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Abstract 15 

Our species possesses the peculiar ability to accumulate cultural innovations over multiple 16 

generations, a phenomenon termed cumulative cultural evolution (CCE). Recent years have 17 

seen a proliferation of empirical and theoretical work exploring the interplay between 18 

demography and CCE. This has generated intense discussion about whether demographic 19 

models can help explain historical patterns of cultural changes. Here, we synthesise empirical 20 

and theoretical studies from multiple fields to highlight how both population size and 21 

structure shape the pool of cultural information that individuals can build upon to innovate, 22 

present the potential pathways through which humans’ unique social structure might 23 

promote CCE, and discuss whether humans’ social networks might partly result from 24 

selection pressures linked to our extensive reliance on culturally accumulated knowledge. 25 

  26 



Problem-solving in populations over multiple generations 27 

A central feature of our species is our unprecedented capacity to develop sophisticated 28 

cultural practices that have allowed us to colonize and permanently occupy environments for 29 

which we are poorly suited genetically [1, 2]. This capacity can be viewed as a form of 30 

problem-solving by which humans have successfully solved complex ecological challenges. 31 

This form of problem solving, however, is peculiar in that it operates at the population level, 32 

rather than solely within individuals, and over multiple generations [2, 3]. Both traditional 33 

and more modern technologies have not been produced by a single individual but have 34 

emerged over centuries through incremental improvements resulting from the efforts of 35 

multiple generations of individuals. This process - known as cumulative cultural evolution 36 

(CCE) - is powered by our ability to selectively learn adaptive social information which results 37 

in the gradual accumulation of innovations, and can give rise to cultural traits (such as 38 

technologies) that are beyond individuals’ inventive capacities [2-7].  39 

Drawing predominantly on ideas from evolutionary theory, anthropologists, biologists 40 

and psychologists have developed a rigorous theoretical framework that applies the notion 41 

of descent with modification to material culture, and have investigated the role of population 42 

dynamics in the production, transmission and maintenance of cultural traits [8-10]. An 43 

influential finding of early theoretical models is that our social learning abilities interact with 44 

demography to affect CCE, and, more specifically, that the size of the population within 45 

which cultural information is shared strongly constrains CCE [11]. 46 

Recent years have seen a proliferation of empirical and theoretical work exploring the 47 

interplay of demography and CCE, and demographic factors are increasingly invoked to 48 

explain historical patterns of cultural changes [11-19]. While this research has advanced our 49 

understanding of the link between demography and CCE and opened up promising new 50 



avenues, it has also revealed a need to better articulate empirical research and theoretical 51 

models. Here we present the theory, discuss misconceptions, outline future challenges, and 52 

highlight new directions in research on demography and CCE. 53 

 54 

Strength in numbers 55 

Demography has long been considered a potential explanation for cultural changes 56 

documented in the archaeological record [20-22], but it is with the theoretical work of 57 

Shennan [23] and Henrich [11] that the idea gained prominence among evolutionary human 58 

scientists. The main idea behind demographic models of cultural evolution is that, given that 59 

CCE only operates when at least some  information is transmitted socially between 60 

generations [24-26], the effective population size (which depends on both population size 61 

and interconnectedness) can buffer the risk of losing cultural information (see Box 1). In 62 

Henrich’s seminal model [11], for instance, individuals belong to a population of constant 63 

size and possess a psychological propensity to learn from successful individuals. This 64 

propensity creates a selective force that promotes the transmission of beneficial cultural 65 

traits and outweighs the degrading effects of learning errors when populations are large 66 

enough (Figure 1). These results suggest that decreases in effective population size (due to 67 

phenomena such as plagues, war or volcanic eruptions) might result in losses in individuals’ 68 

level of skills (often proxied in the archaeological literature as the number of tools, or toolkit 69 

complexity) by constraining CCE. Several regional losses of cultural traits documented in the 70 

archaeological record, such as prehistoric Tasmania, have consequently been attributed to 71 

decreases in population size and connectedness [11, 19]. Conversely, the emergence of more 72 

complex cultural traits have been hypothesized to result from increases in population sizes 73 

and/or densities [13, 14].  74 



 75 

Experimental tests of the relationship between population size and CCE  76 

One approach that has been used to evaluate the plausibility of demographic models of CCE 77 

involves lab experiments. Typically, participants who are part of groups of different sizes are 78 

tasked to improve a piece of technology. To date, 5 experiments from 4 different research 79 

groups provide support for a positive effect of group size on cultural complexity [27-31] (but 80 

see [32, 33]). One study, for instance, exposed naïve participants in groups of 2, 4, 8 and 16 81 

to demonstrations showing how to produce virtual arrowheads and fishing nets, and tracked 82 

the efficiency of those tools across time [27]. The larger the group, the less likely tools were 83 

to deteriorate, the more likely they were to improve, and the more likely a diversity of tool 84 

types were to be maintained. Using chains of participants and alternative tasks involving 85 

image-editing and knot-tying techniques, another study similarly showed that the 86 

deterioration of a technique is less likely (and its improvement more likely) in larger groups 87 

[29]. Additionally, these experiments show that individuals use cues such as success to 88 

choose from whom they learn, lending plausibility to the assumption of Henrich’s model that 89 

individuals selectively learn from successful demonstrators.  90 

Importantly, some of these experiments relied on designs that only loosely reflect 91 

Henrich’s initial assumptions (Box 2). Most, for instance, provide individuals with the 92 

opportunity to simultaneously learn and combine information from multiple demonstrators 93 

(a several-among-many design) [28-31] while Henrich’s model assumes that individuals 94 

always select a single source of information from a larger pool of demonstrators. Some 95 

experiments that have relied on the former design, however, allowed participants to allocate 96 

their learning time strategically, which means that individuals’ learning strategies might still, 97 

in practice, be consistent with Henrich’s assumptions [29]. Yet mechanisms that are not part 98 



of Henrich’s model, such as combining information from multiple demonstrators to generate 99 

new solutions, certainly did play a role in these experiments [29-31]. Due to this disconnect 100 

between experimental tests and theoretical models, it is not always clear whether 101 

experimental studies showing positive effects of demography offer genuine support for 102 

specific theoretical claims, nor whether purported failures to detect any effect of 103 

demography are valid challenges to theoretical models (see Box 2 for further discussion). 104 

 105 

Real-world tests of the relationship between population size and CCE  106 

A complementary and more direct approach to test the relationship between population size 107 

and CCE is to look for a correlation between toolkit size and population size using real-world 108 

ethnographic and archaeological data. Results with this approach have been mixed. Some 109 

studies support the hypothesis [13, 14, 34, 35], but others do not [36-39] (although [40] 110 

point out that some of these studies rely on the same datasets, and should not count as 111 

independent tests).  112 

 The difficulty with testing demographic models using real-world data is that human 113 

populations are typically embedded within extended networks of cultural exchange, making 114 

it difficult to gather meaningful estimates of population size. This constitutes a major 115 

obstacle for anthropologists and archaeologists because theoretical models explicitly link 116 

cultural complexity to the size of the population that shares information (i.e. the effective 117 

cultural population size) [11]. This implies that tests of demographic hypotheses should 118 

control for contact rates between inter-connected populations, which is typically challenging 119 

(but see [34]). Proponents of demographic hypotheses have therefore argued that studies 120 

which reported null results are invalid because they do not take contact rates into account 121 

and typically treat culturally connected groups as independent, culturally isolated 122 



populations [40] (see Box 3 for other mismatches between models and empirical tests).  123 

Other studies have tested demographic effects where they may not be predicted to 124 

occur. One study, for instance, found no evidence that larger populations support more 125 

complex folk tales, with complexity operationalised as number of tale types, number of 126 

narrative motifs within tales, and number of component details within tales [41]. Yet folk 127 

tales are very different to the technology that is the focus of most demographic models. 128 

Tools that are more efficient and have higher payoffs are typically associated with an 129 

increasing number of component elements [42], which means that they tend to be more 130 

complex. However, if complexity is not associated with higher payoffs, then theoretical 131 

models do not predict that population size should necessarily affect it. The function of 132 

folktales, for instance, is to convey meaning. If similar meaning can be conveyed by simpler 133 

folktales, we should not necessarily expect to observe the most complex folktales in larger 134 

populations. The same line of reasoning applies to the evolution of language, which 135 

functionally adapts to the needs of efficient communication [43]. Studies that have 136 

investigated the relationship between speaker population sizes and phoneme inventory sizes 137 

[44-46] or rates of language change [47-49] have yielded mixed results. However, because 138 

language also evolves to become more learnable [50], we should not necessarily expect 139 

larger populations to produce more new words nor have larger phoneme inventory size. 140 

Furthermore, folk tales and other forms of expressive culture may serve as markers of group 141 

membership and some models have suggested that smaller groups will have more 142 

exaggerated markers [51]. This suggests that a clearer picture about the relationship 143 

between demography and the evolution of expressive cultural traits might emerge by moving 144 

away from arbitrarily chosen measures of complexity and by taking into account that 145 

functional and symbolic cultural traits exhibit different evolutionary dynamics [52]. 146 



It is also worth stressing that, contrary to recent claims [53], no theoretical work ever 147 

predicted that population size should solely determine the number of tools (or any other 148 

measure of cultural complexity) found in human populations. Many factors are expected to 149 

affect toolkit complexity in natural populations, including mobility, subsistence practices and 150 

ecological factors. The risk hypothesis, for instance, holds that populations living in harsh 151 

environments create more numerous and specialised tools to mitigate the risk of resource 152 

failure due to stochastic variation [36-39, 54, 55]. Importantly, the risk hypothesis and the 153 

population size hypothesis differ in what they aim to explain [56]. The risk hypothesis 154 

explains what determines the size and complexity of toolkits (i.e. what creates the need for 155 

cultural complexity). The population size hypothesis is about the constraints imposed on CCE. 156 

Claims that the absence of correlation between population size and toolkit complexity 157 

disprove demographic models are based on misconceptions about those models (see Box 3). 158 

Inconclusive studies about the relationship between population size and CCE have 159 

had the merit of stimulating new work and led to important refinements to early theoretical 160 

work. Models with different assumptions have shown that the effects of effective population 161 

size hold when more conservative or alternative assumptions are considered (e.g. restricting 162 

potential demonstrators to a limited number of acquaintances [57]; conformist transmission 163 

[58, 59] but see [60]; adding costs to acquiring knowledge [61]; and alternative pathways to 164 

innovation [62]). However, recent studies also suggest that the relationship between 165 

effective population size and CCE can be mediated by numerous factors ([58, 62-66]), and 166 

that there are numerous challenges in detecting demographic effects on CCE in real-world 167 

data (see Box 3). 168 

Despite these challenges, there is little doubt that changing the effective size of a 169 

population will alter the cultural information available to subsequent generations of learners, 170 



which will most likely constrain what can be achieved by individuals. In this context, 171 

promising new work has started to investigate more broadly how constraints on information 172 

flow within populations can further promote or hinder the gradual accumulation of cultural 173 

innovations.   174 

 175 

Beyond numbers: CCE in social networks 176 

Human populations do not consist of a collection of isolated groups of varying sizes. Multiple 177 

groups are typically connected by migratory and trade activities, which results in wide, 178 

heterogenous social networks. The role of connectedness on CCE was already acknowledged 179 

in early theoretical models [11, 13]. A simulation model that explicitly implemented 180 

migratory activity among subdivided populations, for instance, showed that increasing the 181 

migration rate has a similar effect to increasing the size of an isolated population [13]. This is 182 

because increases in both population size and migratory activity increase the effective 183 

number of individuals available as demonstrators, and so reduce the risk of losing cultural 184 

information.  185 

 More recent work, however, has started to investigate in greater detail how the 186 

structure of the population impacts the accumulation of cultural information. Unlike early 187 

models, recent studies decouple the maintenance of existing traits and the production of 188 

new traits, more explicitly modelling the pathways that give rise to innovation [62, 67-69]. 189 

Recent models, for instance, assume that existing traits can not only be refined but also 190 

combined with other existing cultural traits. When recombination between existing traits is 191 

incorporated as a pathway towards innovation, increases in population size and 192 

connectedness can have different effects on CCE [68, 69]. This is because, while increases in 193 

population size systematically benefit CCE by reducing the risk of cultural loss, increases in 194 



connectedness can reduce opportunities for innovation by homogenising cultural behaviours. 195 

This effect is illustrated by a recent lab experiment in which individuals could innovate by 196 

producing incremental changes within path-dependent technological trajectories 197 

(refinement) and by combining traits that have evolved along different trajectories 198 

(recombination) [67]. Results show that high levels of connectedness make individuals more 199 

likely to converge on similar solutions, which results in lower levels of cultural diversity and 200 

slower rates of innovation compared with less connected groups.  201 

These results suggest that understanding the effect of demography on CCE requires 202 

us to consider not only how changes in connectedness affect the number of individuals 203 

available as demonstrators, but also how it shapes the cultural diversity to which individuals 204 

are exposed. When these two effects are considered simultaneously, models show that 205 

optimal rates of accumulation are reached for intermediate levels of connectedness [68, 69]. 206 

This is because low levels of connectedness increase the risk of cultural loss by decreasing 207 

access to demonstrators, while high levels of connectedness reduce opportunities to 208 

innovate by homogenising cultural behaviours. At intermediate levels of connectedness, 209 

groups can accumulate cultural information while remaining culturally distinct, which keeps 210 

fueling innovation.  211 

These results have implications for CCE both at the macroscale and the microscale. At 212 

the macroscale, human population have been historically fragmented due to geographic 213 

barriers, conflicts and other factors, resulting in long-standing culturally differentiated sub-214 

populations. In this context, increased levels of between-group connectedness are unlikely to 215 

homogenise cultural behaviours. Nevertheless, recent models suggest that, because of new 216 

opportunities for recombination, contacts between culturally differentiated groups should 217 

result in rapid cultural changes whose magnitude far exceed what is predicted by models 218 



that incorporate cultural loss alone [68]. This also suggests that population structures that 219 

allow for contacts between culturally differentiated groups might act as endogenous drivers 220 

of cultural change [67, 68], even though it should not be assumed that populations will 221 

develop and maintain more complex cultural repertoires without appropriate incentives to 222 

do so (Box 3). 223 

 Patterns of connectedness might also affect CCE at the microscale by influencing 224 

individuals’ exploration of the design space. Network and organization scientists, for 225 

instance, have jointly shown that behaviours are more likely to become homogeneous in 226 

well-connected than in partially-connected groups when learners preferentially acquire 227 

information from the same demonstrator [70-72] (but see [73, 74]). Sociologists have 228 

similarly argued that behaviors tend to be more homogeneous within groups than between 229 

groups and that individuals with ties to otherwise unconnected groups have greater 230 

opportunities to develop new ideas because they are exposed to a broader diversity of 231 

information [75].  232 

These studies illustrate how patterns of connectedness impact the quantity and 233 

diversity of information that individuals are exposed to and can draw on to make inferences, 234 

which in turn can impact populations’ abilities to develop and maintain cultural traits. The 235 

benefits of sparsely interconnected networks on CCE in natural populations, however, remain 236 

to be properly evaluated. Complex cultural traits are typically hard to learn and several 237 

experiments have stressed the importance of multiple demonstrations and multiple learning 238 

attempts in the acquisition of complex skills [27, 76]. This suggests that occasional contacts 239 

between different individuals/groups might not allow complex skills to spread properly. 240 

Additionally, network scientists have stressed the importance of the number of sources of 241 

exposures for the adoption of unproven new solutions [77]. Experiments typically provide 242 



participants with accurate information about alternative solutions, which allows them to 243 

confidently adopt the most rewarding ones. In noisy environments, however, interactions 244 

with multiple carriers might be critical for individuals to adopt alternative solutions [77] (see 245 

also [78] for an example of how the mean number of connections within a network affects 246 

the spread of cultural traits). Future research should test whether the optimal level of 247 

connectedness differs depending upon the characteristics of the cultural traits one is looking 248 

at. Dense networks, for instance, might be critical for the cultural evolution of hard to learn 249 

traits (for which transmission is the key bottleneck), while the cultural evolution of easy to 250 

learn traits whose efficiency can be readily assessed might be faster in sparsely connected 251 

networks. 252 

 253 

Characterizing human social networks in the wild 254 

The effects of population interconnectedness on CCE suggests that cultural changes might be 255 

better understood by paying greater attention to the structure and evolution of human 256 

social networks. Mapping past, or even recent, social networks, however, is challenging. 257 

Archaeologists and geneticists are still struggling to infer past population sizes [15, 79, 80], 258 

let alone population structures [81]. In recent years, approaches relying on social network 259 

analyses have seen a rise among archaeologists, but many challenges have still to be solved 260 

before being able to distinguish spatio-temporal patterns in social interactions from noise in 261 

archaeological data [82-84].  262 

Comparative and ethnographic studies, however, are already providing valuable 263 

information about human population structure. Comparisons between human hunter-264 

gatherer societies and non-human primate societies, for instance, have shed light on what 265 

has been called the deep social structure of human societies [85]. Contrary to most non-266 



human primate societies, which are composed of independent, single-group structures, 267 

human societies are federations of multifamily groups [85, 86]. This unique multigroup 268 

structure results in extensive networks of unrelated individuals that might be conducive to 269 

CCE [87]. Data on interactions between same-sex adults from two hunter-gatherer 270 

populations, for instance, reveal that individuals typically interact with more than 300 same-271 

sex adults in a lifetime (although including opposite-sex adults and children results in 272 

estimates as high as 1000). In comparison, male chimpanzees are estimated to interact with 273 

only about 20 other males in a lifetime [87] (see also [88] for a discussion on the large-scale 274 

social networks of hunter-gatherer groups).  275 

Other studies among hunter-gatherer populations have started to more finely 276 

characterize hunter-gatherer networks. One study, for instance, used trackers to map in-277 

camp networks in two hunter-gatherer populations and showed that individuals invest early 278 

in their childhood in a few close friends who bridge densely connected families [89]. These 279 

strong friendships increase the global efficiency of hunter-gatherer in-camp networks, which 280 

might facilitate the flow of social information (Figure 2). More recently, characterization of 281 

hunter-gatherer networks has been extended to between-camp interactions and has been 282 

used to simulate the accumulation of cultural innovations over real networks [90]. Results 283 

confirm that hunter-gatherers’ social structures are made of multiple levels of clustering, and 284 

simulations suggest that this sparsely interconnected hierarchical network structure might 285 

accelerate CCE by allowing the coexistence of multiple cultural lineages and promoting the 286 

emergence of innovations (but see Box 4). 287 

The few studies that have investigated networks in hunter-gatherers, however, have 288 

been limited to interview data and proximity measures [87, 89, 90]. Actual measurements of 289 

cultural transmission remain scarce, and the extent to which proximity networks accurately 290 



reflect transmission networks is currently unknown. Investigation of the co-occurrence of 291 

plant uses in dyads in one hunter-gatherer population, for instance, showed that not all 292 

knowledge is equally shared [91]. More specifically, results show that medicinal plants were 293 

mostly shared between spouses and kin, while plants that serve other functions were shared 294 

much more widely. This suggests that knowledge-sharing networks are content-specific and 295 

supports the idea that hunter-gatherer multi-level social structure enables culturally 296 

differentiated units to remain stable despite occasional co-residence [90]. This work also 297 

suggests that both structural barriers (i.e. lack of contact between individuals) and 298 

behavioral barriers (i.e. unwillingness to share cultural knowledge) have to be taken into 299 

account to properly evaluate the effects of population structure on CCE. Indeed, structural 300 

and behavioral barriers combine to result in an effective population structure that 301 

ultimately determines opportunities for cultural transmission. Contact between different 302 

ethnolinguistic groups, for instance, can potentially bring different cultural traits together 303 

due to significant between-group cultural distance. However, language barriers, endogamy, 304 

rivalry and other behavioural barriers such as in-group conformity might limit opportunities 305 

for cultural exchange between those groups [92, 93].  306 

These results suggest that our understanding of the relationship between 307 

demography and CCE would benefit from a better understanding of how and why individuals 308 

form social ties both within- and between-groups and the extent to which different types of 309 

ties (such as kin-based, affine-based and friendship-based) are conducive to cultural 310 

transmission. This will permit more realistic implementation of cultural transmission into 311 

theoretical models. Indeed, while the combination of vertical cultural transmission (i.e. 312 

learning from parents) and success-biased learning is empirically supported and provides a 313 

useful first approximation of the dynamics of social learning in groups [40], multiple factors 314 



are likely to affect opportunities for social learning. Anthropological studies, for instance, 315 

have shown that social ties are more likely to form between people who share similar traits 316 

(i.e. homophily [94, 95]). Furthermore, understanding how individuals form social ties is an 317 

important avenue for future research because the way individuals form ties ultimately feeds 318 

back into the evolution of social networks (homophily, for instance, is known to introduce 319 

local structure into networks [95, 96]).  320 

 321 

How did human social networks get their shape?  322 

Even if questions remain regarding the effects of specific network properties on CCE, it 323 

seems clear that humans live within unusually large and uniquely structured social networks. 324 

This raises questions about how and why humans have come to form large networks of 325 

unrelated or weakly related individuals.  326 

Recently, it has been argued that, because individuals from culturally differentiated 327 

groups might have greatly benefited from increased between-group interactions, selection 328 

might have acted at the individual level to affect individuals’ propensity to interact with out-329 

group members [17]. This might have involved changes in conscious behavioural choices (e.g. 330 

adjustments to out-group contacts due to perceived immediate benefits) and/or unconscious 331 

influence on behaviour (e.g. decreased fear of foreigners or tendency to disperse) [17]. 332 

Congruently, a recent simulation model that investigated whether network structure itself 333 

can evolve as a result of ecological pressures related to skill acquisition confirmed that 334 

selection can impact individuals’ propensity to form random ties (such as non kin ties) [97]. 335 

Yet, it is not clear whether the acquisition of social information creates sufficiently strong 336 

incentives for individuals to overcome rivalry and other behavioural barriers that tend to 337 

reduce opportunities for cultural transmission between unrelated individuals. Moreover, 338 



increasing contacts is only one part of the problem, as many cultural traits are unlikely to be 339 

properly acquired without a demonstrator’s willingness to share information [98-100]. 340 

Another possible way by which selection might have promoted the emergence of 341 

networks that are conducive to CCE is by acting on variation that exists at the group level [17, 342 

101]. Indeed, anthropologists have long stressed the role of cultural institutions in promoting 343 

both information sharing and interactions between non-kin [87, 101-103]. Among the Ache 344 

and Hadza, for instance, ritual relationships, mediated by activities such as club fight rituals, 345 

have been shown to promote inter-band interaction. Quantitative analyses have revealed 346 

that ritual relationship is a more important predictor than kinship for different types of 347 

interactions, including opportunities for cultural transmission (such as observing tool making 348 

skills) [87]. Furthermore, anthropologists have stressed that certain groups have cultural 349 

beliefs that connect envy and harm, which make successful individuals more likely to hide 350 

information from other group members, thus inhibiting CCE compared to other groups [101]. 351 

This suggests that groups that possess cultural institutions that promote information sharing 352 

and/or mobility might have attained higher cultural complexity and outcompeted groups 353 

with cultures less conducive to CCE [17, 101]. It is also worth noting that the maintenance of 354 

large networks of unrelated or weakly related individuals might have been further supported 355 

by the emergence of cultural innovations such as kin naming systems and stylistic markers of 356 

group identity that typically promote cooperative interactions between unrelated individuals 357 

[103]. Kin naming systems, for instance, allow familial relationships to extend to affine, 358 

distant kin and even non-kin [103] and might permit individuals to maintain privileged 359 

relationships with large numbers of individuals without requiring much cognitive effort nor 360 

physical cohabitation [104]. 361 

The question of whether humans’ social structure might in part result from selection 362 



pressures linked to our extensive reliance on culturally accumulated knowledge will have to 363 

be carefully evaluated. Indeed, chimpanzees also live among nonrelatives [105] and humans’ 364 

propensity to form ties with non-kin might be due to reasons unrelated to CCE and that just 365 

happened to be conducive to the accumulation of cultural innovations. Archeologists, for 366 

instance, noted that an incest avoidance rule would give rise to the same kind of sparsely 367 

connected networks that might benefit CCE [56]. Alternative determinants of outgroup 368 

contacts include resource distribution [56], reciprocal cooperative exchange [106] and 369 

coalition formation [107], among others. Specific predictions should be formulated and 370 

properly tested to disentangle the respective effects of these various mechanisms on 371 

network structure. The hypothesis that CCE directly shapes network structure by acting on 372 

conscious behavioural choices, for instance, would predict that individuals should flexibly 373 

reinforce or weaken their investment in non-kin ties depending on the usefulness of the 374 

information they provide.  375 

 376 

Concluding remarks and future directions 377 

The proliferation of work exploring the interplay of demography and CCE has recently led to 378 

many misconceptions due to loose interpretations of early theoretical models (Box 2 and 3). 379 

Empirical tests that operationalize models in ways that are consistent with theoretical 380 

assumptions provide support for the hypothesis that effective population size constrains CCE. 381 

However, testing these models using real-world data remains difficult because multiple 382 

factors combine with demography to determine CCE and human populations are typically 383 

embedded within extended networks of cultural exchange. While these extended networks 384 

of contacts make it difficult to gather meaningful estimates of population size, recent 385 

research suggests that they might also affect CCE in ways that are not yet fully appreciated. 386 



Understanding how population structure affects CCE will require us to understand precisely 387 

how structural and behavioral barriers constrain information flow in natural populations (Box 388 

4). 389 

The effects of connectedness on the accumulation of cultural information raise many 390 

questions about the relationship between humans’ unique social structure and CCE (see 391 

Outstanding Questions). Through the study of the nature and the emergence of non-kin ties, 392 

both within groups and between groups, as well as knowledge-sharing networks in natural 393 

populations, it will be possible to illuminate how humans have managed to accumulate 394 

cultural information in such an unprecedented way and determine whether our unique social 395 

structure results in part from selection pressures linked to our extensive reliance on 396 

culturally accumulated knowledge. 397 

  398 



Box 1: Demographic models of cultural change 399 

Cultural drift. Some of the earliest cultural evolution models adapted early 20th century 400 

models of genetic drift to the cultural case [8, 22, 23, 108]. Drift, whether genetic or cultural, 401 

is essentially sampling error. Drift models typically assume ‘unbiased transmission’ or 402 

‘random copying’: each of N individuals within a finite and fixed-sized population possesses 403 

one of a set of discrete cultural traits. Each generation or timestep, individuals select another 404 

individual at random and acquire their cultural trait. This process results in the inevitable loss 405 

of trait variation. The speed with which traits are lost is dependent on N: smaller populations 406 

lose variation quicker. This is a highly simplistic model, but provides a useful base for 407 

exploring the effects of processes such as innovation and complex population structures such 408 

as island chains or bottlenecks on CCE, and has been used to explain archaeological 409 

assemblage diversity [22, 108]. 410 

 411 

The ‘Tasmanian’ model. Perhaps the most influential demographic model of cultural 412 

evolution was formulated by Henrich [11]. This model was inspired by the empirical case of 413 

prehistoric Tasmania, which apparently lost complex technological traits (e.g. bone tools, 414 

warm clothing) around 10-12kya when Tasmania was cut off from the Australian mainland, 415 

thus decreasing the effective population size [20]. The model incorporates more 416 

psychologically plausible processes than simple drift models. Each of N individuals possesses 417 

a value of culturally transmitted ‘skill’ (e.g. basket-making), represented by a continuous 418 

variable z. Each timestep, each individual attempts to learn the skill value zh of the highest-419 

skilled member of the previous timestep, h (i.e. success biased transmission). Learning is 420 

imperfect, and affected by two kinds of processes. Learning error, determined by ɑ, always 421 

results in worse skill than zh. Another parameter, β, determines the extent of inferences, 422 



experiments, luck and other factors that on average make skill levels worse, but sometimes 423 

better, than zh. Combining these, Henrich assumed that the skill of a naive individual is drawn 424 

from a Gumbel distribution (Figure 1). N interacts with the latter β term: the more individuals 425 

there are, the more likely one of those individuals is to exceed zh, representing an increase in 426 

cumulative cultural knowledge/skill. If N is too small, then all learners will acquire values 427 

around the mode of the distribution, which is less than zh, resulting in a decrease in cultural 428 

complexity. Subsequent empirical work has shown that this Gumbel distribution is a 429 

reasonable approximation of social learning dynamics [109] (but see [110] for a critique of 430 

this model). 431 

 432 

Population structure and trait recombination. Subsequent models have extended the 433 

Tasmanian model to investigate in greater detail how the structure of the population impacts 434 

both the maintenance and the production of cultural traits. Stochastic simulations of the 435 

Tasmanian model with multiple sub-populations show that increasing the migration rate has 436 

a similar effect to increasing the size of an isolated population on CCE, because both increase 437 

variation within sub-populations and so reduce the risk of losing cultural information [13]. 438 

Recent studies have more explicitly modelled the pathways that give rise to innovation and 439 

revealed that the effect of migration can even be more pronounced when cultural traits can 440 

combine to form innovations that are “greater than the sum of their parts” [68]. However, 441 

too frequent contact might not be beneficial to CCE because it prevents populations from 442 

remaining culturally distinct, and reduces opportunities to innovate [68, 69].  443 

 444 



Figure 1: Gumbel distribution from Henrich’s Tasmanian model 445 

The distributions depict the probability of a learner i acquiring different values of skill, z (zi), 446 

for two different population sizes N. The vertical dotted line shows the z value of the highest-447 

skilled demonstrator being copied (zh). Learning error, determined by ɑ, reduces the 448 

likelihood of zh being reached. Inferences, experiments and luck, determined by β, increase 449 

the chances of the learner improving on zh (the area under the curve to the right of the 450 

dotted line). Vertical bars show N random draws from each distribution, representing N 451 

learners’ zi values. Red bars represent inferior zi relative to zh, green bars represent superior 452 

zi relative to zh. On the left, a small population (N=20) results in a population-level decline in 453 

skill, as no learner matches or exceeds zh. On the right, a large population (N=100) features 454 

some learners who exceed zh, resulting in an improvement in the next generation. 455 

  456 



Box 2: Linking models and data in the lab 457 

Experimental approaches are useful for investigating the relationship between demography 458 

and CCE because essential elements of theoretical models can be implemented under tightly 459 

controlled conditions, and tested against actual human behaviour (rather than modellers’ 460 

assumptions about human behaviour) [111, 112]. 461 

As noted in the main text, the majority of experimental studies have found support 462 

for the general predictions of demographic models [27-31]. This is all the more surprising 463 

given that these studies are remarkably diverse in experimental tasks, group sizes and inter-464 

individual interactions. Yet, it is worth highlighting that most experimental designs 465 

significantly deviate from the models they claim to test. In the main text we discuss one 466 

example, where experiments offer social learners the opportunity to combine information 467 

from multiple cultural demonstrators [29-31], rather than learn from a single successful 468 

demonstrator as in the most-cited demographic models (see Box 1). The role of 469 

recombination across existing cultural traits has been stressed by scholars from multiple 470 

fields [113-115], and increased opportunities for recombination certainly is one pathway by 471 

which effective population size might affect CCE [101]. Yet, most experiments are presented 472 

as tests of models that do not feature recombination between existing traits and in which 473 

effective population size mostly affects CCE by buffering the risk of losing cultural 474 

information (see Box 1). Still other experiments have relied on tasks in which cultural loss is 475 

unlikely to occur [31]. Thus, even though these experiments support the population size 476 

hypothesis, it is not always clear whether they provide appropriate tests of the theoretical 477 

models which they cite. 478 

Maybe more problematic are experiments where results showing no relationship 479 

between demography and CCE are used to question the validity of theoretical models 480 



despite featuring different assumptions to those models. A recent experiment, for instance, 481 

had chains of participants make and throw paper airplanes, with each participant able to 482 

learn from 1, 2 or 4 previous participants [33]. Apparently contrary to the demographic 483 

hypothesis, flight distance only increased in the 1-demonstrator condition, not the 2- and 4-484 

demonstrator conditions. Yet this experimental design prevented participants from learning 485 

from the demonstrator of their choice. Instead participants were forced to attend to 486 

multiple, randomly ordered demonstrators for 1.5 minutes each. Yet, Henrich’s model 487 

explicitly holds that it is the combination of the amount of beneficial cultural information 488 

(which increases in larger groups) and the selective choices of cultural learners that 489 

promotes CCE. Fay et al.’s results are consistent with the former in showing that larger 490 

groups produce greater variation in distance flight and give participants access to more 491 

efficient planes. But the constraints imposed on social learning strategies inhibited CCE in 492 

large groups by making learning more difficult in those groups.  493 

Discrepancies between experiments and models are not inherently a problem: the 494 

assumptions of models can always be challenged and mechanisms other than those 495 

considered in theoretical models are worth investigating. Yet, the experimental literature 496 

would benefit from being more explicit about the theoretical basis underpinning the specifics 497 

of experimental designs and how they relate to theoretical models.  498 

  499 



Box 3: Linking models and data in the wild 500 

Several studies have investigated whether there exists a correlation between toolkit size or 501 

composition and population size in natural populations [13, 14, 34-39], but there remain 502 

serious challenges in testing demographic effects on CCE in real world data.  503 

One difficulty concerns limitations in what can be measured [58]. Henrich’s model 504 

(see Box 1) describes the level of skill of an individual within a population, a variable that in 505 

an archaeological context can be interpreted as the number of tools or tool components 506 

attributable to an individual. Yet, archaeological studies typically only have access to 507 

population-level rather than individual-level data. This makes purported tests that use 508 

population-level assemblage measures largely irrelevant to Henrich’s predictions [58]. Even 509 

though a recent model incorporating the appropriate population-level variable does predict a 510 

positive relationship between population size and toolkit size [58], these discrepancies 511 

illustrate the need to use appropriate measures when attempting to test a model and/or to 512 

adapt models so they can properly be tested using empirical data. 513 

A second difficulty is that demography has multiple aspects that can be difficult to 514 

fully take into account in ethnographic and archaeological studies. In the main text we 515 

discuss one example of this, where empirical data regarding census population sizes are used 516 

to test (and purportedly fail to support) the Tasmanian model without taking contact rates 517 

into account. Furthermore, recent models suggest that historical variations in population size 518 

and connectedness are as important as immediate demographic contexts in determining 519 

cultural complexity in a population [58, 64, 68]. Some models, for instance, show that the 520 

number of traits in a population should depend not only on the current population size but 521 

also on the history of population growth and decline [58, 64]. This can blur the relationship 522 

between population size and CCE because growing populations can have fewer cultural traits 523 



than smaller, declining populations. Similarly, two populations of the same size might be 524 

associated with toolkits of different sizes due to different demographic trajectories. Models 525 

also suggest that changes in interconnectedness can result in different outcomes including 526 

transient increases in cultural complexity [68]. The effects of population histories represent a 527 

challenge for archaeologists whose data represent a record of aggregated events spanning 528 

long periods of time during which both population size and interconnectedness might have 529 

varied. Further models are needed to determine what testable signatures these dynamics 530 

might have left in the past for archaeologists and historians to detect. 531 

Finally, demographic factors determine an upper boundary to the level of cultural 532 

complexity that can be reached by a population, but do not entirely determine the actual 533 

level reached by a population. Assuming that increased cultural complexity is beneficial, 534 

increases in population size should result in increases in cultural complexity but only because 535 

this relaxes constraints on CCE. A full understanding of CCE in natural populations requires 536 

both drivers of CCE and constraints to be taken into account. To that end, more research is 537 

needed to identify the factors that combine with demography to determine CCE in natural 538 

populations, such as environmental harshness [54] and instability [116] or accumulated 539 

cultural traits themselves [61, 117, 118]. 540 
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Box 4: Is human multilevel social structure beneficial to CCE?  542 

Recent theoretical and experimental studies have challenged the assumption that anything 543 

that maximizes the flow of cultural information should positively impact innovation rates 544 

(Figure 2A-B). These results have led scholars to wonder whether CCE in human populations 545 

has benefited from our unique multilevel social structure via the partial constraints it 546 

imposes on information flow [67]. A recent simulation study provided support for this by 547 

showing that real hunter-gatherers’ social networks allow the coexistence of multiple 548 

cultural lineages, thus promoting the emergence of innovations [90].  549 

 However, while characterizing actual networks is useful for understanding how 550 

cultural information is expected to spread, many (still largely unknown) parameters need to 551 

be taken into account before establishing whether, and if so why, human multilevel social 552 

structure promotes CCE. Previous work has shown, for instance, that the effect of network 553 

structure on CCE is mediated by factors such as individuals’ probabilities of innovating 554 

(because even strong constraints on information flow prevent cultural diversification if 555 

innovation rates are low [69]) and the extent to which innovation depends on cultural 556 

diversity (because constraints on information flow both slow down and limit CCE when 557 

innovation does not depend on recombination [69]). In the aforementioned simulation study 558 

[90], both individuals’ opportunity to innovate, and possibilities for recombination, were 559 

determined by the properties of an artificial cultural fitness that was designed to permit 560 

innovation through incremental improvement and recombination [67], but whose relevance 561 

to rates of CCE in natural populations is uncertain.  562 

 Maybe more importantly, the effect of network structure on cultural loss was not 563 

considered in those simulations [90]. When cultural loss is not taken into account, 564 

constraints on information flow necessarily benefit CCE by promoting cultural diversification. 565 



In more realistic situations, constraints on information flow expose populations to higher 566 

rates of cultural loss, which can prevent cultural diversification [119]. Moreover, even if they 567 

have diverse cultural repertoires, sparsely connected populations can be unlikely to reach 568 

high levels of cultural complexity because of their inability to maintain complex cultural traits 569 

[69].  Thus, given our current limited knowledge about rates of loss and innovation, and 570 

opportunities for recombination, in real-world populations, it is not clear whether the 571 

network structure documented in [90] positively affects CCE or whether cultural complexity 572 

in hunter-gatherer populations would benefit from more connectedness by being less 573 

susceptible to cultural loss. Answering this question will require an evaluation of how sparse 574 

networks made of strong ties (e.g. kin and friendship ties) balance cultural loss and cultural 575 

diversity (Figure 2C).   576 

 577 

 578 

 579 



 580 

Figure 2: Trading cultural loss and diversity in structured populations. (A) Experimental 581 

results show that moderately connected populations are slower at accumulating innovations 582 

but eventually reach higher levels of cultural complexity than highly connected populations 583 

when innovation depends on cultural diversity. Adapted from [67]. (B) Simulation models 584 

show that optimal rates of accumulation are reached for intermediate levels of 585 

connectedness when populations are exposed to cultural loss. Relative rates of accumulation 586 

between variously connected populations depend on parameters such as rates of innovation 587 

and cultural loss, and the extent to which innovation depends on cultural diversity (not 588 

shown). Adapted from [69]. (C) Patterns of connectedness affect both cultural loss and 589 

diversity. (i) In fully connected networks made of permanent links (solid lines), the average 590 

number of steps required to connect any two individuals (i.e. path length) is minimal and the 591 

efficiency with which information spreads is maximal. This reduces the risks of cultural but 592 



decreases cultural diversity. (ii) Removing ties increases the average path length between 593 

individuals and results in less efficient networks (e.g. from i to ii). (iii) Networks composed of 594 

individuals tied to the same number of neighbors can also vary in efficiency due to 595 

differences in average clustering coefficients (a measure that reflects the “cliquishness” of a 596 

network [120]). Increasing the average clustering coefficient results in less efficient networks 597 

(e.g. from ii to iii). (iv) Intermittent links between different parts of a network (dotted lines) 598 

further constrain information flow and result in substructures that are more likely to 599 

culturally diverge by isolation (illustrated by different colors) but also more likely to suffer 600 

from cultural loss.  601 
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Glossary 603 

Behavioural barriers: blocks on information flow due to behavioural tendencies such as an 604 

unwillingness to teach hard-to-learn skills, despite contact 605 

 606 

Cultural drift: cultural change due to random sampling error, which is heavily dependent on 607 

population size and structure (see Box 1) 608 

 609 

Cumulative cultural evolution (CCE): the repeated modification and social learning of 610 

behavioural traits from individual to individual and over successive generations, such that the 611 

cultural traits improve in some desired measure of efficiency (typically a proxy for fitness) 612 

 613 

Demography: the size and structure of a population of individuals within which CCE occurs 614 

 615 

Demonstrator: an individual who serves as a source of social information 616 

 617 

Effective population structure: the structure, resulting from the combined effects of 618 

structural and behavioral barriers, that constraints the flow of cultural information 619 

 620 

Innovation: the generation of novel cultural variation, either via refinement or recombination 621 

Recombination: the bringing together of existing cultural traits to form a new functional trait 622 

 623 

Refinement: improving an existing cultural trait, typically through a small, gradual change 624 

Structural barriers: blocks on information flow due to the structure of the population, e.g. 625 

individuals simply not coming into contact with one another 626 



Tasmanian model: an influential early model of how population size constrains CCE (see Box 627 

1) 628 

 629 

 630 

 631 

 632 
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