

0
H2(θ, s,Xs)ds

= −1

2

∫ T

0
(H(θ, s,Xs)− V (α0, Xs))

2ds+
1

2

∫ T

0
V 2(α0, Xs)ds+

4∑
i=1

Ti

where, using (15),(11)

T1 = ε

∫ T

0
H(θ, s,Xs)dWs; T2 =

∫ T

0
H(θ, s,Xs)D(θ0, s, ε,Xs)ds

T3 = −
∫ T

0
(H(θ, s,Xs)−H(θ, s, xs(α0)))Φ(β0, Xs − xs(α0))ds

T4 = −
∫ T

0
H(θ, s, xs(α0))Φ(β0, Xs − xs(α0))ds.

Let us consider the first term of ε2Λε,T (α, β). It satisfisfies, using Lemma 3 (i) that , under the
condition ε

√
T → 0,∫ T

0 (H(θ, s,Xs)− V (α0, Xs))
2ds =

∫ T
0 (H(θ, s, xs(α0))− V (α0, xs(α0)))2ds+ oP (1).

Now, define the limit of its integrand term as s→∞,

(71) h∗(α, α0, β) = V (α, x∗(α0))− Φ(β, x∗(α0)− x∗(α)).

The two cases pointed out in Section 3.3 occur here.
Case (1): For all β, h∗(α, α0, β) 6= 0, and 1

T

∫ T
0 (H(θ, s, xs(α0))−V (α0, xs(α0)))2ds→ (h∗(α, α0, β))2.

Case (2): For all β, h∗(α, α0, β) = 0, and
∫∞

0 (H(θ, s, xs(α0))− V (α0, xs(α0)))2ds <∞.

The second term satisfies, in both cases
∫ T

0 V 2(α0, Xs)ds =
∫ T

0 V 2(α0, xs(α0)))ds + oP (1) and
this last integral converges, as T →∞ to

∫∞
0 V 2(α0, xs(α0)))ds <∞.

Consider now the remainder terms Ti of ε2Λε,T (α, β).
We have Eθ0T 2

1 = ε2Eθ0
∫ T

0 [V (α,Xs) − Φ(β,Xs − xs(α))]2ds. Using Lemma 3 (i) and similar
tools detailed in the proof yields that Eθ0T 2

1 . ε2T. Therefore, under the condition ε
√
T = o(1)

we find that T1 = oP (1), T2 = oP (1). For T3, applying Lemma 3 (i) yields that
Eθ0

∫ T
0 [H(θ, s,Xs)−H(θ, s, xs(α0)))Φ(β0, Xs − xs(α0)])2ds . Tε2 and Eθ0 |T3| = ε

√
T = oP (1).

For T4, using Theorem 3, Φ(β0, Xs − xs(α0)) = ∂Φ
∂x (β, 0)(εgs(θ0) + ε2Rεs(θ0)).

Therefore T4 = ε
∂Φ

∂x
(β, 0)

∫ T

0
H(θ, s, xs(α0))gs(θ0)ds+ oP (1).

The limit, as s → ∞ of H(θ, s, xs(α0)) is h∗(α0, α, β) defined in (71). Therefore, we have to
study T4

T in Case (1) and T4 in Case (2). We have

T4 = ε
∂Φ

∂x
(β, 0)

(
h∗(α, α0, β)

∫ T

0
gs(θ0)ds+

∫ T

0
(H(θ, s, xs(α0))− h∗(α, α0, β))gs(θ0)ds

)
.
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Therefore, in Case (1), applying Proposition 5 (ii) and (iii) yields that
T4

T
= εoP (1).

In Case (2), for all β, h∗(α0, α, β) = 0 and Proposition 5 (iii) yields that T4 = ε
√
ToP (1) = oP (1).

Consider now ε2Λε,T (α0, β). Noting that h∗(α0, α0, β) = 0, we have that T4 = oP (1). Using
that

∫ T
0 [Φ(β,Xs − xs(α))]2ds = OP (ε2T ), we get

ε2Λε,T (α0, β) = −1

2

∫ T

0
[Φ(β,Xs − xs(α))]2ds+

1

2

∫ T

0
V 2(α0, Xs)ds+ oP (1)

=
1

2

∫ T

0
V 2(α0, Xs)ds+ oP (1),

Joining these results yields that, using (71),
Case (1): ε2

T (Λε,T (α, β)− Λε,T (α0, β))→ −1
2(h∗(α, α0, β))2 = Λ

(1)
1 (α, α0, β).

Case (2): Set Λ
(2)
1 (α, α0, β) = −1

2

∫ +∞
0 [V (α, xs(α0))−V (α0, xs(α0))−Φ(β, xs(α0)−xs(α))]2ds.

Then, ε2(Λε,T (α, β)− Λε,T (α0, β))→ Λ
(2)
1 (α, α0, β).

The uniformity of the convergence is obtained using that Θα,Θβ are compact sets, Assumptions
[S1], [S2] and Remarks 3, 5.

Finally, it remains to study 1
T (Λε,T (α0, β)− Λε,T (α0, β0)).

ε2Λε,T (α0, β) =

∫ T

0
H(α0, β, s,Xs)[(H(θ0, s,Xs)−D(θ0, s, ε,Xs))ds+ εdWs]

− 1

2

∫ T

0
H2(α0, β, s,Xs)ds = −1

2

∫ T

0
(H(α0, β, s,Xs)−H(θ0, s,Xs))

2ds

+ ε

∫ T

0
H(α0, β, s,Xs)dWs −

∫ T

0
H(α0, β, s,Xs)D(θ0, s, ε,Xs)ds.

Using that H(α0, β, s,Xs)−H(θ0, s,Xs) = −(Φ(β,Xs − xs(α0))− Φ(β0, Xs − xs(α0))) and

Φ(β,Xs − xs(α0)) =
∂Φ

∂x
(β, 0)(Xs − xs(α0)) +OP (ε) = ε

∂Φ

∂x
(β, 0)gs(θ0) + ε2OP (1).

Therefore,

1

T
(Λε,T (α0, β)− Λε,T (α0, β0)) = − 1

2T

∫ T

0
(
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0))2g2

s(θ0)ds+ T1 + T2 + εOP (1),

T1 = 1
εT

∫ T
0 (H(α0, β, s,Xs)−H(θ0, s,Xs))dWs, T2 = − 1

ε2T

∫ T
0 (H(α0, β, s,Xs)−H(θ0, s,Xs))D(θ0, s, ε,Xs)ds.

For T1, we have, using Theorem 2,
Eθ0T 2

1 = 1
ε2T 2Eθ0

∫ T
0 (H(α0, β, s,Xs) − H(θ0, s,Xs))

2ds . 1
ε2T 2T supEθ0((Xs − xs(α0))2) . 1

T .
Therefore T1 = oP (1).
For T2, set F (Xs) = H(α0, β, s,Xs)−H(θ0, s,Xs). Then, splitting D(θ0, s, ε,Xs) as in the proof
of Lemma 3,∫ T

0 F (Xs)D(θ0, s, ε,Xs)ds =
∫ T

0 F (Xs)Eθ0D(θ0, s, ε,Xs)+
∫ T

0 F (Xs)(D(θ0, s, ε,Xs)−Eθ0D(θ0, s, ε,Xs))ds.
Using that Eθ0 |

∫ T
0 |F (Xs)|ds ≤

√
T (Eθ0

∫ T
0 F 2(Xs)ds)

1/2 ≤ εT , we get
Eθ0 |

∫ T
0 F (Xs)Eθ0D(θ0, s, ε,Xs)ds| ≤ sups |Eθ0D(θ0, s, ε,Xs)| Eθ0 |

∫ T
0 |F (Xs)|ds . ε3T .
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Now, Eθ0 |F (Xs)(D(θ0, s, ε,Xs)− Eθ0D(θ0, s, ε,Xs))| ≤ ε3[Eθ0(Xs − xs(α0)2]1/2O(1).
Hence, Eθ0 |

∫ T
0 F (Xs)(D(θ0, s, ε,Xs)− Eθ0D(θ0, s, ε,Xs))ds| ≤ ε4T .

These two inequalities yield that T2 = oP (1) and finally, as T →∞,

1

T
(Λε,T (α0, β)− Λε,T (α0, β0)) = − 1

2T

∫ T

0
[
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)]2g2

s(θ0)ds+ oP (1)

→ − 1

2`(α0, β0)
[
∂Φ

∂x
(β, 0)− ∂Φ

∂x
(β0, 0)]2 = Λ2(α0, β, β0).

Moreover, we can prove that this convergence is uniform with respect to β ∈ Θβ . 2

Proof of Theorem 6. We just give here a sketch of the proof. To get (i), we prove the
three steps (1)-(3) of Gloter and Sorensen (2009), Section 4.4.1, that we have recalled at the
beginning of Section 3.4.
Proof of (1). In Case (1), the fact that (ε2/T )(Λε,T (α, β) − Λε,T (α0, β)) →Pθ0 Λ

(1)
1 (α, α0, β),

uniformly with respect to (α, β) where (α, β)→ Λ
1)
1 (α, α0, β) is continuous, < 0, and = 0 iff α =

α0 implies the consistency of α̂ε,T .
Analogously, in Case (2), the fact that ε2(Λε,T (α, β)−Λε,T (α0, β))→Pθ0 Λ

(2)
1 (α, α0, β), uniformly

with respect to (α, β) implies the consistency of α̂ε,T .
Proof of (2). By (1), α̂ε,T is consistent thus Pθ0(α̂ε,T ∈ Θα) → 1 as ε tends to 0. On the set
(α̂ε,T ∈ Θα), we have:

0 =
∂Λε,T
∂α

(α̂ε,T , β̂ε,T ) = Vε,T + (α̂ε,T − α0)Nε,T , where

Vε,T =
∂Λε,T
∂α

(α0, β̂ε,T ), Nε,T =

∫ 1

0

∂2Λε,T
∂α2

(α0 + t(α̂ε,T − α0), β̂ε,T )dt.

Thus,

√
Tε−1(α̂ε,T − α0) = −

(ε/
√
T )Vε,T

(ε2T )Nε,T
for Case (1), ε−1(α̂ε,T − α0) = −

εVε,T
ε2Nε,T

for Case (2).

We must prove that (ε/
√
T )Vε,T and (ε2/T )Nε,T for Case (1), εVε,T and ε2Nε,T for Case (2),

are tight under Pθ0 . This can be done using the same tools as in Theorems 4 and 5, and using
the assumption that ∂Φ

∂x (β, 0) is uniformly bounded on Θβ and that β̂ε,T ∈ Θβ .

Proof of (3). To obtain the consistency of β̂ε,T , it is enough to prove that:

(72)
1

T
(Λε,T (α̂ε,T , β)− Λε,T (α̂ε,T , β0))→ Λ2(α0, β, β0)

uniformly in β.
Consider first Case (1). Using (53), we have, setting αu = α0 + u(α̂ε,T − α0),

Λε,T (α̂ε,T , β)− Λε,T (α̂ε,T , β0) = (Λε,T (α0, β)− Λε,T (α0, β0)) +

√
T

ε
(α̂ε,T − α0)

ε√
T
R(ε, θ, T ),

with R(ε, θ, T ) =

∫ 1

0
(
∂Λε,T
∂α

(αu, β)−
∂Λε,T
∂α

(αu, β0))du

=

√
T

ε

(∫ 1

0

(`(αu, β)− `(αu, β0))

`(αu)

∂V

∂α
(αu, x

∗(αu))du
WT√
T

+ oP (1)

)
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Now, since α̂ε,T is consistent, the integral term converges to a constant C(θ0, β) which is bounded.
Therefore 1

T 3/2 εR(ε, θ, T ) = WT

T 3/2C(θ0, β) + 1
T oP (1) = oP (1).

Using now the tightness of ε−1
√
T (α̂ε,T − α0) yields (72). The uniformity in β follows from the

continuity of θ → `(θ).
For Case (2), we use (66)-(67) and

R(ε, θ, T ) =
1

ε
(

∫ T

0

∫ 1

0
(h(αu, β, s)− h(αu, β0, s)du)dWs + oP (1))

Therefore 1
T εR(ε, θ, T ) = 1

T

∫ T
0 dWs(

∫ 1
0 (h(αu, β, s)− h(αu, β0, s)du) + 1

T oP (1) Since α̂ε,T is con-
sistent, the integral term converges to a function F (θ0, β, s) which is bounded uniformly in s.
Hence Eθ0( 1

T εR(ε, θ, T ))2 = 1
T 2

∫ T
0 dsEθ0(

∫ 1
0 (h(αu, β, s)− h(αu, β0, s)du)2) . 1

TO(1). Hence, we
get that (72) also holds in Case (2).
Under the identifiability asssumption for β, we get that in both cases the consistency of β̂ε,T .

The proof of the asymptotic normality follows, by standard tools from (i) and Theorems 4
and 5. 2

References

[1] Altmeyer, R. and Reiss, M. (2020). Nonparametric estimation for linear SPDEs from local measurements.
Annals of Applied Probabilty to appear.

[2] Amorino C. and Gloter, A. (2020). Contrast function estimation for the drift parameter of ergodic jump
diffusion process. Scand. J. Statist. to appear.

[3] Ball, F. and Sirl D. (2020) Stochastic SIR in Structured Populations, in Stochastic Epidemic Models with
inference, Part II, 123-240. Britton,T. and Pardoux, E., Editors. Lecture Notes in Mathematics 2255,
Mathematical Biosciences Subseries. Springer.

[4] Baladron, J., Fasoli, D., Faugeras, O. and Touboul, J. (2012). Mean field description and propagation of chaos
in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. Journal of Mathematical Neuroscience 2:10,
1-50.

[5] Benachour, S., Roynette, B., Talay, D. and Vallois, P. (1998a). Nonlinear self-stabilizing processes - I Exis-
tence, invariant probability, propagation of chaos. Stoch. Proc. Appl. 75, 173-201.

[6] Benachour, S., Roynette, B. and Vallois, P. (1998b). Nonlinear self-stabilizing processes - II Convergence to
invariant probability. Stoch. Proc. Appl. 75, 203-224.

[7] Benedetto, D., Caglioti, E. and Pulverenti, M. (1997). A kinetic equation for granular media. Mathematical
Modelling and Numerical Analysis, 31 (5), 615-641.

[8] Britton,T. and Pardoux, E., Editors (2020) Stochastic Epidemic Models with Inference. Lecture Notes in
Mathematics 2255, Mathematical Biosciences Subseries. Springer.

[9] Cialenco, I. (2018). Statistical Inference for SPDEs: an Overview. Statistical Inference for Stochastic Pro-
cesses, 21, 309-329.

[10] Della Maestra, L. and Hoffmann, M. (2020). Nonparametric estimation for interacting particle systems:
McKean-Vlasov models. Preprint arXiv:2011.03762 [math.ST].

[11] Comte, F. and Genon-Catalot, V. (2020). Non parametric drift estimation for i.i.d. paths of stochastic
differential equations. The Annals of Statistics 48, 3336-3365.

[12] Comte, F., Genon-Catalot, V. and Rozenholc, Y. (2007). Penalized nonparametric mean square estimation
of the coefficients of diffusion processes. Bernoulli, 13, 514-543.

[13] Dalalyan, A. (2005). Sharp adaptive estimation of the drift function for ergodic diffusions. The Annals of
Statistics, 33, 2507-2528.

[14] Dalalyan, A. and Reiss, M. (2007). Asymptotic statistical equivalence for ergodic diffusions: the multidimen-
sional case. Probab. Theory Relat. Fields, 137, 25-47.

[15] Delattre M., Genon-Catalot V. and Samson A. (2013). Maximum likelihood estimation for stochastic differ-
ential equations with random effects. Scandinavian Journal of Statistics, 40, 322-343.

[16] Delattre M., Genon-Catalot V. and Larédo, C. (2018). Parametric inference for discrete observations of
diffusion processes with mixed effects. Stochastic processes and their Applications, 128, 1929-1957.

[17] Gärtner, J. (1988). On the McKean-Vlasov limit for interacting diffusions. Math. Nachr., 137, 197-248.



32 V. GENON-CATALOT, C. LARÉDO

[18] Genon-Catalot, V. (1990). Maximum contrast estimation for diffusion processes from discrete observations,
Statistics, 21, 99-116.

[19] Genon-Catalot V. and Larédo, C. (2014). Asymptotic equivalence of nonparametric diffusion and Euler
scheme experiments, The Annals of Statistics, 42, 1145-1165.

[20] Genon-Catalot V. and Larédo, C. (2020). Probabilistic properties and parametric inference of small variance
nonlinear self-stabilizing stochastic differential equation. Preprint Hal-02955171.

[21] Giesecke, K., Schwenkler, G. and Sirignano, J.A. (2020). Inference for large financial systems. Mathematical
Finance 30, 3-46.

[22] Gloter, A. and Sørensen, M. (2009). Estimation for stochastic differential equations with a small diffusion
coefficient. Stoch. Proc. Appl. 119, 679-699.

[23] Gobet, E., Hoffmann, M. and Reiss, M. (2004). Nonparametric estimation of scalar diffusions based on low
frequency data. The Annals of Statistics, 32, 2223-2253.

[24] Guy, R., Larédo, C. and Vergu, E. (2014). Parametric inference for discretely observed multidimensional
diffusions with small diffusion coefficient. Stoch. Proc. Appl. 124, 51-80.

[25] Herrmann, S., Imkeller, P. and Peithmann, D. (2008). Large deviations and a Kramers’ type low for self-
stabilizing diffusions. The Annals of Applied Probability, 18, 1379-1423.

[26] Hirsch M.W. and Smale S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra. Academic
Press, New York San Francisco London.

[27] Hoffmann, M. (1999). Adaptive estimation in diffusion processes. Stoch. Proc. and Appl. 79, 135-163.
[28] Höpfner, R., (2014). Asymptotic Statistics with a view to stochastic processes. Walter de Gruyter,

Berlin/Boston.
[29] Iacus, S. M., (2010). Simulation and inference for stochastic differential equations. With R examples. Springer.
[30] Kessler, M., Lindner, A. and Sørensen, M., Editors (2012). Statistical methods for stochastic differential

equations. CRC press. Taylor & Francis Group. Boca Raton.
[31] Kutoyants, Y.A., (1984). Parameter estimation for stochastic processes. Berlin: Heldermann.
[32] Kutoyants, Y.A., (2004). Statistical inference for ergodic diffusion processes. Springer, London.
[33] Larédo, C. (1990). A sufficient condition for asymptotic sufficiency of incomplete observations of a diffusion

process. The Annals of Statistics 18, 1158-1171.
[34] Larédo, C. (2020). Statistical Inference for epidemic Processes in a Homogeneous Community. Part IV 363-

472. Britton,T. and Pardoux, E., Editors. Lecture Notes in Mathematics 2255, Mathematical Biosciences
Subseries. Springer.

[35] Kasonga, R.A. (1990). Maximum likelihood theory for large interacting systems. SIAM Journal on Applied
Mathematics, 50, 865-875.

[36] Mac Kean, H.P., Jr (1966). A class of Markov processes associated with nonlinear parabolic equation. Pro-
ceedings NatL. Acad. Sci. U.S.A. 56, 1907-1911.

[37] Malrieu, F. (2003). Convergence to equilibrium for granular media equations and their Euler schemes. Annals
of applied Probability 13, 540-560.

[38] Masuda, H. (2007). Ergodicity and exponential beta-mixing for multidimensional diffusions with jumps.
Stoch. Proc. and Appl., 117, 35-56.

[39] Masuda, H. (2019). Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process.
Stoch. Proc. Appl. 129, 1013-1059.

[40] Méléard, S. (1996). Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltz-
mann models. In Probabilistic models for nonlinear partial differential equations, Lecture Notes in Mathe-
matics 1627, 42-95, Springer.

[41] Molginer, A. and Edelstein-Keshet L. (1999). A non-local model for a swarm. J. Math. Biol. 38 534-570.
[42] Piccini, U., de Gaetano, A. and Ditlevsen, S. (2010). Stochastic differential mixed-effects models. Scand. J.

Statist. 37, 67-90.
[43] Schmisser, E. (2014). Non-parametric adaptive estimation of the drift for a jump diffusion process. Stoch.

Proc. Appl., 124, 883-914.
[44] Sørensen, M. and Uchida, M. (2003). Small diffusion asymptotics for discretely sampled stochastic differential

equations. Bernoulli 9, 1051-1069.
[45] Sznitman, A.-S. (1991). Topics in propagation of chaos. Ecole d’été de probabilités de Saint-Flour XIX-1989.

Lecture Notes in Math. 1464, 165-251. Springer, Berlin.
[46] Yoshida, N. (1992). Estimation for diffusion processes from discrete observation. J. Multivariate Analysis,

41, 220-242.



INFERENCE FOR MCKEAN-VLASOV MODELS 33

[47] Yoshida, N. (1992). Asymptotic expansions of maximum likelihood estimators for small diffusions via the
theory of Malliavin-Watanabe. Probability Theory and Related Fields, 92, 275-311.


