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Abstract

We present a non-commutative algorithm for the multiplication of
a 2× 2 block-matrix by its adjoint, defined by a matrix ring anti-homo-
morphism. This algorithm uses 5 block products (3 recursive calls and 2
general products)over C or in positive characteristic. The resulting algo-
rithm for arbitrary dimensions is a reduction of multiplication of a matrix
by its adjoint to general matrix product, improving by a constant factor
previously known reductions. We prove also that there is no algorithm
derived from bilinear forms using only four products and the adjoint of
one of them. Second we give novel dedicated algorithms for the com-
plex field and the quaternions to alternatively compute the multiplication
taking advantage of the structure of the matrix-polynomial arithmetic in-
volved. We then analyze the respective ranges of predominance of the
two strategies. Finally we propose schedules with low memory footprint
that support a fast and memory efficient practical implementation over a
prime field.
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1 Introduction

Volker Strassen’s algorithm [19], with 7 recursive multiplications and 18 addi-
tions, was the first sub-cubic time algorithm for matrix product, with a cost
of O

(
n2.81

)
. Summarizing the many improvements which have happened since

then, the cost of multiplying two arbitrary n× n matrices over a ring R will
be denoted by MMR

ω (n) = O(nω) ring operations where 2 < ω ≤ 3 is any feasi-
ble exponent for this operation (see [17] for the best theoretical estimates of ω
known to date).

We consider here the computation of the product of a matrix by trans-
pose A ·Aᵀ or by its conjugate transpose A ·Aᵀ

, which we handle in a unified
way as the product A · φ (A) where φ is a matrix anti-homomorphism. In the
rest of the paper, φ (A) will be referred to as the adjoint of A. For this compu-
tation, the natural divide and conquer algorithm, splitting the matrices in four
quadrants, will use 6 block multiplications (as any of the two off-diagonal blocks
can be recovered from the other one).We propose instead a new algorithm using
only 5 block multiplications, for any antihomomorphism φ, provided that the
base ring supports the existence of skew unitary matrices.
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For this product, the best previously known cost bound was equivalent
to 2

2ω−4MMω(n) over any field (see [6, § 6.3.1]). With our algorithm, this

product can be computed in a cost equivalent to 2
2ω−3MMω(n) ring operations

when there exists a skew-unitary matrix. Our algorithm is derived from the
class of Strassen-like algorithms multiplying 2× 2 matrices in 7 multiplications.
Yet it is a reduction of multiplying a matrix by its transpose to general matrix
multiplication, thus supporting any admissible value for ω. By exploiting the
symmetry of the problem, it requires about half of the arithmetic cost of general
matrix multiplication when ω is log2 7.

This paper extends the results of [7] with the following improvements:
1. we generalize the case of the transposition in [7, Algorithm 2] to arbitrary

antihomomorphism, including the Hermitian transposition.
2. Our algorithm uses 5 multiplications and the (hermitian) transpose of one

these blocks. In [7] a Gröbner basis parameterization is used to search for
algorithms, or prove by exhaustive search that there are no better algo-
rithm, in the Strassen orbit. We partially address here the more general
result that there is no algorithm derived from bilinear forms, with fewer
products, by proving the inexistence of an algorithm with four products
and the (hermitian) transpose of one of them.

3. In [7] the algorithm is shown to be efficient over C, for a range of ma-
trix multiplication exponents (including all the feasible ones), and for any
positive characteristic field, unconditionally. We extend this analysis to
the case for the Hermitian transpose: while our five-products algorithm
is unusable due to the inexistence of skew unitary matrices over C, we
propose a 2M algorithm, adapted from the 3M algorithm for the product
of complex matrices.

4. Finally, we propose novel dedicated algorithms for the multiplication of a
matrix by its transpose or conjugate transpose over the algebra of quater-
nions (over R or any commutative field), improving on the dominant term
of the state of the art complexity bounds for these problems.

After a introducing the terminology in Section 2, we will present in Sec-
tion 3 the main recursive algorithm computing the product of a matrix by its
adjoint in 5 block products provided that a skew unitary matrix is given. We
survey in Section 4 the most classical instances for the base field to support
the existence of skew unitary matrices. We then investigate in Section 5 the
minimality of five products for the computing the product of a 2× 2 matrix by
its hermitian transpose: applying de Groote’s technique enables us to state this
result partially, for all algorithms using up to one symmetry between a product
and its adjoint. Section 6 explores alternative approaches offered by the struc-
ture of polynomial arithmetic, when the field is an extension. This includes a
new 2M algorithm in Section 6.1 and new algorithms over the algebra of quater-
nions in Section 6.2. Lastly, we discuss on an implementation of the recursive
algorithm for the product of a matrix by its transpose in Section 7.
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2 Preliminaries

To unify the notion of transposition and conjugate transposition, we use the for-
malism of antihomomorphisms and of involutive antihomomorphisms as recalled
in the following definitions.

Definition 1. Let R,S be two rings, φ : R→ S is a ring antihomomorphism
if and only if, for all (x, y) in R×S:

φ(1R) = 1S, (1a)

φ(x+ y) = φ(x) + φ(y), (1b)

φ(xy) = φ(y)φ(x). (1c)

From this, one can define a matrix antihomomorphism by induction, as
shown in Definition 2.

Definition 2. Over a ring R, an involutive matrix antihomomorphism is a
family of applications φm,n : Rm×n → Rn×m for all (m,n) in N2 satisfying for
additional (`, k) in N2 and for all A and A′ in Rm×n, for all M in Rn×k, for
all B in Rm×k, for all C in R`×n and for all D in R`×k the following relations:

φm,n ◦ φn,m = I, (2a)

φm,n(A+A′) = φm,n(A) + φm,n(A′), (2b)

φm,k(A ·M) = φn,k(M) · φm,n(A), (2c)

φm+`,n+k

([
A B
C D

])
=

[
φm,n(A) φ`,n(C)
φm,k(B) φ`,k(D)

]
. (2d)

For the convenience, we will denote all applications of this family by φ, as
the dimensions are clear from the context. This definition implies the following:

Lemma 3. For all A in Rm×n let B, be φ (A). Then for all suitable (i, j) the
coefficient bij is φ(aji).

Proof. By induction, using Equation (2d): if m = n = 1, then φ (A) = [φ(a11)].
Then assume the property is true for all A ∈ Rm×n with m,n ≤ N , and
consider a matrix A in R(N+1)×(N+1). Applying Equation (2d) on the block

decomposition A =

[
A11 a12
a21 a22

]
where A11 is in RN×N yields the relations:

φ (a) =

[
φ (A11) φ (a21)
φ (a12) φ(a22)

]
= [φ(aji)]ij (3)

by induction hypothesis. The case of matrices in Rm×(N+1) and R(N+1)×n is
dealt with similarly, using 0-dimensional blocks a21 or a12 respectively.

Lemma 4. For all α in R and for all A in Rm×n, φ (αA) = φ (A)φ (α).
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Proof. By Lemma 3, φ (αIm) = φ(α)Im = Imφ(α). Then by Equation (2c), the
relations φ (αA) = φ ((αIm)A) = φ (A)φ (αIm) = φ (A)φ(α) hold.

The following Lemma 5 shows that Definition 2 is a natural extension of a
ring antiendomorphism for matrices.

Lemma 5. An involutive matrix antihomomorphism is a ring antiendomor-
phism on its base ring (seen as the ring of 1×1 matrices).

Proof. Equations (2b) and (2c) directly imply Equations (1b) and (1c) respec-
tively when m = n = k = 1. Then, we have that φ(1) = φ(1) · 1. Therefore
φ(φ(1)) = φ(φ(1) ·1) and 1 = φ(1)φ(φ(1)) = φ(1) ·1 by Equations (2a) and (2c).
This right hand side is equal to that of the first equation, thus proving the
equality of the left hand sides and Equation (1a).

Definition 2 gathers actually all the requirements for our algorithm to work
in classical hermitian or non-hermitian cases:

Examples 6. For matrices over a commutative ring,

• the matrix transpose with φ (A) = Aᵀ and

• the matrix conjugate transpose, φ (A) = AH ,

are two examples of matrix anti-homomorphisms. However, for instance, trans-
position over the quaternions is a counter-example as the non-commutativity
implies there that in general (A ·B)

ᵀ 6= Bᵀ ·Aᵀ.

Definition 7. The image φ (A) of a matrix A by an antihomomorphism is called
the adjoint of A.

Definition 8. Let A ∈ Rm×n, we denote respectively by Low (A) and Up (A)
the m× n lower and upper triangular parts of A, namely the matrices L and U
verifying

• Lij = aij for i ≥ j and Lij = 0 otherwise,

• Uij = aij for i ≤ j and Uij = 0 otherwise.

Lemma 9. If φ (A) = A in Rn×n, then Up (A) = φ (Low (A)).

Proof. Applying Lemma 3, the coefficients uij of U = φ (Low (A)) for 0 < i ≤ j
satisfy uij = φ(aji). Now if φ (A) = A, we have uij = aij for 0 < i ≤ j and
uij = 0 otherwise, as φ (0) = 0, by Equation (2b). Hence U = Up (A).

Definition 10 (Skew-unitary). A matrix Y in Rn×n is skew-unitary relatively
to a matrix antihomomorphism φ if the following relation holds:

Y · φ (Y ) = −In. (4)

For the cost analysis, we will also need the following variant of the Mas-
ter Theorem, reflecting the constant in the leading term of the computed cost
bound.
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Lemma 11. Let T (n) be defined by the recurrence T (n) = aT (n/2) + b
(
n
2

)α
+

o(nα), where 0 ≤ log2 a < α. Then T (n) = b
2α−an

α + o(nα).

Proof.

T (n) = alog2 nT (1) +

log2(n)−1∑
i=0

aib
( n

2i+1

)α
+ o
(( n

2i

)α)

= nlog2 aT (1) +
b

2α
nα

log2(n)−1∑
i=0

( a
2α

)i
+ o(nα) =

b

2α − a
nα + o(nα).

3 An algorithm for the product of a matrix by
its adjoint with five multiplications

We now show how to compute the product of a matrix by its adjoint with
respect to an involutive antihomomorphism in only 5 recursive multiplications
and 2 multiplications by any skew-unitary matrix. This is a generalization of [7,
Algorithm 2] for any involutive antihomomorphism.

We next give Algorithm 12 for even dimensions. In case of odd dimensions,
padding or static/dynamic peeling can always be used [3].

Theorem 13. Algorithm 12 is correct. Moreover, if any two n × n matri-
ces over a ring R can be multiplied in MMR

ω (n) = O(nω) ring operations for
ω > 2, and if there exist a skew-unitary matrix which can be multiplied to
any other matrix in o(nω) ring operations then Algorithm 12 requires fewer
than 2

2ω−3MMR
ω (n) + o(nω) ring operations.

Proof. For the cost analysis, Algorithm 12 is applied recursively to compute
three products P1, P2 and P7, while P4 and P5 are computed in MMR

ω (n) using
the general matrix multiplication algorithm. The second hypothesis is that
applying the skew-unitary matrix Y to a n× n matrix costs Y (n) = o(nω).
Then applying Remark 15 thereafter, the cost T (n) of Algorithm 12 satisfies:

T (n) ≤ 3T (n/2) + 2MMR
ω (n/2) + 2Y (n) + (7.5)(n/2)

2
+ o
(
n2
)

(5)

and T (4) is a constant. Thus, by Lemma 11:

T (n) ≤ 2

2ω − 3
MMR

ω (n) + o(nω). (6)

Now for the correction, by Equation (2d), we have to show that the result
of Algorithm 12 is indeed:

Low (A · φ (A)) = Low
(
A ·
(
φ(A11) φ(A21)
φ(A12) φ(A22)

))
=
(

Low(A11·φ(A11)+A12·φ(A12)) ×
A21·φ(A11)+A22·φ(A12) Low(A21·φ(A21)+A22·φ(A22))

)
6



Algorithm 12 Product of a matrix by its adjoint

Input: A ∈ Rm×n (with even m and n for the sake of simplicity);
Input: φ an involutive matrix antihomomorphism;
Input: Y ∈ R

n
2×

n
2 skew-unitary for φ.

Output: Low (A · φ (A)).
Split A =

(
A11 A12

A21 A22

)
where A11 is in R

m
2 ×

n
2

. 4 additions and 2 multiplications by Y :

S1 ← (A21 −A11) · Y
S2 ← A22 −A21 · Y
S3 ← S1 −A22

S4 ← S3 +A12

. 3 recursive (P1, P2, P5) and 2 general products (P3, P4):

Low (P1)← Low (A11 · φ (A11))
Low (P2)← Low (A12 · φ (A12))
P3 ← A22 · φ (S4)
P4 ← S1 · φ (S2)
Low (P5)← Low (S3 · φ (S3))

. 3 half additions and 2 complete additions:

Low (U1)←Low (P1)+Low (P5)
Low (U3)←Low (P1)+Low (P2)
Up(U1)← φ (Low (U1)) . Forms the full matrix U1

U2 ← U1 + P4,
U4 ← U2 + P3,
Low (U5)← Low (U2) + Low (φ (P4)).

return
(

Low(U3)
U4 Low(U5)

)
.

First, we have that:

Low (U3) = Low (P1) + Low (P2) = Low (A11 · φ (A11) +A12 · φ (A12)). (7)

Second, as Y is skew-unitary, then we have that Y · φ (Y ) = −In
2

. Also,
by Equations (2b) and (2c), φ (S2) = φ (A22) − φ (Y ) · φ (A21). Then, denote
by R1 the product:

R1 = A11 · Y · φ (S2) = A11 · Y · (φ (A22)− φ (Y ) · φ (A21))

= A11 · (Y · φ (A22) + φ (A21)).
(8)

Further, by Equations (2a) and (2c), we have that P1 = A11 · φ (A11),
P2 = A12 · φ (A12), and P5 = S3 · φ (S3) are invariant under the action of φ.
So are therefore, U1 = P1 + P5, U3 = P1 + P2 and U5 = U1 + (P4 + φ (P4)). By
Lemma 9, it suffices to compute Low (U1) and, if needed, we also have Up (U1) =
φ (Low (U1)).

Then, as S3 = S1 − A22 = (A21 −A11) · Y − A22 = −S2 − A11 · Y , and
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φ (φ (S2)) = S2 by Equation (2a), we have that:

U1 = P1 + P5 = A11 · φ (A11) + S3 · φ (S3)

= A11 · φ (A11) + (S2 +A11 · Y ) · (φ (S2) + φ (Y ) · φ (A11))

= S2 · φ (S2) + φ (R1) +R1.

(9)

Also, denote R2 = A21 · Y · φ (A22), so that:

S2 · φ (S2) = (A22 −A21 · Y ) · (φ (A22)− φ (Y ) · φ (A21))

= A22 · φ (A22)−A21 · φ (A21)−R2 − φ (R2).
(10)

Furthermore, from Equation (8):

R1 + P4 = R1 + S1 · φ (S2)

= R1 + (A21 −A11) · Y · (φ (A22)− φ (Y ) · φ (A21))

= A21 · Y · φ (A22) +A21 · φ (A21) = R2 +A21 · φ (A21).

(11)

This shows, from Equations (9) to (11), that:

U5 = U1 + P4 + φ (P4) = S2 · φ (S2) + φ (R1) +R1 + P4 + φ (P4)

= A22 · φ (A22) + (−1 + 2)A21 · φ (A21).
(12)

Third, the last coefficient U4 of the result is obtained from Equations (11)
and (12):

U4 = U2 + P3 = U1 + P4 + P3

= A22 · φ (A22)−A21 · φ (A21)−R2 − φ (R2) +R1 + φ (R1) + P4 + P3

= A22 · φ (A22)− φ (R2) + φ (R1) + P3

(13)

since by Equation (11), R1 + P4 = R2 +A21 · φ (A21). Now

P3 = A22 · φ (S4) = A22 · φ ((A21 −A11) · Y +A12 −A22)

= φ (R2)− φ (R1) +A21 · φ (A11),
(14)

Hence
U4 = A22 · φ (A12) +A21 · φ (A11)

To our knowledge, the best previously known result was with a 2
2ω−4 factor

instead, see e.g. [6, § 6.3.1]. Table 1 summarizes the arithmetic complexity
bound improvements.

Examples 14. In many cases, applying the skew-unitary matrix Y to a n× n
matrix costs only yn2 for some constant y depending on the base ring. If the
ring is the complex field C or satisfies the conditions of Proposition 16, there
is a square root i of −1. Setting Y = i In/2 yields Y (n) = n2. Otherwise, we

8



Problem Alg. O
(
n3
)

O
(
nlog2(7)

)
O(nω)

A · φ (A) ∈ Fn×n [6] n3 2
3 MMlog2(7)

(n) 2
2ω−4 MMω(n)

Alg. 12 0.8n3 1
2

MMlog2(7)
(n) 2

2ω−3
MMω(n)

Table 1: Arithmetic complexity bounds leading terms.

show in Section 4 that in characteristic p ≡ 3 mod 4, Proposition 17 produces Y
equal to

(
a b
−b a

)
⊗ In/2 for which Y (n) = 3n2. As a sub-case, the latter can be

improved when p ≡ 3 mod 8: then, Lemma 18 shows that −2 is a square. There-
fore, in this case set a = 1 and b ≡

√
−2 mod p such that one multiplication is

saved. Then the relation a2 + b2 = −1 there yields Y =
(

1
√
−2

−
√
−2 1

)
⊗ In/2 for

which Y (n) = 2n2.

Remark 15. Each recursive level of Algorithm 12 is composed of 9 block ad-
ditions. An exhaustive search on all symmetric algorithms in the orbit of that
of Strassen (via a Gröbner basis parameterization [7]) showed that this number
is minimal in this class of algorithms. Note also that 3 out of these 9 additions
in Algorithm 12 involve symmetric matrices and are therefore only performed
on the lower triangular part of the matrix. Overall, the number of scalar ad-
ditions is 6n2 + 3/2n(n+ 1) = 15/2n2 + 1.5n, nearly half of the optimal in the
non-symmetric case [5, Theorem 1].

To further reduce the number of additions, a promising approach is that
undertaken in [15, 2]. This is however not clear to us how to adapt our strategy
to their recursive transformation of basis.

4 Rings with skew unitary matrices

Algorithm 12 requires a skew-unitary matrix. Unfortunately there are no skew-
unitary matrices over R, nor Q for φ the transposition, nor over C for φ the
Hermitian transposition (there −1 cannot be a sum of real squares for a diagonal
element of Y · φ (Y )). Hence, Algorithm 12 provides no improvement in these
cases. In other domains, the simplest skew-unitary matrices just use a square
root of −1 while others require a sum of squares.

4.1 Over the complex field

Algorithm 12 is thus directly usable over Cn×n with φ (A) = Aᵀ and Y = i In
2

in Cn
2×

n
2 . When complex numbers are represented in Cartesian form, as a pair

of real numbers, the multiplications by Y = i In
2

are essentially free since they
just exchange the real and imaginary parts, with one sign flip.

As mentioned, for the conjugate transposition, φ (A) = AH , on the contrary,
there are no candidate skew-unitary matrices and we for now report no im-

9



provement in this case using this approach (but another one does as shown
in Section 6.1).

Now, even though over the complex the product of a matrix by its conjugate
transpose is more widely used, there are some applications for the product of a
matrix by its transpose, see for instance [1]. This is reflected in the blas api,
where both routines zherk and zsyrk are offered.

4.2 Rings where negative one is a square and φ (A) = Aᵀ

Over some rings , square roots of −1 can also be elements of the base field, de-
noted i in R again. There, Algorithm 12 only requires some pre-multiplications
by this square root (with also Y = i In

2
∈ R

n
2×

n
2 ), but within the ring.

Further, when the ring is a field in positive characteristic, the existence of
a square root of minus one can be characterized, as shown in Proposition 16,
thereafter.

Proposition 16. Fields with characteristic two, p satisfying p ≡ 1 mod 4, or
finite fields that are an even extension, contain a square root of −1.

Proof. If p = 2, then 1 = 12 = −1. If p ≡ 1 mod 4, then half of the non-zero

elements x in the base field of size p satisfy x
p−1
4 6= ±1 and then the square of

the latter must be −1. If the finite field F is of cardinality p2k, then, similarly,

there exists elements x
pk−1

2
pk+1

2 different from ±1 and then the square of the
latter must be −1.

4.3 Any field with positive characteristic and φ (A) = Aᵀ

Actually, we show that Algorithm 12 can also be run without any field extension,
even when −1 is not a square: form the skew-unitary matrices constructed in
Proposition 17, thereafter, and use them directly as long as the dimension of Y
is even. Whenever this dimension is odd, it is always possible to pad with zeroes
so that A ·Aᵀ = (A 0 ) ·

(
Aᵀ

0

)
.

Proposition 17. Let Fpk be a field of characteristic p, there exists (a, b) in F2
p

such that the matrix:(
a b
−b a

)
⊗ In =

(
a In b In
−b In a In

)
in F2n×2n

p (15)

is skew-unitary for the transposition.

Proof. Using the relation(
a In b In
−b In a In

) (
a In b In
−b In a In

)ᵀ
= (a2 + b2) I2n, (16)

it suffices to prove that there exist a, b such that a2 + b2 = −1. In character-
istic 2, a = 1, b = 0 is a solution as 12 + 02 = −1. In odd characteristic, there
are p+1

2 distinct square elements xi
2 in the base prime field. Therefore, there

are p+1
2 distinct elements −1− xi2. But there are only p distinct elements in

the base field, thus there exists a couple (i, j) such that −1− xi2 = xj
2 [18,

Lemma 6].
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To further improve the running time of multiplications by a skew-unitary
matrix in this case, one could set one of the squares to be 1. This is possible if
−2 is a square, for instance when p ≡ 3 mod 8:

Lemma 18. If p ≡ 3 mod 8 then −2 is a square modulo p.

Proof. Using Legendre symbol,
(
−2
p

)
=
(
−1
p

)(
2
p

)
= (−1)

p−1
2 (−1)

p2−1
8 =

(−1)(−1) = 1

Now, Proposition 17 shows that skew-unitary matrices do exist for any field
with positive characteristic. For Algorithm 12, we need to build them mostly
for p ≡ 3 mod 4 (otherwise use Proposition 16).

For this, without the extended Riemann hypothesis (erh), it is possible to
use the decomposition of primes into squares:

1. Compute by enumeration a prime r = 4pk + (3− 1)p− 1, so that both
relations r ≡ 1 mod 4 and r ≡ −1 mod p hold;

2. Thus, the methods of [4] allow one to decompose any prime into squares
and give a couple (a, b) in Z2 such that a2 + b2 = r. Finally, this gives a2+
b2 ≡ −1 mod p.

By the prime number theorem the first step is polynomial in log(p), as is the
second step (square root modulo a prime, denoted sqrt, has a cost close to ex-
ponentiation and then the rest of Brillhart’s algorithm is gcd-like). In practice,
though, it is faster to use the following Algorithm 19, even though the latter
has a better asymptotic complexity bound only if the erh is true.

Algorithm 19 SoS: Sum of squares decomposition over a finite field

Input: p ∈ P\{2}, k ∈ Z.
Output: (a, b) ∈ Z2, s.t. a2 + b2 ≡ k mod p.

1: if
(
k
p

)
= 1 then . k is a square mod p

2: return (sqrt(k), 0).
3: else . Find smallest quadratic non-residue

4: s← 2; while
(
s
p

)
== 1 do s← s+ 1

5: c← sqrt(s− 1) . s− 1 must be a square

6: r ← ks−1 mod p
7: a← sqrt(r) . Now k ≡ a2s ≡ a2(1 + c2) mod p

8: return (a, ac mod p)

Proposition 20. Algorithm 19 is correct and, under the erh, runs in expected
time Õ

(
log3(p)

)
.

Proof. If k is square then the square of one of its square roots added to the
square of zero is a solution. Otherwise, the lowest quadratic non-residue (lqnr)
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modulo p is one plus a square b2 (1 is always a square so the lqnr is larger
than 2). For any generator of Zp, quadratic non-residues, as well as their in-
verses (s is invertible as it is non-zero and p is prime), have an odd discrete
logarithm. Therefore the multiplication of k and the inverse of the lqnr must
be a square a2. This means that the relation k = a2

(
1 + b2

)
= a2 + (ab)

2
holds.

Now for the running time, under the erh, [20, Theorem 6.35] shows that
the lqnr should be lower than 3 log2(p)/2− 44 log(p)/5 + 13. From this, the
expected number of Legendre symbol computations is O

(
log2(p)

)
and this dom-

inates the modular square root computations.

Remark 21. Another possibility is to use randomization: instead of using
the lowest quadratic non-residue ( lqnr), randomly select a non-residue s, and
then decrement it until s− 1 is a quadratic residue (1 is a square so this will
terminate). In practice, the running time seems very close to that of Algo-
rithm 19 anyway, see, e.g. the implementation in Givaro rev. 7bdefe6, https:
// github. com/ linbox-team/ givaro . Also, when computing t sum of squares
modulo the same prime, one can compute the lqnr only once to get all the sum
of squares with an expected cost bounded by Õ

(
log3(p) + tlog2(p)

)
.

Remark 22. Except in characteristic 2 or in algebraic closures, where every
element is a square anyway, Algorithm 19 is easily extended over any finite
field: compute the lqnr in the base prime field, then use Tonelli-Shanks or
Cipolla-Lehmer algorithm to compute square roots in the extension field.

Denote by SoS(q, k) this algorithm decomposing k as a sum of squares within
any finite field Fq. This is not always possible over infinite fields, but there
Algorithm 19 still works anyway for the special case k = −1: just run it in the
prime sub-field, since −1 must be in it.

4.4 Finite fields with even extension and φ (A) = AH

With φ (A) = AH , we need a matrix Y such that Y · Y H = Y · Y ᵀ
= − I .

This is not possible anymore over the complex field, but works for any even
extension field, thanks to Algorithm 19. To see this, we consider next the finite
field Fq2 , where q is a power of an arbitrary prime. Given a ∈ Fq2 , we adopt
the convention that conjugation is given by the Frobenius automorphism:

a = aq. (17)

The bar operator is Fq-linear and has order 2 on Fq2 .
First, if −1 is a square in Fq, then Y =

√
−1 · In works in Fq2 since then

√
−1 =

√
−1: Y · Y ᵀ

=
√
−1 · In

√
−1 · In = −In.

Second, otherwise, q ≡ 3 mod 4 and then there exists a square root i of −1
in Fq2 , from Proposition 16. Further, one can build (a, b), both in the base
field Fq, such that a2 + b2 = −1, from Algorithm 19. Finally Y = (a+ ib) · In
in Fq2n×n is skew-unitary: indeed, since q ≡ 3 mod 4, we have that iq = i3+4k =

i3(−1)2k = −i and, therefore, a+ ib = (a+ ib)
q

= a− ib. Finally Y · Y ᵀ
=

(a+ ib)(a− ib) · In = −In.
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4.5 Any field with positive characteristic and φ (A) = AH

If −1 is a square in the base field, or within an even extension we have seen
in Section 4.4 that there exists diagonal skew-unitary matrices. Otherwise, one
can always resort to tridiagonal ones as in Section 4.3. For this, one can always
build (a, b) in the base field such that a2 + b2 = −1 using Proposition 17.
Then, Y =

(
a b
−b a

)
⊗ In is a skew-unitary matrix. Indeed, since a and b live in

the base field, they are invariant by the Frobenius automorphism. Therefore,

Y
ᵀ

=
(
a b
−b a

)ᵀ
⊗ In =

(
a −b
b a

)
⊗ In and Y · Y ᵀ

= (a2 + b2) · In = −In.

5 Towards a minimality result on the number of
multiplications

Our Algorithm 12 computes the product of a matrix over a ring by its (hermi-
tian) transpose using only 5 block multiplications and the (hermitian) transpose
of one of these block multiplications. Here, we use consider some vector-spaces
and thus, restrict ourselves to consider matrices over a field.

We reformulate in this section the method introduced by de Groote in [10]
in order to prove that the tensor rank of the 2× 2 matrix product is 7. This
method is used to prove the following result:

Theorem 23. There is no algorithm derived from non-commutative block 2× 2
matrix product algorithms that computes the product of a matrix over a field by
its (hermitian) transpose using only 4 block multiplications and the (hermitian)
transpose of one of these block multiplications.

This result does not state that it is never possible to multiply by the adjoint
using fewer than 5 multiplications as shown by the following remark.

Remark 24. Over any ring with a square root i of −1, there is a computational
scheme requiring 4 multiplications and computing the product of a 2× 2-matrix
by its transpose:(

a b
c d

)
( a cb d ) =

(
(a+ib)(a−ib) ×

ac+bd (c+id)(c−id)

)
=
(
a2+b2 ×
ac+bd c2+d2

)
. (18)

This is the case for instance over F2, where i = 1, or over the complex numbers.
As this scheme requires for instance that aib = iba, at least some commutativity
is required, thus in general it does not apply to block matrices and it is therefore
not in the scope of Theorem 23.

The following section is devoted to shortly present the framework used in
this part of our work.

5.1 The framework of bilinear maps encoded by tensors

We present de Groote’s proof using a tensorial presentation of bilinear maps;
we recall briefly this standpoint through the following well-known example of
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seven multiplications and we refer to [16] for a complete introduction to this
framework.

Example 25. Considered as 2× 2 matrices, the matrix product C = A ·B could
be computed using Strassen algorithm by performing the following computations
(see [19]):

ρ1 ← a11(b12 − b22),
ρ2 ← (a11 + a12)b22, ρ4 ← (a12 − a22)(b21 + b22),
ρ3 ← (a21 + a22)b11, ρ5 ← (a11 + a22)(b11 + b22),
ρ6 ← a22(b21 − b11), ρ7 ← (a21 − a11)(b11 + b12),(
c11 c12
c21 c22

)
=

(
ρ5 + ρ4 − ρ2 + ρ6 ρ6 + ρ3

ρ2 + ρ1 ρ5 + ρ7 + ρ1 − ρ3

)
.

(19)

With m,n, p equal to 2, this algorithm encodes a bilinear map:

Fm×n × Fn×p → Fm×p,
(A,B) → A ·B. (20)

We keep the indices m,n, p in this section for the sake of clarity in order to
distinguish the different spaces involved in the sequel. The spaces F·×· can be
endowed with the Frobenius product 〈M,N〉 = Trace(Mᵀ ·N) that establishes
an isomorphism between F·×· and its dual space

(
F·×·

)?
; hence, it allows for

example to associate the trilinear form Trace(Cᵀ ·A ·B) and the matrix multi-
plication (20):

S |3 : Fm×n × Fn×p × (Fm×p)? → F,
(A,B,Cᵀ) → 〈C,A ·B〉.

(21)

As by construction, the space of trilinear forms is the canonical dual space of
order three tensor products, we could encode the Strassen multiplication algo-
rithm (19) as the tensor S defined by:

S =
∑7
i=1 Σi1⊗Σi2⊗S3

i = Σi1⊗Σi2⊗S3
i = ( 1 0

0 0 )⊗
(
0 1
0 −1

)
⊗( 0 0

1 1 )+

( 1 1
0 0 )⊗( 0 0

0 1 )⊗
(−1 0

1 0

)
+( 0 0

1 1 )⊗( 1 0
0 0 )⊗

(
0 1
0 −1

)
+
(
0 1
0 −1

)
⊗( 0 0

1 1 )⊗( 1 0
0 0 )+

( 1 0
0 1 )⊗( 1 0

0 1 )⊗( 1 0
0 1 )+( 0 0

0 1 )⊗
(−1 0

1 0

)
⊗( 1 1

0 0 )+
(−1 0

1 0

)
⊗( 1 1

0 0 )⊗( 0 0
0 1 )

(22)

in (Fm×n)
? ⊗ (Fn×p)? ⊗ Fm×p with m = n = p = 2.

Remark that—as introduced in the above Equation (22)—we are going to
use in the sequel the Einstein summation convention in order to simplify the
forthcoming notations (according to this convention, when an index variable
appears twice in a term and is not otherwise defined, it represents in fact the
sum of that term over all the values of the index).

Starting from the tensor representation S of our algorithm, we could consider
several contractions that are the main objects manipulated in the sequel.
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5.2 Flattening tensors and isotropies

The complete contraction S |3(A⊗B ⊗ Cᵀ) is defined as the following map:

((Fm×n)? ⊗ (Fn×p)? ⊗ Fm×p)⊗ (Fm×n ⊗ Fn×p ⊗ (Fm×p)?)→ F,(
Σi1⊗Σi2⊗S3

i

)
⊗ (A⊗B ⊗ Cᵀ)→ 〈Σi1, A〉〈Σi2, B〉〈S3

i , C
ᵀ〉.

(23)

We already saw informally in the previous section that this complete contrac-
tion is Trace(A ·B · C) and we recall in the following remark some of its basic
properties.

Remark 26. Given three invertible matrices:

α ∈ Fm×m, β ∈ Fp×p, γ ∈ Fn×n (24)

that encodes changes of basis, the trace Trace(A ·B · C) is equal to:

Trace
(
(A ·B · C)

ᵀ)
= Trace(C ·A ·B) = Trace(B · C ·A),

and Trace
(
α−1 ·A · β · β−1 ·B · γ · γ−1 · C · α

)
.

(25)

These relations illustrate the following theorem:

Theorem 27 ([12, § 2.8]). The isotropy group of the n× n matrix multiplica-

tion tensor is psl±(Fn)
×3oS3, where psl stands for the group of matrices of

determinant ±1 and S3 for the symmetric group on 3 elements.

The following classical statement redefines the sandwiching isotropy on a
matrix multiplication tensor:

Definition 28. Given g = (α× β × γ) in psl±(Fn)
×3

, its action g � S on a
tensor S is given by g � (Σi1 ⊗ Σi2 ⊗ S3

i ) where each summands is equal to:(
(α−1)ᵀ · Σi1 · βᵀ

)
⊗
(
(β−1)ᵀ · Σi2 · γᵀ

)
⊗
(
(γ−1)ᵀ · S3

i · αᵀ
)
, ∀i fixed. (26)

These isotropies will be used later; for the moment, let us now focus our
attention on the very specific standpoint on which is based the forthcoming
developments: flattenings.

Definition 29. Given a tensor S, the third flattening S |13 (a.k.a. third 1-
contraction) of the tensor S is:

S |13 : Fm×p → (Fm×n)? ⊗ (Fn×p)?,
M → 〈M,S3

i 〉Σi1 ⊗ Σi2.

(27)

Example 30. To illustrate this definition and some important technicalities,
let us consider ImS |13 the image of the Strassen tensor (22) flattening: this is
a subspace of (Fm×n)? ⊗ (Fn×p)?. More precisely, let us first consider only the
fifth summand in Equation (22) and the image of its third flattening:

Im ( 1 0
0 1 )⊗( 1 0

0 1 )⊗( 1 0
0 1 ) |13 =

(
c11+c22 0 0 c11+c22

0 0 0 0
0 0 0 0

c11+c22 0 0 c11+c22

)
∀(c11, c22) ∈ F2. (28)
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The indeterminates c11 and c22 keep track of the domain of the flattening.
The 4× 4 right-hand side matrix in above expression should not be confused
with the Kronecker product I2×2 ⊗ I2×2 involved in the left-hand side. In fact,
the result I4×4 of this Kronecker product is of classical matrix rank 4 while the
rank in (Fm×n)? ⊗ (Fn×p)? of the right-hand side matrix (28) is 1 by construc-
tion. Hence, even if we present in this section the elements of F·×· as matrices,
we use a vectorization (e.g. Fm×n ' Fmn) of these matrices in order to perform
correctly our computations. Taking this standpoint into account we obtain the
following description of the whole Strassen third flattening image as:

ImS |13 =


c11 c12 0 0
0 0 c11 c12
c21 c22 0 0
0 0 c21 c22

 (29)

that could be guessed almost without computation. In fact, this right-hand side
matrix is just the matrix of the bilinear form defining the trilinear encoding of
the matrix product:

Trace(A ·B · Cᵀ) =
(
a11 a12 a21 a22

)
c11 c12 0 0
0 0 c11 c12
c21 c22 0 0
0 0 c21 c22



b11
b12
b21
b22

.
(30)

Hence, the flattening ImS |13 is a canonical description of the matrix product
independent from the algorithm/tensor used to encode it; in particular, it is an
invariant under the action of the isotropies introduced in Definition 28. We are
going to use these objects and their properties in the following section.

5.3 Presentation of de Groote’s method

We are interested in a situation where, given a bilinear map, a classical rep-
resentation by a tensor C is known and we wish to disprove the existence of a
tensor representation of a given rank. Inspired by Steinitz exchange theorem,
de Groote introduced in [10, § 1.5] the following definition to handle this issue.

Definition 31. Given a tensor T encoding a bilinear map whose codomain is M
and given q rank-one elements Pi, linearly independent in (Fm×n)? ⊗ (Fn×p)?,
let us denote by L(ImT |13,P1, . . . ,Pq) the linear subspace of M defined by:

LinearSpan

{
M ∈M | ∃(u1, . . . , uq) ∈ Fq,

Rank(Fm×n)?⊗(Fn×p)?
(
T |13(M) + ujPj

)
= 1

}
. (31)

We introduced the notation M for the codomain of the considered bilinear
map in order to highlight the fact that it is isomorphic—via the Frobenius
isomorphism—to the domain of the flattening and to show how it is used in the
following.
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The following proposition allows to construct an effective test that checks
if there exists a tensor of rank dimM + q that defines the considered bilinear
map.

Proposition 32. If there exists a tensor T of rank dimM + q encoding a bi-
linear map with codomain M then there are q rank-one elements Pi linearly
independent in (Fm×n)? ⊗ (Fn×p)? such that L(Im T |13,P1, . . . ,Pq) is M.

Proof. Let us assume that there exists a tensor C encoding the considered bilin-
ear map, that its tensor rank ρ is greater than dimM + q and that it is defined
by the sum Qi ⊗Ri. Remark that the set (Ri)1≤i≤ρ is a generating set of the
space M by hypothesis.

Suppose now that there exists a tensor T of rank r = dimM + q encoding
with fewer summands the same considered bilinear map:

T = Pk ⊗ Sk, Sk ∈M ⊂ Fm×p, Pk ∈ (Fm×n)? ⊗ (Fn×p)?. (32)

The elements Pk are linearly independent, otherwise T could be expressed with
even fewer terms. Furthermore, there is a subset of (Si)1≤i≤dimM that is a base
of M (otherwise, T could not encode the same bilinear map as C).

Suppose that we reorder this set so that the base is (Si+q)1≤i≤dimM. By
invariance of the flattening map, the following relations hold:

∀ M ∈M, C |13(M) = 〈M,Rk〉Qk = T |13(M) = 〈M,Sk〉Pk. (33)

By introducing a base (Bi)1≤i≤dimM of M, we could summarize this situation
under a matricial standpoint as follows:

P1

...
Pq

〈B1, Rk〉Qk
...

〈BdimM, Rk〉Qk


=

(
Iq×q 0
C D

)


P1

...
Pq
Pq+1

...
Pq+dimM


(34)

where the matrices C and D are such that:

∀ i ∈ {1, . . . ,dimM}, Cij = 〈Bi, Sj〉, ∀ j ∈ {1, . . . , q},
Dij = 〈Bi, Sq+j〉, ∀ j ∈ {1, . . . ,dimM}. (35)

As, by hypothesis, (Si+q)1≤i≤dimM is a basis of M, the matrix D is invertible
and we could rewrite Equation (34) as follows:

U = −D−1 · C,
V = D−1,

(
Iq×q 0
U V

)


P1

...
Pq

〈B1, Rk〉Qk
...

〈BdimM, Rk〉Qk


=



P1

...
Pq
Pq+1

...
Pq+dimM


. (36)
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The dimM lines of the (U, V ) matrices in Equation (36) give us dimM vec-
tors (uj1, . . . , u

j
q, v

j
1, . . . , v

j
dimM) such that for all j in {1, . . . ,dimM}

Rank(Fm×n)?⊗(Fn×p)?

(
ujiP

i + vji 〈B
i, Rk〉Qk

)
= Rank(Fm×n)?⊗(Fn×p)?Pq+j

= 1. (37)

To conclude, we remark that these last relations show that all the matrices vjiB
i

are in the subspace L(Im T |13,P1, . . . ,Pq). As they are dimM independent
linear combinations of basis elements of M, these matrices form another of its
bases and thus the subspace L(Im T |13,P1, . . . ,Pq) is equal to M.

5.4 Adaptation to the Hermitian case

In order to use Proposition 32 to prove Theorem 23, we have to show that for
any element P = P ⊗Q in (Fm×n)? ⊗ (Fn×p)? the subspace L(Im T |13,P,PH) is
not equal to M (with PH = QH ⊗ PH). This vector-space M is a 3 dimensional
vector-space spanned by all the outputs of our bilinear map. Let us start to
make this strategy more precise by the following remark.

Remark 33. A classical block version of bilinear algorithm (e.g. [6, § 6.3.1])
computing the product of a matrix by its adjoint is:(

A11 A12

A21 A22

) (
A11

H A21
H

A12
H A22

H

)
=
(
A11A11

H+A12A12
H ×

A21A11
H+A22A12

H A21A21
H+A22A22

H

)
. (38)

As the result of this algorithm is self-adjoint, by Lemma 9 there is no need
to compute the top-right coefficient and thus, we conclude that the dimension
of M is at most 3. Hence, there exists a bilinear map encoded by a ten-
sor H = Σi1 ⊗ Σi2 ⊗ S3

i of rank 6 that computes the product of a matrix by its
hermitian transpose and the image of its third flattening H|13 is

ImH|13(Fm×p) =

( c1 0 0 0
0 0 c1 0
c2 c3 0 0
0 0 c2 c3

)
. (39)

We need a last standard definition in order to classify all possible tensors P
considered in the sequel.

Definition 34. Given a tensor P decomposable as sum of rank-one tensors:

P =

q∑
i=1

⊗sj=1Pij where Pij are matrices. (40)

The list [(RankPij)j=1...s]i=1...q
is called the type of tensor P.

Remark 35. In our situation q is one, s is two and the Pij are 2× 2 matrices;
hence, the tensor P could only have type [(1, 1)], [(1, 2)], [(2, 1)] or [(2, 2)].
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We also use the isotropies presented in Definition 28 in order to simplify
as much as possible the tensor P as illustrated in the proof of the following
statement. Furthermore, let us first introduce several notations:

• we denote by Gx=0 the matrix G in which the indeterminate x is replaced
by 0;

• the determinant of the matrix
(
Gi,j Gi,l
Gk,j Gk,l

)
is denoted by Det[i,j|k,l](G);

• as the rank of a matrix is invariant under elementary row and columns
operations, we also use the notation G|[i, j|`] for the matrix resulting from
the addition to the ith line of G of its jth line multiplied by `.

Lemma 36. There is no tensor P in (Fm×n)? ⊗ (Fn×p)? of type (1, i) with i
equals to 1 or 2 such that the subspace L(H|13,P,PH) is equal to M.

Proof. Let us consider a tensor P = A⊗B of type (1, i) with i = 1, 2. As the
first component A is of rank one, there exists two vectors such that:

A =
(
a1 a2

)
⊗
(
b1
b2

)
=

(
a1b1 a2b1
a1b2 a2b2

)
. (41)

If the coefficient a2 is zero, we choose a matrix β as the identity matrix. If
the coefficient a1 is zero, we could consider a permutation matrix β = ( 0 1

1 0 );
otherwise, if s = a1a1 + a2a2 6= 0, consider:

β =

(
a1 a2
a2 −a1

)
. (42)

Then we have both β · βH = s · I2×2 and A · β =

(
sb1 0
sb2 0

)
.

Hence, in any of these cases, there always exists a matrix β, which in-
verse is a multiple of its hermitian transpose, such that the isotropy g defined
by (Im×m × β × In×n) satisfies the following properties:

g � P =

(
u1 0
u2 0

)
⊗
(
v1 v2
v3 v4

)
, g � PH =

1

s
(g � P)

H
(43)

With the above notations, conventions and isotropy’s action, given any M in M,
the 4× 4 matrix H|13(M) + y1P + y2PH is:

y1u1v1 + y2v1
Hu1

H + c1 y1u1v2 + y2v1
Hu2

H y1u1v3 y1u1v4
y2v3

Hu1
H y2v3

Hu2
H c1 0

y1u2v1 + y2v2
Hu1

H + c2 y1u2v2 + y2v2
Hu2

H + c3 y1u2v3 y1u2v4
y2v4

Hu1
H y2v4

Hu2
H c2 c3

. (44)

This matrix is supposed to be of rank one. Thus, all its 2× 2 minors are
equal to 0. Then, either c1 or c3 is equal to 0 and for any such P the sub-
space L(H|13,P,PH) is thus not M.
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There remains the case s = 0. Then let

β =

(
a1
−1 −a2
0 a1

)
. (45)

The inverse of β is no longer related to βH anymore but β still transforms A

into a single non-zero column matrix: A · β =

(
b1 0
b2 0

)
. Thus, for this β, the

action of the isotropy g = (Im×m × β × In×n) is:

g � P =

(
b1 0
b2 0

)
⊗
(
z11 z12
z21 z22

)
and g � PH = U ⊗ V. (46)

With the above notations, conventions and isotropy’s action, given any M in M,
the 4× 4 matrix G = H|13(M) + y1P + y2PH is thus:(

y1b1z11+y2u11v11+c1 y1b1z12+y2u11v12 y1b1z21+y2u11v21 y1b1z22+y2u11v22
y2u12v11 y2u12v12 y2u12v21+c1 y2u12v22

y1b2z11+y2u21v11+c2 y1b2z12+y2u21v12+c3 y1b2z21+y2u21v21 y1b2z22+y2u21v22
y2u22v11 y2u22v12 y2u22v21+c2 y2u22v22+c3

)
. (47)

This matrix is supposed to be of rank one in L(H|13,P,PH). Thus, all its 2× 2
minors are equal to 0.

On the one hand, if y2 is zero, then the constraints of Equation (47) show
that Det[2,3|4,4](Gy2=0) = c1c3 is equal to 0. On the other hand, if y2 is different
from 0 then the minor Det[2,2|4,4](G) is equal to c3y2u12v12 and supposed to be
equal to zero by hypothesis. We also have that the minor Det[2,1|4,4](G) is equal
to c3y2u12v11 and is also supposed to be equal to zero by hypothesis. We are
going to explore all the consequences induced by this constraint.

u12 6= 0, v12 6= 0 → c3 = 0,
u12 = 0, v12 = 0 → Det[2,1|4,3](Gu12=0,v12=0) = y2u22v11c1 = 0,
u12 = 0, v12 = 0, u22 = 0 → Det[2,3|4,4](Gu12=0,v12=0,u22=0) = c1c3 = 0,
u12 = 0, v12 = 0, v11 = 0 see thereafter
u12 = 0, v12 6= 0 → Det[2,2|4,3](Gu12=0) = −y2v12u22c1 = 0,
u12 = 0, v12 6= 0, u22 6= 0 → c1 = 0,
u12 = 0, v12 6= 0, u22 = 0 → Det[2,3|4,4](Gu12=0,u22=0) = c1c3 = 0.

(48)

Now, if u12 is different from 0, then from the first two minors, either The
relations v12 = v11 = 0 hold or c3 = 0.

Further, not both b1 and b2 can be zero, otherwise the tensor is of rank 0.
W.l.o.g., suppose that b2 6= 0 and let G′ = Gv12=0,v11=0|[1, 3|−b1/b2]. Then
Det[1,2|2,4](G

′) = (−b1/b2)y2c3u12v22 and either b1 = 0 or v22 = 0 or c3 = 0.
This gives the following distinctions (recall that now u12 6= 0 and y2 6= 0):

b1 = 0, → Det[1,1|2,4](G
′
b1=0) = y2u12v22c1 = 0,

b1 = 0, v22 6= 0 → c1 = 0,
b1 = 0, v22 = 0 → Det[1,1|4,4](G

′) = c1c3 = 0,
b1 6= 0, v22 = 0 → Det[1,2|4,4](G

′) = (−b1/b2)c3
2 = 0,

(49)
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There remains the case u12 = 0, v12 = 0 and v11 = 0 in Equation (48). Here
also, w.l.o.g., suppose that b2 6= 0 and let G∗ = Gu12=0,v12=0,v11=0|[1, 3|−b1/b2].

b1 = 0 → Det[1,1|2,3](G
∗
b1=0) = c1

2 = 0,
b1 6= 0 → Det[1,2|2,3](G

∗) = (−b1/b2)c1c3 = 0.
(50)

Thus, in any cases, for any such P, the set L(H|13,P,PH) is not M.
Note that a computational way to see this, is to perform a Gröbner basis

computation, directly from Equation (47): for instance over C this gives that
the relation c1

2c3
2 = 0 must hold and that the set is not the full codomain.

According to Remark 35, the above computations deal with half of the cases
to consider. We remark that, mutatis mutandis, similar computations exclude
also the existence of an algorithm where P is of type (2, 1). We could consider
now the last case.

Lemma 37. There is no tensor P in (Fm×n)? ⊗ (Fn×p)? of type (2, 2) such
that the subspace L(H|13,P,PH) is equal to M.

Proof. First, let us consider a tensor P of type (2, 2). Thus, there exists β such
that the action of the isotropy g = (Im×m × β × In×n) is:

g � P =

(
1 0
0 1

)
⊗
(
z11 z12
z21 z22

)
and g � PH = U ⊗ V. (51)

With the above notations, conventions and isotropy’s action, given any M in M,
the 4× 4 matrix G = H|13(M) + y1P + y2PH is:(

y2u11v11+c1+y1z11 y2u11v12+y1z12 y2u11v21+y1z21 y2u11v22+y1z22
y2u12v11 y2u12v12 y2u12v21+c1 y2u12v22

y2u21v11+c2 y2u21v12+c3 y2u21v21 y2u21v22
y2u22v11+y1z11 y2u22v12+y1z12 y2u22v21+c2+y1z21 y2u22v22+c3+y1z22

)
. (52)

This matrix is supposed to be of rank one in L(H|13,P,PH). Thus, all its 2× 2
minors are equal to 0.

A Gröbner basis computation over C shows in that case that the rela-
tions c1

2c3 = c1c2c3 = c1c3
2 = 0 hold and this is sufficient to conclude. Nev-

ertheless, we present a proof that does not require such computations and is
valid for any field.

On the one hand, if y2 = 0, then the constraints of Equation (52) show for
instance that both Det[2,1|3,3](Gy2=0) = c1c2 and Det[2,2|3,3](Gy2=0) = c1c3 are
equal to 0.

On the other hand, if y2 6= 0 then consider the minor Det[2,3|3,4](G), which
is equal to c1y2u21v22 and supposed to be equal to zero by hypothesis. We are
going to explore all the consequences induced by this constraint. First, if y1 = 0,
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then we have:

u21 6= 0, v22 6= 0 → c1 = 0,
u21 = 0, v22 = 0 → Det[3,2|4,4](Gy1=0,u21=0,v22=0) = c3

2 = 0,
u21 = 0, v22 6= 0 → Det[2,2|3,4](Gy1=0,u21=0) = −y2u12v22c3 = 0,
u21 = 0, v22 6= 0, u12 6= 0 → c3 = 0,
u21 = 0, v22 6= 0, u12 = 0 → Det[2,2|3,3](Gy1=0,u21=0,u12=0) = −c1c3 = 0,
u21 6= 0, v22 = 0 → Det[3,3|4,4](Gy1=0,v22=0) = c3u21v21y2 = 0,
u21 6= 0, v22 = 0, v21 6= 0 → c3 = 0,
u21 6= 0, v22 = 0, v21 = 0 → Det[2,3|4,4](Gy1=0,v22=0,v21=0) = c1c3 = 0,

(53)

If y1 and y2 are both non-zero, then, the minor Det[1,1|2,2](G|[1, 4|−1]) is equal
to y2c1u12v12 and supposed to be equal to zero by hypothesis. We are going to
explore all the consequences induced by this constraint. Let G′ = G|[1, 4|−1]:

u12 6= 0, v12 6= 0 → c1 = 0,
u12 = 0, v12 = 0 → Det[2,2|3,3](G

′
u12=0,v12=0) = −c1c3 = 0,

u12 = 0, v12 6= 0 → Det[2,3|3,4](G
′
u12=0) = y2c1u21v22 = 0,

u12 = 0, v12 6= 0, u21 6= 0, v22 6= 0 → c1 = 0,
u12 = 0, v12 6= 0, u21 = 0 → Det[2,2|3,3](G

′
u12=0,u21=0) = −c1c3 = 0,

u12 = 0, v12 6= 0, v22 = 0 → Det[1,3|2,4](G
′
u12=0,u21=0) = c1c3 = 0,

u12 6= 0, v12 = 0 → Det[2,2|3,4](G
′
v12=0) = −y2u12v22c3 = 0,

u12 6= 0, v12 = 0, v22 6= 0 → c3 = 0,
u12 6= 0, v12 = 0, v22 = 0 → Det[1,2|3,3](G

′
v12=0,v22=0) = c3

2 = 0.

(54)

Thus, in any cases, for any such P, the set L(H|13,P,PH) is not M.

The Proposition 32, together with the computations done in Lemma 37 and
in Lemma 36 are sufficient to conclude the proof of Theorem 23.

6 The case of field extensions via matrix poly-
nomial arithmetic

The cost comparison in Table 1 is for matrices over an arbitrary ring with skew
unitary matrices. When the ring is an extension, the input of the problem is
a polynomial matrix over the base ring. Following the traditional equivalence
between polynomial matrices and matrix polynomials, leads to alternative ways
to multiply the matrix by its transpose, considering the product of two poly-
nomials with matrix coefficients. More specifically, we will focus on degree two
extensions, and compare the costs in terms of number of operations over the
base ring.

6.1 The 2M method

Over the field C of complex numbers, the 3M method (Karatsuba) for general
matrix multiplication reduces the number of multiplications of real matrices
from 4 to 3 [13]: if MMR

ω(n) is the cost of multiplying n× n matrices over R,
then the 3M method costs 3MMR

ω(n) + o(nω) operations over R. Adapting this
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approach for product of matrix by its adjoint yields a 2M method using only 2
real products:

Algorithm 38 2M multiplication in an extension

Input: A commutative ring K and one of its extensions E;
Input: A ∈ Km×n and B ∈ Km×n;
Input: φ an involutive matrix antihomomorphism of E.
Input: i ∈ E, commuting with K, and such that ε = iφ(i) ∈ K;
Output: (A+ iB) · φ (A+ iB) ∈ Em×m.

Let H = A · φ (B) ∈ Km×m;
Let G = (A+B) · φ (A+ εB) ∈ Km×m;
return (G− εH − φ (H)) +Hφ(i) + iφ (H).

Lemma 39. Algorithm 38 is correct. It costs 2MMK
ω(n)+o(nω) operations over

the base ring K.

Proof. Let M = (A+ iB) · φ (A+ iB). By Lemma 4, we have that φ(iB) =
φ (B)φ(i) = φ(i)φ (B). Thus, M = A · φ (A) + A · φ (B)φ(i) + iB · φ (A) +
iB · φ (B)φ(i), by Equations (2b) and (2c). As i commutes with K, we also have
that M = A · φ (A) +B · φ (B)ε+A · φ (B)φ(i) + iB · φ (A). By Equations (2a)
and (2c), we have that φ (H) = φ (φ (B)) · φ (A) = B · φ (A). Finally, G =
A · φ (A) +A · φ (B)ε+B · φ (A) +B · φ (B)ε as φ(ε) = φ(φ(i))φ(i) = iφ(i) = ε.
Therefore G − εH − φ (H) = G − Hε − φ (H) = A · φ (A) + B · φ (B)ε and
M = G+Hφ(i) + iφ (H).

Example 40. For instance, if K = R, E = C, then i =
√
−1 satisfies the

conditions of Algorithm 38 for both cases when φ is the transposition or the
conjugate transposition. Therefore, we obtain the multiplications of a matrix by
its adjoint, whether it be the transpose or the conjugate transpose, in 2MMR

ω +
o(nω) operations in R. The classical divide and conquer algorithm, see e.g. [6,
§ 6.3.1], works directly over C and uses the equivalent of 2

2ω−4 complex float-
ing point n× n matrix products. Using the 3M method for the complex prod-
ucts, this algorithm uses overall 6

2ω−4MMR
ω(n) + o(nω) operations in R. Finally,

Algorithm 12 costs 2
2ω−3 complex multiplications for a leading term bounded

by 6
2ω−3MMR

ω(n), improving over 2MMR
ω for ω > log2(6) ≈ 2.585, but this does

not apply to the conjugate transpose case. This is summarized in Table 2, also
replacing ω by 3 or log2(7) to illustrate the situation for the main feasible expo-
nents.

6.2 The quaternion algebra

Given a field K of characteristic not 2, the K-algebra of quaternions H(K) is the
K-vector space of all formal linear combinations:

x1 + x2i + x3j + x4k, (x1, . . . , x4) ∈ K4, (55)
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Problem Alg. MM3(n) MMlog2 7(n) MMω(n)

A ·B
naive 8n3 4 MMR

log2(7)
(n) 4 MMR

ω(n)

3M 6n3 3 MMR
log2(7)

(n) 3 MMR
ω(n)

A ·AH
Alg. 38 4n3 2 MMR

log2(7)
(n) 2 MMR

ω(n)

[6] 3n3 2 MMR
log2(7)

(n) 6
2ω−4 MMR

ω(n)

A ·Aᵀ

Alg. 38 4n3 2 MMR
log2(7)

(n) 2 MMR
ω(n)

[6] 3n3 2 MMR
log2(7)

(n) 6
2ω−4 MMR

ω(n)

Alg. 12 2.4n3 3
2

MMR
log2(7)

(n) 6
2ω−3 MMR

ω(n)

Table 2: Multiplication of a matrix by its adjoint or transpose over C: leading
term of the cost in number of arithmetic operations over R. Note that 2 < 6

2ω−4
only when ω < log2(7) ≈ 2.81 and 2 < 6

2ω−3 only when ω < log2(6) ≈ 2.585.

the non-commutative multiplication being defined by the bilinear extensions of
the relations:

i2 = j2 = k2 = ijk = −1. (56)

The quaternions can also be seen as a degree 2 extension of a degree 2 exten-
sion, but a non-commutative one. Therefore the 3M or §2Mtechniques of Sec-
tion 6.1 only apply directly for the first degree 2 extension, while the second ex-
tension would require 4 multiplications. This gives 4× 3 = 12 (resp. 4× 2 = 8)
multiplications in the base field for a general matrix multiplication (resp. a
multiplication of a matrix by its transpose or conjugate transpose). For the
former case, there exist actually algorithms using only 8 multiplications instead
of 12. For the latter case, we present algorithms using only 7 multiplications for
the transpose case and only 6 multiplications for the conjugate transpose case
instead of 8.

6.2.1 Quaternions’ multiplication

The multiplication of quaternions is (x1+x2i+x3j+x4k)(y1+y2i+y3j+y4k) =
(w1 + w2i + w3j + w4k), with:

w1 = x1y1 − x2y2 − x3y3 − x4y4 (57)

w2 = x1y2 + x2y1 + x3y4 − x4y3 (58)

w3 = x1y3 − x2y4 + x3y1 + x4y2 (59)

w4 = x1y4 + x2y3 − x3y2 + x4y1 (60)

Fiduccia showed in [9] how to compute this product with only 10 field mul-
tiplications and 25 additions, cleverly using Gauß’ trick for the multiplication
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of complex numbers in three multiplications. Regarding the minimal num-
ber of base field operation required for the multiplication of quaternions, de
Groote shows in [11] that 10 multiplications is minimal to compute both X · Y
and Y ·X. In addition, over the reals and the rationals, the minimal number
of multiplications is 8 [14] and [10, Proposition 1.7]. The algorithm of [14],
requiring also 28 additions, is recalled in Algorithm 41.

Algorithm 41 Howell-Lafon quaternion multiplication

Input: ~x = x1 + x2i + x3j + x4k ∈ H(K), ~y = y1 + y2i + y3j + y4k ∈ H(K)
Output: ~xy ∈ H(K)

Q1 = (x1 + x2)(y1 + y2), Q2 = (x4 − x3)(y3 − y4)
Q3 = (x2 − x1)(y3 + y4), Q4 = (x3 + x4)(y2 − y1)
Q5 = (x2 + x4)(y2 + y3), Q6 = (x2 − x4)(y2 − y3)
Q7 = (x1 + x3)(y1 − y4), Q8 = (x1 − x3)(y1 + y4)
T1 = Q5 +Q6, T2 = Q7 +Q8

T3 = Q5 −Q6, T4 = Q7 −Q8

T5 = T2 − T1, T6 = T1 + T2
T7 = T3 + T4, T8 = T3 − T4
w1 = Q2 + T5/2, w2 = Q1 − T6/2
w3 = T7/2−Q3, w4 = T8/2−Q4

return w1 + w2i + w3j + w4k.

Proposition 42. Algorithm 41 extends to the case of quaternions with matrix
coefficients. If matrix multiplication over the base field costs MMK

ω(n) field oper-
ations for n×n matrices and the field matrix addition O(n2) field additions, then
the dominant cost of Algorithm 41 applied to matrices is bounded by 8MMK

ω(n).

Proof. Correctness is by inspection since 2 is invertible in K of characteristic
different from 2. The complexity bound is just the fact that the Algorithm
performs 8 multiplications of matrices with coefficients in the base field.

The lowest number of multiplications required to multiply two quaternions
being 8, Proposition 42 is the best possible result while keeping the view of the
matrices as two quaternions with base field matrix coefficients, X1, X2, X3, X4

and Y1, Y2, Y3, Y4. The alternative is to use a matrix with quaternion coefficients
and use classical fast matrix algorithms. Next, we see the different alternatives
for the multiplication by an adjoint.

6.2.2 Multiplication of a quaternion matrix by its transpose

We now propose several methods to multiply a quaternion matrix by its trans-
pose:

25



1. First a “7M” method which considers a quaternion with matrix coeffi-
cients, and thus reduces everything to seven general matrix multiplications
over the base field.

2. Second, one can consider a matrix with quaternion coefficients and just
apply any matrix multiplication algorithm where multiplication of coeffi-
cients is that of Algorithm 41.

7M method: a quaternion with matrix coefficients. Many simplifi-
cations used in computing the square of a quaternion no longer apply when
computing the product of a quaternion matrix by its transpose, due to non-
commutativity of the matrix product. For A,B,C,D ∈ Km×n,

(A + Bi + Cj + Dk)(Aᵀ + Bᵀi + Cᵀj + Dᵀk) = S1 + S2i + S3j + S4k (61)

where:

S1 = AAᵀ −BBᵀ − CCᵀ −DDᵀ (62)

S2 = (ABᵀ +BAᵀ) + (CDᵀ −DCᵀ) (63)

S3 = (ACᵀ + CAᵀ) + (DBᵀ −BDᵀ) (64)

S4 = (ADᵀ +DAᵀ) + (BCᵀ − CBᵀ) (65)

Using Munro’s trick twice, this can be computed with 7 multiplications over
the field K and 17 additions (6 of which are half-additions), as shown in Algo-
rithm 43.

Open question 1. Multiply a quaternion with matrix coefficients by its trans-
pose in fewer than 7 multiplications.

Using matrices of quaternions and divide and conquer. In the follow-
ing, for the sake of simplicity, we will consider only square matrices. Here, we
consider instead a matrix with quaternion coefficients and perform a matrix-
matrix product: since the quaternions are not commutative, then MMᵀ is
not necessarily symmetric, one has to compute both the top right and bot-
tom left corners of the product. Thus no gain is obvious between computing
MMᵀ and MN that way and Algorithm 12 is a priori useless in this case, as
remarked in the (counter)-Examples 6. The idea is thus to use a non symmet-
ric algorithm, applied to M and Mᵀ. The baseline cost would then again be
MMH(K)

ω (n) = 8MMK
ω(n).

Another approach is to use a divide and conquer strategy at the higher level:

cut M into

[
M11 M12

M21 M22

]
, and compute:

• M11 ·M21
ᵀ, M12 ·M22

ᵀ, M21 ·M11
ᵀ, M22 ·M12

ᵀ by the baseline algo-
rithm;

• and M11 ·M11
ᵀ, M12 ·M12

ᵀ, M21 ·M21
ᵀ, M22 ·M22

ᵀ by recursive calls.
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Algorithm 43 Fast quaternion matrix multiplications by its transpose

Input: A,B,C,D ∈ Km×n
Output: M ·Mᵀ ∈ H(K)m×m, for M = A+Bi + Cj +Dk.

U1 = A+B, U2 = A−B
U3 = C +D

P1 = CAᵀ, P2 = DBᵀ

P3 = U3U2
ᵀ, P4 = U1U3

ᵀ,
P5 = ABᵀ, P6 = CDᵀ

P7 = (U1 + U3)(U2
ᵀ − U3

ᵀ)

R1 = P5 + P6, R2 = P5 − P6

Low (R3) = Low (P1 + P1
ᵀ)

Low (R4) = Low (P2 − P2
ᵀ)

Low (S1) = Low (P7 − P3 + P4 +R1 −R2
ᵀ)

S2 = R1 +R2
ᵀ

S3 = R3 +R4

S4 = P3 + P4 − S3
ᵀ

return S1+S2i+S3j+S4k

The cost of this divide and conquer strategy is then:

C(n) ≤ 4C(
n

2
) + 4MMH(K)

ω (
n

2
) + o(nω) ≤ 4C(

n

2
) + 32MMK

ω(
n

2
) + o(nω). (66)

By Lemma 11, we have that C(n) ≤ 32
2ω−4MMK

ω(n) + o(nω), and this is never

better that 8MMK
ω(n) (but equal when ω = 3 as expected). So this is thus

useless too.
But the same strategy can be used with a Strassen-like algorithm instead.

Now such algorithms, for instance those of [19, 21], when applied to M and Mᵀ,
use two recursive calls and five normal multiplications. This is:

S(n) ≤ 2S(
n

2
) + 5MMH(K)

ω (
n

2
) + o(nω) ≤ 2S(

n

2
) + 40MMK

ω(
n

2
) + o(nω). (67)

By Lemma 11, we obtain that this is

S(n) ≤ 40

2ω − 2
MMK

ω(n) + o(nω). (68)

As expected this is again 8MMK
log2(7)

(n) if a Strassen-like algorithm is also used
for the baseline over the field and ω = log2(7). This is worse if ω < log2(7), but
better, and only (6 + 2

3 )MMK
3 (n), if ω = 3.

Positive characteristic quaternions and transposition. In this case, Al-
gorithm 12 is not usable. It nonetheless has an interesting feature: it has 3
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symmetric products instead of 2 for the algorithms of [19, 21]. In the quater-
nion case, as transposition is not an antihomomorphism, one cannot use the
symmetries directly to save computations as in general (M ·N)

ᵀ 6= Nᵀ ·Mᵀ.
But if one is willing to recompute Nᵀ ·Mᵀ then the algorithm still works. This
yields to Algorithm 44 which requires 7 multiplications instead of 5, 15 additions
instead of 9, and 4 multiplications by Y or Y ᵀ.

Algorithm 44 Product of a matrix by its non antihomomorphic transpose

Input: A ∈ Rm×n (with even m and n for the sake of simplicity);
Input: Y ∈ R

n
2×

n
2 such that Y · Y ᵀ = −In

2
;

Output: A ·Aᵀ.
Split A =

(
A11 A12

A21 A22

)
where A11 is in R

m
2 ×

n
2

S1 ← (A21 −A11) · Y ST 1 ← Y ᵀ · (A21
ᵀ −A11

ᵀ)
S2 ← A22 −A21 · Y ST 2 ← A22

ᵀ − Y ᵀ ·A21
ᵀ

S3 ← S1 −A22 ST 3 ← ST 1 −A22
ᵀ

S4 ← S3 +A12 ST 4 ← ST 3 +A12
ᵀ

P1 ← A11 ·A11
ᵀ

P2 ← A12 ·A12
ᵀ

P3 ← A22 · ST 4 PT 3 ← S4 ·A22
ᵀ

P4 ← S1 · ST 2 PT 4 ← S2 · ST 1

P5 ← S3 · ST 3

U1 ← P1 + P5

U3 ← P1 + P2

U2 ← U1 + P4 UT 2 ← U1 + PT 4

U4 ← U2 + P3 UT 4 ← UT 2 + PT 3

U5 ← U2 + PT 4

return
(
U3 UT 4

U4 U5

)
.

Now, it turns out that transposition is still antihomomorphic if one of the
matrices has its coefficients in the base field, as shown by Lemma 45.

Lemma 45. Let A be in H(K)m×k and Y in Kk×n, then (A · Y )
ᵀ

= Y ᵀ ·Aᵀ.

Proof. Since the coefficients of Y are in the base field, they commute with the
quaternions. Therefore, ∀i, j,

∑
k ajkyki =

∑
k ykiajk.

Now, Section 4.3 shows that for any quaternion algebra in positive charac-
teristic, there exist a matrix Y , in the base field, such that Y · Y ᵀ = −Ibn2 c.
Therefore, in this case, Lemma 45 shows that in Algorithm 44, ST 1 = S1

ᵀ,
ST 2 = S2

ᵀ, ST 3 = S3
ᵀ, ST 4 = S4

ᵀ. This shows that not only P1 and P2 are
multiplications of a matrix by its transpose, but also P5 = S3 · S3

ᵀ. Finally, Al-
gorithm 44 thus requires three recursive calls and four general multiplications.
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This is:

P (n) ≤ 3P (
n

2
) + 4MMH(K)

ω (
n

2
) + o(nω) ≤ 3P (

n

2
) + 32MMK

ω(
n

2
) + o(nω) (69)

and Equation (68) is modified as:

P (n) ≤ 32

2ω − 3
MMK

ω(n) + o(nω) (70)

As expected this is again 8MMK
log2(7)

(n) if a Strassen-like algorithm is also used
for the baseline over the field and ω = log2(7). This is again worse if ω < log2(7),
but better, and only (6 + 2

5 )MMK
3 (n), if ω = 3.

6.2.3 Multiplication of a quaternion matrix by its adjoint

We now deal with the case of the product of a quaternion matrix with its
conjugate transpose. This operator is now an antihomomorphism which allows
us to save some computations as in Algorithm 12. Here also we distinguish the
matrix of quaternions from the quaternion with matrix coefficients.

Scalar case. The quaternion conjugation satisfies XY = Y X. Therefore, we
have:

(a+ bi + cj + dk)(a+ bi + cj + dk) = a2 + b2 + c2 + d2 (71)

For matrices again simplifications do not occur and the product is then more
complex.

Using matrices of quaternions. NowM ·MH is a hermitian matrix and Al-
gorithm 12 works over H(K). For this, one needs to find a skew-unitary matrix
in H(K). This is impossible in H(C), but always possible in the quaternions
over fields of positive characteristic using sums of squares and Equation (71).

Suppose we use a generic matrix multiplication algorithm over the quater-
nions with cost bound equivalent to MMH(K)

ω (n) field operations. Then our Al-
gorithm 12 can multiply a matrix of a quaternions by its conjugate transpose

with a dominant complexity term bounded by
(

2
2ω−3

)
MMH(K)

ω (n) operations,

by Theorem 13.
Now for the quaternions, the best algorithm to multiply any two matrices

of quaternions is given by Proposition 42 and uses 8MMK
ω(n) field operations if

the base field matrix multiplication uses MMK
ω(n). We thus have proven:

Corollary 46. Algorithm 12 multiplies a quaternion matrix by its conjugate

transpose with dominant cost bounded by
(

16
2ω−3

)
MMK

ω(n) base field operations.
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Directly using quaternions with matrix coefficients. Using a quaternion
with matrix coefficients over the field, we have:

M ·MH = (A+Bi + Cj +Dk) · (A+Bi + Cj +Dk)
H

= (A+Bi + Cj +Dk)(Aᵀ −Bᵀi− Cᵀj−Dᵀk)

= H1 +H2i +H3j +H4k

(72)

where:

H1 = AAᵀ +BBᵀ + CCᵀ +DDᵀ (73)

H2 = (BAᵀ −ABᵀ) + (DCᵀ − CDᵀ) (74)

H3 = (CAᵀ −ACᵀ) + (BDᵀ −DBᵀ) (75)

H4 = (DAᵀ −ADᵀ) + (CBᵀ −BCᵀ) (76)

Note that H1 is symmetric and H2, H3, H4 are skew-symmetric.
The properties of the transpose in the field shows that these can be computed

with 4 + 3 ∗ 2 = 10 multiplications (including four squares).
Now consider E = A + Bi and F = C + Di, so that M = E + F j. This

shows that:

M ·MH = (E + F j) · (EH + jFH) = (EEH + FFH) + (F jEH − EjFH) (77)

Then, we have:

F jEH = (C +Di)j(Aᵀ −Bᵀi)

= (CAᵀ −DBᵀ)j + (DAᵀ + CBᵀ)k

= Xj + Y k

(78)

−EjFH = (A+Bi)j(−Cᵀ +Dᵀi)

= (−ACᵀ +BDᵀ)j− (BCᵀ +ADᵀ)k

= −Xᵀj− Y ᵀk

(79)

Using Equations (78) and (79), we thus have Algorithm 47 which uses only
6 multiplications (one of which is a square) and a total of 14 additions, 7 of
them being half-additions (On the one hand, 3 multiplications and 5 additions
for Equations (78) and (79) overall, then 2 half-additions for Low (H3) and
Low (H4); on the other hand, 2 multiplications, 1 square, 3 additions and 9
half-additions for Low (H1) and Low (H2)).

Proposition 48. Algorithm 47 multiplies a quaternion matrix by its conjugate

transpose with cost equivalent to
(

5 + 2
2ω−3

)
MMK

ω(n) base field operations.

Proof. Algorithm 47 uses 6 multiplications, one of which, Q6, is the product of
a matrix in K by its transpose.

Open question 2. Multiply a quaternion with matrix coefficients by its Her-
mitian transpose in fewer than 6 multiplications (including 1 square), or with
more squares.
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Algorithm 47 Fast quaternion matrix multiplications by its adjoint

Input: A,B,C,D ∈ Km×n
Output: M ·MH ∈ H(K)m×m, for M = A+Bi + Cj +Dk.

U1 = A+B, U2 = C +D

Q1 = CAᵀ, Q2 = DBᵀ

Q3 = U2U1
ᵀ

Q4 = ABᵀ, Q5 = CDᵀ

Q6 = (U1 + U2)(U1
ᵀ + U2

ᵀ)

T1 = Q1 −Q2, T2 = Q4 +Q5

T3 = (Q1 +Q2)−Q3

Low (H1) = Low (Q6 − (Q3
ᵀ +Q3)− (T2

ᵀ + T2))
Low (H2) = Low (T2

ᵀ − T2)
Low (H3) = Low (T1 − T1ᵀ)
Low (H4) = Low (T3

ᵀ − T3)

return H1 +H2i +H3j +H4k.

Comparison. We summarize the results of this section about quaternion ma-
trices in Table 3.

7 Algorithm into practice

This section reports on an implementation of Algorithm 12 over a prime field,
as it is a core ingredient of any such computation in positive characteristic or
over Z[i] or Q[i]. In order to reduce the memory footprint and increase the
data locality of the computation, we first need to identify a memory placement
and a scheduling of the tasks minimizing the temporary allocations. We thus
propose in Table 4 and Figure 1 a memory placement and schedule for the oper-
ation C ← A ·Aᵀ using no more extra storage than the unused upper triangular
part of the result C.

The more general operation C ← αA ·Aᵀ + βC, is referred to as SYRK (Sym-
metric Rank k update) in the blas api. Table 5 and Figure 2 propose a schedule
requiring only one additional n/2× n/2 temporary storage.

These algorithms have been implemented as the fsyrk routine in the open
source fflas-ffpack library for dense linear algebra over a finite field [8, from
commit 0a91d61e].

Figure 3 compares the computation speed in effective Gfops (a normalization,
defined as n3/(109 × time)) of this implementation over Z/131071Z with that of
the double precision blas routines dsyrk, the classical cubic-time routine over
a finite field (calling dsyrk and performing modular reductions on the result),
and the classical divide and conquer algorithm [6, § 6.3.1].

The fflas-ffpack library is linked with Openblas [22, v0.3.6] and compiled
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Alg. MM3(n) MMlog2 7(n) MMω(n)

A ·B
naive 32n3 16 MMK

log2(7)
(n) 16 MMK

ω(n)

[14] 16n3 8 MMK
log2(7)

(n) 8 MMK
ω(n)

A ·AH
Alg. 47 10.8n3 5.5 MMK

log2(7)
(n)

(
2

2ω−3
+ 5

)
MMK

ω(n)

Alg. 12 6.4n3 4MMK
log2(7)

(n) 16
2ω−3

MMK
ω(n)

A ·Aᵀ Alg. 43 14n3 7MMK
log2(7)

(n) 7MMK
ω(n)

Eq. (68) (13 + 1
3
)n3 8 MMK

log2(7)
(n) 40

2ω−2
MMK

ω(n)

> 0 char. Alg. 44 (12 + 4
5
)n3 8 MMK

log2(7)
(n) 32

2ω−3
MMK

ω(n)

Table 3: Matrix Multiplication over H(K)n×n: leading term of the cost in

number of operations over K. Note that
(

2
2ω−3 + 5

)
< 16

2ω−3 only when

ω < log2(29)− log2(5) ≈ 2.536.

# operation loc. # operation loc.

1 S1 = (A21 −A11) · Y C21 9 U1 = P1 + P5 C12

2 S2 = A22 −A21 · Y C12 Up(U1) = Low(U1)
ᵀ

C12

3 P4
ᵀ = S2 · S1

ᵀ C22 10 U2 = U1 + P4 C12

4 S3 = S1 −A22 C21 11 U4 = U2 + P3 C21

5 P5 = S3 · S3
ᵀ C12 12 U5 = U2 + P4

ᵀ C22

6 S4 = S3 +A12 C11 13 P2 = A12 ·A12
ᵀ C12

7 P3 = A22 · S4
ᵀ C21 14 U3 = P1 + P2 C11

8 P1 = A11 ·A11
ᵀ C11

Table 4: Memory placement and schedule of tasks to compute the lower trian-
gular part of C ← A ·Aᵀ when k ≤ n. The block C12 of the output matrix is
the only temporary used.
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C22 C12 C21 C11

S2 S1

P4
ᵀ S3

P5 S4

P3

P1

U1

U2

U5 U4

P2

U3

Figure 1: dag of the tasks and their memory location for the computation
of C ← A ·Aᵀ presented in Table 4.

operation loc. operation loc.

S1 = (A21 −A11) · Y tmp P1 = αA11 ·A11
ᵀ tmp

S2 = A22 −A21 · Y C12 U1 = P1 + P5 C12

Up(C11) = Low(C22)
ᵀ

C11 Up(U1) = Low(U1)
ᵀ

C12

P4
ᵀ = αS2 · S1

ᵀ C22 U2 = U1 + P4 C12

S3 = S1 −A22 tmp U4 = U2 + P3 C21

P5 = αS3 · S3
ᵀ C12 U5 = U2 + P4

ᵀ + βUp(C11)
ᵀ

C22

S4 = S3 +A12 tmp P2 = αA12 ·A12
ᵀ + βC11 C11

P3 = αA22 · S4
ᵀ + βC21 C21 U3 = P1 + P2 C11

Table 5: Memory placement and schedule of tasks to compute the lower tri-
angular part of C ← αA ·Aᵀ + βC when k ≤ n. The block C12 of the output
matrix as well as an n/2× n/2 block tmp are used as temporary storage.
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C11 C22 C12 tmp C21

Up(C11) S2 S1

P4
ᵀ S3

P5 S4

P1 P3
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U2

U5 U4
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U3

Figure 2: dag of the tasks and their memory location for the computation
of C ← αA ·Aᵀ + βC presented in Table 5.
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Figure 3: Speed of an implementation of Algorithm 12
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with gcc-9.2 on an Intel skylake i7-6700 running a Debian gnu/Linux system
(v5.2.17).

The slight overhead of performing the modular reductions is quickly com-
pensated by the speed-up of the sub-cubic algorithm (the threshold for a first
recursive call is near n = 2000). The classical divide and conquer approach
also speeds up the classical algorithm, but starting from a larger threshold, and
hence at a slower pace. Lastly, the speed is merely identical modulo 131041,
where square roots of −1 exist, thus showing the limited overhead of the pre-
conditioning by the matrix Y .

8 Perspective

We made progresses in order to prove that five non-commutative products are
necessary for the computation of the product of a 2× 2 matrix by its adjoint,
by applying de Groote’s method to this context. However, we only prove that
there is no algorithm, derived from a bilinear one, which uses 4 products and
the adjoint of one of them. The case where more adjoints of already computed
products could be used need to be ruled out in a similar manner. More generally,
the possible existence of algorithms not originating from a bilinear algorithm is
an even more challenging question.

Over the algebra of quaternions, the natural generalization of Howell and
Lafon’s algorithm to matrix coefficients yields the 7M and 6M algorithms for
the transpose and conjugate transpose respectively. The recursive 5 products
algorithm is only usable for the conjugate transpose case in positive characteris-
tic and costs, as expected, half the cost of a general quaternion matrix product
for ω = log2 7. Yet for ω < 2.536 and for the case of transposition the 6M and
7M algorithms perform best. The minimality of the number 6 of multiplica-
tions to multiply a quaternion by its conjugate is an open question, as for the
minimality of the number 7 of multiplications to multiply a quaternion by its
transpose. For these questions, de Groote’s method could provide an answer.

We proposed several algorithms for the product of a matrix by its adjoint,
each of which improves by a constant factor the best known costs, depending
on the algebraic nature of the field of coefficients and on the underlying matrix
exponent to be chosen. When implemented in practice the comparison may
become even more complex, as other parameters, such as memory access pattern
or vectorization will come into play. Our first experiments show that these
constant factor improvements do have a practical impact.
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