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Abstract: Observer synthesis for switched linear systems with time-varying sampled-data
measurements is addressed in this paper. Between sampling times, the behaviour of the observer
under consideration has the particularity to be that of the estimated active mode while, at the
sampling times a correction (or an update) is made using the estimated active mode and the
sampled output signal. Two cases are discussed: i) the situation where no delay occurs in the
estimation of the active mode and, ii) the more practical case where the estimated switching
signal that defines the proposed observer is a delayed replica of the plant’s switching signal. In
these two situations, appropriate time-varying piecewise quadratic Lyapunov functions are used
to establish convergence conditions of the proposed observer in the linear matrix inequalities
(LMIs) framework.
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1. INTRODUCTION

Switched systems has been the subject of a growing
amount of interests in the past decade and are by now
a well studied topic (Daafouz et al., 2002; Liberzon and
Morse, 1999; Liberzon, 2012). Switched systems are a sub-
class of hybrid systems where different dynamics describe
the different operating modes. The transition from one
mode to another is given by a switching rule. The mo-
tivation for considering such a class of systems is vast and
encompasses robust stabilization (modeling and control) of
systems subject to sampling uncertainties and singularly
perturbed systems. An important problem arising when
considering switched systems is the stability problem. In-
deed given a switching rule, stability (resp. instability) of
all modes does not guaranty the stability (resp. instability)
of the overall switched system (Liberzon, 2012). Several
results exist on stability of switched systems in different
settings (for a survey on the topic, see for instance Briat.,
2013; Allerhand and Shaked, 2011; Zhang and Gao, 2010;
Xiang, 2016; Lin and Antsaklis, 2009).
While full state feedback is often assumed to be mea-
sured, in many practical applications due to technical or
economic constraints, such an hypothesis is not justified.
Therefore observation for linear and nonlinear systems
constitutes a large area of study. For this reason observer
synthesis for switched systems has received some attention
in the literature (Alessandri and Coletta, 2003; Pettersson,
2006; Barbot et al., 2007; Bejarano and Pisano, 2010).
However when the output is transmitted over a network
the assumption of continuous transmission is no longer

warranted and close attention has to be paid to the aperi-
odic and sampled nature of the output. This consideration
has, in the last decade, led to numerous works in the field
of observation with aperiodic sampling for both continu-
ous time linear and nonlinear systems. For such sampled
data systems, the so called impulsive observer (sometimes
referred as continuous-discrete observer) offer interesting
properties in terms of both performance and simplicity of
analysis (see for instance Raff and Allgower, 2007; Dinh
et al., 2014; Etienne et al., 2017). However, to the best
of the author’s knowledge, observation of continuous time
switched systems subject to time varying sampling has not
received attention. While some results have recently been
proposed for discrete time systems (Han et al., 2019), such
missing analysis motivates the present study.
In this work we will address the problem of observer syn-
thesis for switched linear systems with aperiodic sampled
measurements. Between the sampling times, the observer
is just a copy of the dynamics given by the estimated active
mode. At sampling times, an instantaneous correction (or
an update) is made using the sampled output signal as
well as the estimated active mode. For the design of this
observer, two cases are considered:

• The first case assumes that the switching sequence is
known in real time.

• For the second case, since in practice the identi-
fication of the active mode may takes some times
thus introducing a delay (Tian et al., 2011; Yang
et al., 2015), we will also consider the asynchronous
situation where the switching times are not instan-
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taneously estimated. In this context, we will assume
that there can be a bounded delay between the real
active mode and its estimation provided by the ob-
server. Indeed if one considers sampled data outputs,
then it is natural to see the switching signal (which
can be seen as an output) as not continuously mea-
sured and available in real-time .

In these two situations, using appropriate time-varying
piecewise quadratic Lyapunov functions, we propose con-
vergence conditions for the impulsive observers in the
linear matrix inequalities framework.
The rest of the paper is organized as follows. The con-
sidered class of switched linear systems and the impul-
sive observers under consideration are described in Sec-
tion 2. LMIs-based conditions proposed for the observer
synthesis, obtained from piecewise quadratic Lyapunov
functions, are presented in Section 3. To show the relevance
of the proposed observer synthesis methods, numerical ex-
amples are also provided in Section 4. Concluding remarks
are finally given in Section 5.
Notation: For a vector or a matrix v, v⊤ denotes its
transpose. We define for a matrix A, He(A) := A + A⊤.
R≥0 corresponds to the set of non-negative real numbers.
Sn denotes the set of n × n symmetric matrices while S+n
denotes the set of n×n positive definite symmetric matri-
ces. For a matrix M ∈ Sn, λmin (M) and λmax (M) denote
its smallest and largest eigenvalues, respectively. For two
positive definite (resp. positive semidefinite) matrices P
and Q, we write P ≻ Q (resp. P ≽ Q) if P −Q is positive
definite (resp. positive semidefinite).

2. DEFINITIONS AND PROBLEM STATEMENT

Let’s consider the following class of switched linear sys-
tems: ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t ̸= sk, t ̸= tk,

x(s+k ) = x(sk),
y(tk) = Cσ(tk)x(tk),

(1)

where ∀t ∈ [0 ;∞), x (t) ∈ Rn, u (t) ∈ Rℓ and y (t) ∈ Rm

are the state vector, the control input and the output
vector. The signal σ : [0 ;∞) −→ S ⊂ N is a piecewise
constant function, continuous from the right, representing
the switching signal of the system. {sk}k∈N is the strictly
increasing sequence of the switching instants and {tk}k∈N
is the sequence of sampling times. By convention, we set
s0 = t0 = 0 and for technical simplicity we assume that
∀k ̸= 0, {tk}k∈N ∩ {sk}k∈N = ∅. For every i ∈ S , Ai, Bi

and Ci are known matrices with appropriate dimensions.
Solution of the dynamical system are defined iteratively.
The switching signal is assumed to admit an average dwell-
time (ADT), i.e.:
Assumption 1. There exists s ∈ R⋆

+ such that for every
s, t ∈ [0 ;∞) with t ≥ s, the number Ns (s, t) of switching
of σ in the interval [s ; t[ verifies Ns (s, t) ≤ N0 +

t−s
s for

some N0 ∈ N; s is the ADT and N0 is called the chatter
bound.

Furthermore, sampling sequences with ranged dwell are
considered, that is:

Assumption 2. There exists constants τ ≥ τ > 0 such that
∀k ∈ N, tk+1 − tk ∈ [τ ; τ ].
Remark 3. Note that for sampling sequences {tk}k∈N sat-
isfying the ranged dwell hypothesis in Assumption 2, for
every s, t ∈ [0 ;∞) with t ≥ s, the number Nc (s, t) of
sampling tk in [s ; t) verifies Nc (s, t) ≥ t−s

τ − 1.

For the class of switched linear systems of the form (4), the
concept of global uniform exponential stability (GUES)
needed in our subsequent analysis is recalled.
Definition 4. (GUES). System (1) is said to be globally
uniformly exponentially stable with convergence rate β
and overshoot M if, ∀t ∈ [0 ;∞) and ∀x0 = x(0) ∈ Rn,
∥x(t)∥ ≤ M exp (−β t) ∥x0∥.

The impulsive observer under consideration is described
by:

˙̂x(t) = Aσ̂(t)x̂(t) +Bσ̂(t)u(t), t ̸= sk, t ̸= tk,
x̂(s+k ) = x̂(sk),
x̂(t+k ) = x̂(tk) +Gσ̂(tk)

(
Cσ(tk)x(tk)− Cσ̂(tk)x̂(tk)

)
,

(2)

where ∀t ∈ [0 ;∞), x̂ (t) ∈ Rn is the observer state vector
(i.e. the estimated state vector) and σ̂ : [0 ;∞) −→ S is
an estimate of the real switching signal σ. The switching
times of σ̂ are denoted by the strictly increasing sequence
{ŝk}k∈N. It is assumed next that the estimated switching
times are obtained with a maximum time delay δ ≥ 0, that
is:
Assumption 5. ∀k ∈ N, ŝk − sk ≤ δ.

Let us stress that the identification method of the real
active mode is outside the scope of this paper, but our
work can be used for any method that can reconstruct the
real state in an time upper bounded by δ.
Note that, according to (2), between sampling, the ob-
server is a copy of the system that run the estimated
active mode σ̂. Moreover, when a sampling occurs, an
instantaneous correction is made using the sampled output
and the estimated active mode σ̂ (t).
A simpler specific case occurs when no delay in the active
mode detection is present (i.e. δ = 0). In this case, the
observer (2) yields to:


˙̂x(t) = Aσ(t)x̂(t) +Bσ(t)u(t), t ̸= sk, t ̸= tk
x̂(s+k ) = x̂(sk),
x̂(t+k ) = x̂(tk) +Gσ(tk)Cσ(tk)

(
x(tk)− x̂(tk)

)
.

(3)

In this delay-free situation, we are interested by the
following observer synthesis problem (OSP):
Problem 6. Solving the observer synthesis problem (OSP)
is to find a set of impulsive observation gains Gi, i ∈ S
for observer (3) such that the estimated error e = x− x̂ is
GUES.

When the estimated switching signal is the delayed replica
of the system’s switching signal, the following observer
based stability analysis problem (OBSAP) will be exam-
ined:
Problem 7. Solving the observer based stability analysis
problem (OBSAP) is to find conditions such that (x⊤, x⊤−
x̂⊤)⊤ is GUES when both matrices Ki and Gi, i ∈ S are
given.



3. MAIN RESULT

3.1 Case of synchronous switching signals

In this part, we consider the case where δ = 0 (i.e. σ and σ̂
are synchronous). Considering x given by (1) and x̂ defined
by (3), the observation error has the following dynamics:

ė(t) = Aσ(t)e(t), t ̸= sk,

e(s+k ) = e(sk),

e(t+k ) = (I −Gσ(tk)Cσ(tk))e(t
−
k ).

(4a)
(4b)
(4c)

LMIs-based conditions are proposed in Theorem 8 to solve
the OSP problem:
Theorem 8. Consider the switched linear system (4) with
switching times {sk}k∈N and sampling sequences {tk}k∈N
satisfying Assumptions 1 and 2. If there exist symmetric
matrices P i

m ∈ Sn, m ∈ {0, 1}, i ∈ S and the scalars
α ∈ R, µs ≥ 1 and µ

c
∈ ]0 ; 1] such that the following

statements hold:
∀i ∈ S , ∀τ̃ ∈ {0, τ}, P i (τ̃) ≻ 0, (5)

∀i ∈ S , ∀τ̃ ∈ {0, τ}, He(P i (τ̃) Ai) + P i
1+

αP i (τ̃) ≺ 0,
(6)

∀i ∈ S , ∀τ̃ ∈ {τ , τ},
[
µ
c
P i (τ̃) P i

0 − Li Cj

∗ P i
0

]
≻ 0, (7)

∀i, j ∈ S , ∀τ̃ ∈ {0, τ}, P i (τ̃) ≺ µs P
j (τ̃) , (8)

α >
lnµs

s
+

lnµ
c

τ
(9)

where
∀i ∈ S , ∀τ̃ ∈ R, P i (τ̃) = P i

0 + τ̃P i
1, (10)

then the system (4) with impulsive observation gains Gi =
(P i

0)
−1Li, i ∈ S is GUES (i.e. the OSP is solved) with the

convergence rate:

β =
1

2

(
α− lnµs

s
−

lnµ
c

τ

)
. (11)

Proof 1. Let’s consider the piecewise continuous Lyapunov
function candidate V (t) = e⊤ (t) Pσ(t) (t− τ (t)) e (t),
t ∈ [0 ;∞) where τ (t) = max{tk : t ≥ tk} is a piece wise
constant function that denotes at time t the last sampling
that occurred. Pσ(t) (t− τ (t)) is introduced in (10) i.e.:

Pσ(t) (t− τ (t)) = P
σ(t)
0 + (t− τ (t)) P

σ(t)
1 .

For any t ∈ [0 ;∞), by construction of τ (t), one has
t − τ (t) ∈ [0 ; τ ] and thus by convexity argument, one
deduce from condition (5) that V is a positive definite
function.
Denote by {t̄k}k∈N the strictly increasing sequence associ-
ated to {tk}k∈N ∪ {sk}k∈N. Let t ∈ ]̄tk ; t̄k+1[ with k ∈ N.
By a simple differentiation of V and using the dynamic
equation (4a) of the observation error, one can verify that
V̇ (t) = e⊤ (t) Γσ(t) e (t), where

Γσ(t) =
[
He

(
Pσ(t) (t− τ (t)) Aσ(t)

)
+ P

σ(t)
1

]
.

Since t − τ (t) ∈ [0 ; τ ], using condition (6) and convexity
argument, one gets that Γσ(t) ≺ −αPσ(t) (t− τ (t)) and
consequently, V̇ (τ) ≤ −αV (τ). Integrating this differen-
tial inequality on ]̄tk ; t̄k+1[ yields:
V (t) ≤ exp (−α (t− t̄k)) V

(
t̄+k

)
, ∀τ ∈ ]̄tk ; t̄k+1[. (12)

Furthermore, since e
(
s+k

)
= e

(
s−k

)
, using (4b) one obtains

V
(
s+k

)
= e⊤

(
s−k

)
Pσ(s+k )

(
sk − τ

(
s−k

))
e
(
s−k

)
, ∀k ∈ N.

As sk − τ
(
s−k

)
∈ [0 ; τ ], by a convexity argument, one

can deduce from condition (8) that Pσ(s+k )
(
sk − τ

(
s−k

))
≺

µs P
σ(s−k )

(
sk − τ

(
s−k

))
and consequently, the relation

V
(
s+k

)
≤ µs V

(
s−k

)
, ∀k ∈ N, (13)

holds. We will now establish a similar relation for the
sampling times. Since t+k − τ

(
t+k

)
= 0 and e

(
t+k

)
= e

(
t−k

)
,

using (4c), one can see that

V
(
t+k

)
= e⊤

(
t−k

)
Ω⊤

σ(tk)

(
P

σ(tk)
0

)−1

Ωσ(tk) e
(
t−k

)
where Ωσ(tk) = P

σ(tk)
0 − Lσ(tk) Cσ(tk). This implies that

V
(
t+k

)
− µ

c
V
(
t−k

)
= −e

(
t−k

)
Γ̃σ(tk) e (tk) with Γ̃σ(tk) =

µ
c
Pσ(t−k )

(
tk − τ

(
t−k

))
−Ω⊤

σ(tk)

(
P

σ(tk)
0

)−1

Ωσ(tk). As tk−
τ
(
t−k

)
= tk − tk−1 ∈ [τ ; τ ] (see Assumption 2) and

σ(t−k ) = σ(tk), then by also applying a convex argument
and the Schur complement to condition (7), one gets that
Γ̃σ(tk) ≻ 0. Therefore, ∀k ∈ N, the relation V

(
t+k

)
≤

µ
c
V
(
t−k

)
holds for the sampling times. This relation and

that established in (13) imply that
V
(
t̄+k

)
≤ µ̃k V

(
t̄−k

)
, ∀k ∈ N (14)

where constants µ̃k, k ∈ N, are defined by:

µ̃k =

{
µs if t̄k ∈ {sk}k∈N,
µ
c

if t̄k ∈ {tk}k∈N.
(15)

Now passing to the limit in (12) when τ tends to t̄k+1 from
below and using (14) yields:
V
(
t̄−k+1

)
≤ µ̃k exp (−α (̄tk+1 − t̄k))V

(
t̄−k

)
, ∀k ∈ N. (16)

Now, let t ∈ [0 ;∞) and denote by N (0, t), the number of
sampling and switching times in the interval [0 ; t), that is
N (0, t) = Ns (0, t) + Nc (0, t). We recall that Ns (0, t) and
Nc (0, t) are the number of switching times and sampling
times in [0 ; t), respectively. By iterating the relation (16)
for k = 0, 1, . . . N (0, t)− 1, one gets:

V
(
t̄−N(o,t)

)
≤

N(0,t)−1∏
k=0

µ̃k

 exp
(
−αt̄N(0,t)

)
V (0) . (17)

Furthermore, as t ∈ ]̄tN(0,t) ; t̄N(0,t)+1[, by setting τ = t
and k = t̄N(0,t) in (12) and using (14), one obtains
V (t) ≤ µ̃N(0,t) exp

(
−α

(
t− t̄N(0,t)

))
V
(
t̄−N(0,t)

)
, which

implies according to (17) that:

V (t) ≤

N(0,t)∏
k=0

µ̃k

 exp (−α t) V (0) . (18)

It follows from the definition (15) of constants µ̃k and the
definition of N (0, t) that

∏N(0,t)
k=0 µ̃k = µ

Ns(0,t)
s µNc(0,t)

c
.

From Assumption 1, Ns (0, t) ≤ N0 + t
s and from Re-

mark 3, Nc (0, t) ≥ t
τ − 1. So, one has

∏N(0,t)
k=0 µ̃k ≤

µN0
s

µ
c

exp

{(
lnµs

s
+

lnµ
c

τ

)
t

}
. Therefore:

V (t) ≤ µN0
s

µ
c

exp (−2β t) V (0) . (19)



where β is defined by (11). Moreover, one can see that:

V (0) ≤ θmax ∥e (0)∥2 , V (t) ≥ θmin ∥e (t)∥2 , (20)
with the constants θmin = min

i∈S
min

τ∈[0;τ ]
λmin

(
P i (τ)

)
and

θmax = max
i∈S

λmax

(
P i
0

)
. In the definition of θmin, the

continuity of the eigenvalue function as well as the Weire-
strass extreme value theorem guarantee the existence of
min

τ∈[0;τ ]
λmin

(
P i (τ)

)
, ∀i ∈ S . Finally, combining (19)

and (20) yields ∥e (t)∥ ≤
√

µN0
s θmax

µ
c
θmin

exp (−β t) ∥e (0)∥.

This concludes the proof.
Remark 9. Note that (9) gives a trade-off between the
convergence rate in continuous time α, the discrete time
convergence rate µ

c
introduced by Gσ, and the parameters

µs that accounts for instability introduced by the switch-
ing. As it is the case for systems without switching (Raff
and Allgower, 2007; Etienne et al., 2017), no subsystem
Ai, i ∈ S , has to be stable to ensure the converge of the
observer. However in order to verify the LMIs conditions,
every pair (Ai, Ci), i ∈ S , must be detectable.

3.2 Case of asynchronous switching signals

We assume now that the active mode is not detected
instantaneously but with a delay. Such an assumption
is coherent with the fact that the output y(t) is not
continuously monitored. Therefore looking at σ as an
output it is clear that some delay in the active mode
reconstruction/measurement is reasonable. Considering x
given by (1) and x̂ defined by (2). We define in this case
the extended state z (t) =

[
x⊤ (t) e⊤ (t)

]⊤
. We also define

the observer based feedback u(t) = Kσ̂(t)x̂(t). Then the
following extended dynamical system is defined:

ż(t) = Aσσ̂z(t), t ̸= sk,

z(s+k ) = z(sk),

z(t+k ) = Jσ(tk)σ̂(tk)z(tk),

(21a)
(21b)
(21c)

where:

Aσσ̂ =

[
Aσ +BσKσ̂ −BσKσ̂

Aσσ̂ +Bσσ̂Kσ̂ Aσ̂ −Bσσ̂Kσ̂

]
,

Jσσ̂ =

[
I 0

Gσ̂(tk)Cσσ̂ I −Gσ̂Cσ̂

]
,

(22a)

(22b)

with:
Aσσ̂ = Aσ −Aσ̂, Bσσ̂ = Bσ −Bσ̂, Cσσ̂ = Cσ − Cσ̂. (23)

Theorem 10. Consider the hybrid system (21) with switch-
ing times {sk}k∈N and sampling sequences {tk}k∈N satisfy-
ing Assumptions 1 and 2. If there exist symmetric matrices
Qi

m ∈ S2n, m ∈ {0, 1}, i ∈ S , and scalars α, α ∈ R and
µs, µc

, µc ∈ R+ with µs, µc ≥ 1 and µ
c
≤ 1 such that the

following conditions are verified:
∀i ∈ S , ∀τ̃ ∈ {0, τ}, Qi (τ̃) ≻ 0, (24)

∀i, j ∈ S , ∀τ̃ ∈ {0, τ}, He
(
Qi (τ̃) Aji

)
+Qi

1+
αij Q

i (τ̃) ≺ 0,
(25)

∀i, j ∈ S , ∀τ̃ ∈ {τ , τ},
[
µij Q

i (τ̃) Qi
0 Jji

∗ Qi
0

]
≻ 0, (26)

∀i, j ∈ S , ∀τ̃ ∈ {0, τ}, Qi (τ̃) ≺ µsQ
j (τ̃) , (27)

−α[1− δ

s
] + α

δ

s
+

lnµs

s
+

lnµ
c

τ
[1− δ

s
] +

δ lnµc

τ s
< 0.

(28)
where:

Qi (τ̃) = Qi
0 + τ̃ Qi

1, (29)
and

(αij , µij) =

{
(α, µ

c
) if i = j,

(−α, µc) if i ̸= j,
(30)

then the system (21) is GUES (i.e. the OBSAP is solved)
with the convergence rate:

β =
1

2

(
α[1− δ

s
]− α

δ

s
− lnµs

s
−

lnµ
c

τ
[1− δ

s
]− δ lnµc

τ s

) (31)

Proof 2. Steps of the proof are similar to that fol-
lowed in the proof of Theorem 8. The main difference
lies in the treatment of existing delays in the active
mode detection. In this case, we consider the piece-
wise continuous Lyapunov function candidate V (t) =
z⊤(t)Qσ̂(t) (t− τ(t)) z(t), t ∈ [0 ;∞) where τ (t) =

max{tk : t ≥ tk} and Qσ̂(t) (t− τ(t)) = Q
σ̂(t)
0 + (t −

τ(t))Q
σ̂(t)
1 . Note that condition (24) implies that V is

positive definite. Let’s also consider {t̄k}k∈N, the strictly
increasing sequence associated to the sequence {tk}k∈N ∪
{sk}k∈N. Let t ∈ ]̄tk ; t̄k+1[ with k ∈ N.

One has V̇ (t) = z⊤(t)Υ σ̂(t) z(t) with Υ σ̂(t) the matrix
defined by Υ σ̃(t) = He

(
Qσ̂(t)(t− τ(t))Aσσ̂

)
+ Q

σ̂(t)
1 . Us-

ing (25), one can verify that Υ σ̃(t) ≺ −ασ̂(t)σ(t) Q
σ̂(t)(t −

τ(t)) and consequently, V̇ (t) ≤ −ασ̂(t)σ(t) V (t). Integrat-
ing this differential inequality and using the definition (30)
of constant ασ̂(t)σ(t), one gets:
V (t) ≤ exp{−αMatch(̄tk, τ) + αM iss

atch(̄tk, τ)}V (̄t+k )

where Match(τ1, τ2) =
∫ τ2
τ1

1σ(s)=σ̂(s)ds and M iss
atch(τ1, τ2) =∫ τ2

τ1
1σ(s)̸=σ̂(s)ds, ∀τ1, τ2 ∈ [0 ;∞) with 1, the indicator

function. Since Match(τ1, τ2) = τ2−τ1−M iss
atch(τ1, τ2), then

V (τ) ≤ exp{γ (̄tk, τ)}V (̄t+k ), ∀τ ∈ ]̄tk ; t̄k+1[ (32)
where the notation:

γ (τ1, τ2) = −α (τ2 − τ1) + (α+ α) M iss
atch(τ1, τ2) (33)

is introduced for simplicity in the presentation. Note that
M iss

atch(τ1, τ2) satisfies:

M iss
atch(τ1, τ2) ≤ δNs (τ1, τ2) ≤ δ

(
N0 +

τ2 − τ1
s

)
. (34)

Now, we will also determine in this case an upper bound
of V (̄t+k ) similar to that obtained in (14). For the switch-
ing times, one can see that V (s+k ) = z⊤(s−k )Q

σ̂(s+
k
)(sk −

τ(s−k ))z(s
−
k ). Moreover, it follows from (27) that Qσ̂(s+

k
)(sk−

τ(s−k )) ≺ µsQ
σ̂(s−

k
)(sk − τ(s−k )). Consequently:

V (s+k ) ≤ µs V (s−k ), ∀k ∈ N. (35)
For the sampling times, using (21c), one can verify that
V (t+k ) − µσ̂(t−

k
)σ(t−

k
) V (t−k ) = −z⊤(t−k ) Υ̃

σ̂(tk) z(t−k ) with



Υ̃ σ̂(tk) defined by Υ̃ σ̂(tk) = µσ̂(t−
k
)σ(t−

k
) Q

σ̂(t−
k
)(tk − tk−1)−

J⊤
σ̂(t−

k
)
Qσ̂(t−

k
)(0)Jσ̂(t−

k
). Applying the Schur complement

to (26), one can show that Υ̃ σ̂(tk) is positive definite and,
consequently, V (t+k ) ≤ µσ̂(t−

k
)σ(t−

k
) V (t−k ), ∀k ∈ N. This

inequality and (35) imply that

V (̄t+k ) ≤ µ̃k V (̄t−k ), ∀k ∈ N, (36)
where, in this case, µ̃k is the scalar defined by:

µ̃k =

 µs if t̄k ∈ {sk}k∈N,
µ
c

if t̄k ∈ {tk}k∈N and σ(̄tk) = σ̂(̄tk),
µc if t̄k ∈ {tk}k∈N and σ(̄tk) ̸= σ̂(̄tk).

(37)

By passing to the limit in (32) when τ tends to t̄k+1 from
below and using (36), one obtains:

V
(
t̄−k+1

)
≤ µ̃k exp{γ (̄tk, t̄k+1)}V

(
t̄−k

)
, ∀k ∈ N. (38)

Now, let t ∈ [0 ;∞) and denote by N (0, t) the number of
sampling times and switching times in [0 ; t), i.e. N (0, t) =
Ns (0, t) + Nc (0, t). Similarly to the proof of (18), by
iterating relation (38) for k = 0, 1, . . . , N (0, t), and using
after (32) and (36) rewritten for τ = t and k = t̄N(0,t), one
gets:

V (t) ≤

N(0,t)∏
k=0

µ̃k

 exp{γ (0, t)}V (0) . (39)

Let Nmatch
c (0, t) be the number of sampling times tk in

[0 ; t) with no error in the estimation of the switching signal
(i.e. σ(tk) = σ̂(tk)) and let Nmatch

c (0, t) = Nc (0, t) −
Nmatch

c (0, t). It follows from the definition (37) of µ̃k,
that

∏N(0,t)
k=0 µ̃k = µ

Ns(0,t)
s µNmatch

c (0,t)
c

µ
Nmatch

c (0,t)
c . Since

Ns (0, t) ≤ N0+
t
s , Nmatch

c (0, t) ≤ Miss
atch(0,t)

τ ≤ δ
τ

(
N0 +

t
s

)
and Nmatch

c (0, t) ≥ t−Miss
atch(0,t)
τ ≥ 1

τ

[
t
(
1− δ

s

)
− δ N0

]
,

then:
N(0,t)∏
k=0

µ̃k ≤ µN0
s µ

N0 δ

τ

c µ− δ N0
τ

c
exp{β̃ t}, (40)

where β̃ =
lnµ

c

τ [1 − δ
s ] +

δ lnµc

τ s + lnµs

s . Furthermore,
from (34) and (33),

γ (0, t) ≤ (α+ α) δ N0 + t

[
−
(
1− δ

s

)
α+ α

δ

s

]
.

Then combining (39) and (40) gives the inequality
V (t) ≤ M exp{−2β t}V (0) , with β the constant in-
troduced in (31) and M̃ the constant defined by M̃ =

exp{(α+ α) δ N0}µN0
s µ

N0 δ

τ

c µ− δ N0
τ

c
. Finally, using the re-

lations V (0) ≤ θ̄max ∥z (0)∥2 and V (t) ≥ θ̄min ∥z (t)∥2
with constants θ̄max = max

i∈S
λmax

(
Qi

0

)
and θ̄min =

min
i∈S

min
τ∈[0;τ ]

λmin

(
Qi (τ)

)
, one obtains

∥z (t)∥ ≤

√
M̃ θ̄max

θ̄min
exp{−β t} ∥z (0)∥ ,

which concludes the proof.
Remark 11. The parameter (28) gives a trade off between
admissible degradation of convergence of the Lyapunov

functions due to both δ and µs and the convergence
ensured by α and µ

c
. Interestingly, when δ = 0 one

recovers (9). Note that, while the existence of parameters
α and α is classical for switched systems with delays in the
active mode detection, the presence of µc is not. This is
due to the fact that this parameter accounts for impulsive
observation when the system’s and the observer’s active
modes mismatch.
Remark 12. The conditions given in both Theorems 8
and 10 amount to solve a set of bilinear matrix inequal-
ities. This is in general a hard problem. However, by
choosing a priori a small amount of parameters (namely
(α, α, µ

c
, µc, µs) for Theorem 10 when τ , τ and s are

given), the problem at hand becomes LMIs that can be
solved for large scale systems. Furthermore, note that this
number of parameters is independent on the dimension of
the system.
Remark 13. Note that here the result obtained do not
assume a link between tk, sk and ŝk if one assume that the
switching signal is transmitted along the output, simpler
condition might be derived, furthermore if one assume that
Cσ = C, then no attention has to be paid to potential
error when triggering the impulsive observation and less
conservative results shall be obtained as well.

4. SIMULATION RESULT

Consider the following academic example (also considered
in Zhang and Gao, 2010; Zhang and Xiang, 2016; Etienne
et al., 2018) given by:

A1 =

[
0.2 −0.5
0.5 −0.3

]
, B1 =

[
−0.4
1.8

]
, C1 = [1, 0],

A2 =

[
0.2 0.3
−1 0.4

]
, B2 =

[
0.1
1.5

]
, C2 = [1, 0],

with the parameters τ = 0.3, τ = 0.4 and s = 7.

4.1 Syntheses

In this part, with the parameters α = 0.2 and µs =
5 and µ

c
= 0.98, we synthesis an impulsive observer

without delay in the active mode detection. As is clear in
Theorem 8 it is not necessary for the system to be stable
(stabilized Fig.1.a) for the observer to converge (Fig.1.b).
Furthermore, the switching of the original system does not
lead to instability of the observer. In Fig.1.c one can see
that tk+1− tk is randomly drown in the interval [0.3., 0.4].

Analyse

Considering a known (emulation based) stabilizing con-
troller K1 = [2.1124,−0.9336],K2 = [−1.3111,−1.3158].
Taking the same parameters as before with furthermore
δ = 0.15, µc = 5 and α = 3, we found that the condition
of Theorem 10 are verified. We can see in Fig.2 that
with the proposed controller and observer gains the overall
extended system is asymptotically stable event with delay
in the active mode detection.

5. CONCLUSION

In this work we have studied the impulsive observer syn-
thesis problem for switched system with synchronous and
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Fig. 2. a)Trajectory of the system. b) Trajec-
tory of the observation error (plain line
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state). c)Inter sampling time.

asynchronous switching signals. First impulsive observer
gain synthesis have been obtained in the synchronous case.
Then, an emulation based approach has been used to es-
tablish asymptotic stability of an observer based controller
in the asynchronous situation. Both results are provided
in terms of LMIs and allow for effective computation of
the controller action or the convergence rate.
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