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NON-HERMITIAN RANDOM MATRICES WITH A VARIANCE PROFILE (II):

PROPERTIES AND EXAMPLES

NICHOLAS COOK, WALID HACHEM, JAMAL NAJIM, AND DAVID RENFREW*

Abstract. For each n, let An = (σij) be an n× n deterministic matrix and let Xn = (Xij) be an
n× n random matrix with i.i.d. centered entries of unit variance. In the companion article [13], we
considered the empirical spectral distribution µY

n of the rescaled entry-wise product

Yn =
1√
n
An �Xn =

(
1√
n
σijXij

)
and provided a deterministic sequence of probability measures µn such that the difference µY

n − µn

converges weakly in probability to the zero measure. A key feature in [13] was to allow some of the
entries σij to vanish, provided that the standard deviation profiles An satisfy a certain quantitative
irreducibility property.

In the present article, we provide more information on the sequence (µn), described by a family of
Master Equations. We consider these equations in important special cases such as sampled variance
profiles σ2

ij = σ2
(

i
n
, j
n

)
where (x, y) 7→ σ2(x, y) is a given function on [0, 1]2. Associated examples

are provided where µY
n converges to a genuine limit.

We study µn’s behavior at zero. As a consequence, we identify the profiles that yield the circular
law.

Finally, building upon recent results from Alt et al. [7, 8], we prove that, except possibly at the

origin, µn admits a positive density on the centered disc of radius
√
ρ(Vn), where Vn = ( 1

n
σ2
ij) and

ρ(Vn) is its spectral radius.

1. Introduction

For an n× n matrix M with complex entries and eigenvalues λi ∈ C (counted with multiplicity
and labeled in some arbitrary fashion), the empirical spectral distribution (ESD) is given by

µMn =
1

n

n∑
i=1

δλi . (1.1)

A seminal result in non-Hermitian random matrix theory is the circular law, which describes the
asymptotic global distribution of the spectrum for matrices with i.i.d. entries of finite variance –
see [13] for additional references and the survey [11] for a detailed historical account.

In the companion paper [13], we studied the limiting spectral distribution µYn for random matrices
with a variance profile (see Definition 1.1). More precisely, we provided a deterministic sequence
of probability measures µn each described by a family of Master Equations (see (2.3)), such that
the difference µYn − µn converges weakly in probability to the zero measure. Such master equations
were introduced and studied by Girko; see, for example [16].

A key feature of this result was to allow a large proportion of the matrix entries to be zero,
which is important for applications to the modeling of dynamical systems such as neural networks
and food webs [2, 4]. This also presented challenges for the quantitative analysis of the Master
Equations, for which we developed the graphical bootstrapping argument.
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We mention that in the appendix of [19] it was shown that the ESDs for two sequences of
random matrices with the same mean and variance profile (but possibly different entry distributions)
are asymptotically equivalent, assuming, among other (mild) conditions, that the variances are
uniformly bounded away from zero. Our aims here and in the companion paper [13] are in an
orthogonal direction: to establish asymptotic equivalence with a sequence of deterministic measures,
and to study properties of these deterministic equivalents. Moreover, these tasks are far more
challenging when one does not assume the variances are uniformly positive.

After the initial release of [13], a local law version of our main statement (Theorem 2.3) was proven
in [7] under the restriction that the standard deviation profile σij is uniformly strictly positive and
that the distribution of the matrix entries possesses a bounded density and finite moments of every
order. The results of [7] were extended in [6] to include random matrices with correlated entries
and the behavior of the limiting density is investigated further.

In this article, we consider in more detail the measures (µn). In particular, we provide new
conditions that ensure the positivity of the density of µn and study the behavior of µn at zero. This
study allows us to deduce a necessary condition for the circular law. Additionally, we specialize
to sampled standard deviation profiles, which are important from a modeling perspective and can
yield genuine limits.

1.1. The setting. We study the following general class of random matrices with non-identically
distributed entries.

Definition 1.1 (Random matrix with a variance profile). For each n ≥ 1, let An be a (deterministic)

n×n matrix with entries σ
(n)
ij ≥ 0, let Xn be a random matrix with i.i.d. entries X

(n)
ij ∈ C satisfying

EX(n)
11 = 0 , E|X(n)

11 |
2 = 1 (1.2)

and set

Yn =
1√
n
An �Xn (1.3)

where � is the matrix Hadamard product, i.e. Yn has entries Y
(n)
ij = 1√

n
σ
(n)
ij X

(n)
ij . The empirical

spectral distribution of Yn is denoted by µYn . We refer to An as the standard deviation profile and to

An�An =
(
(σ

(n)
ij )2

)
as the variance profile. We additionally define the normalized variance profile

as

Vn =
1

n
An �An.

When no ambiguity occurs, we drop the index n and simply write σij , Xij , V , etc.

The main result of [13] states that under certain assumptions on the sequence of standard devia-
tion profiles An and the distribution of the entries ofXn, there exists a tight sequence of deterministic
probability measures µn that are deterministic equivalents of the spectral measures µYn , in the sense
that for every continuous and bounded function f : C→ C,∫

f dµYn −
∫
f dµn −−−→

n→∞
0 in probability.

In other words, the signed measures µYn − µn converge weakly in probability to zero. In the sequel
this convergence will be simply denoted by

µYn ∼ µn in probability (n→∞).

The measures µn are described by a polynomial system of Master Equations that will be recalled
in the next section. The main results of [13], see Theorems 2.2 and 2.3 below, establishes the
existence and the uniqueness of the solution to these equations and establishes the connection to
the deterministic equivalent µn. This probability law turns out to be a circularly symmetric law
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supported by the disk with center zero and radius
√
ρ(Vn), where ρ(Vn) is the spectral radius of

Vn. Moreover, µn has a density on C \ {0}.

1.2. Contributions of this paper. In this article, we continue the study of the model initiated
in [13], where we provided existence of a µn such that µn ∼ µYn for random matrices in Definition
1.1. In particular, we study properties of µn: positivity of its density and its behavior at zero, as
well as identify variance profiles that yield the circular law. We also consider several special classes
of variance profiles.

In Section 2, we recall the main results of [13]. Then, in Proposition 2.7 and Theorem 2.9 we

provide sufficient conditions for which the density of µn is positive on the disc of radius
√
ρ(Vn),

with an emphasis on the behavior of this density near zero. In particular, a formula for the value
of the density at zero is provided. In Corollary 2.8, we deduce from our formula at zero that the

doubly stochastic normalized variance profiles, i.e. Vn =
(
n−1σ2ij

)
such that

1

n

n∑
i=1

σ2ij = V ∀j ∈ [n] and
1

n

n∑
j=1

σ2ij = V ∀i ∈ [n] .

for some fixed V > 0, are, up to conjugation by diagonal matrices, the only profiles that give the
circular law.

In Section 3, we consider sampled variance profiles, where the profile is obtained by evaluating
a fixed continuous function σ(x, y) on the unit square at the grid points {(i/n, j/n) : 1 ≤ i, j ≤ n}.
Here, in the large n limit the Master Equations (2.3) turn into an integral equation defining a
genuine limit for the ESDs:

µYn −−−→n→∞
µσ

weakly in probability; see Theorem 3.1.

Section 4 is devoted to the proof of the results in Section 2 concerning positivity and finiteness
of the density of µn. Much of this analysis will build upon results developed by Alt et al. [7, 8] in
combination with the regularity of the solutions to the Master Equations proven in [13].

Finally, in Section 5, we provide examples of variance profiles with vanishing entries. In particular,
we study band matrices and give an example of a distribution with an atom and a vanishing density
at zero (Proposition 5.2).

Acknowledgements. The work of NC was partially supported by NSF grants DMS-1266164 and
DMS-1606310. The work of WH and JN was partially supported by the Labex BEZOUT from the
Gustave Eiffel University. DR was partially supported by Austrian Science Fund (FWF): M2080-
N35. DR would also like to thank Johannes Alt, László Erdős, and Torben Krüger for numerous
enlightening conversations.

2. Limiting spectral distribution: a reminder and some complements

In this section, we recall the main results in Cook et al. [13] and then give theorems concerning
the density of µn.

2.1. Notational preliminaries. Let [n] be the set {1, · · · , n}. The Lebesgue measure on C will
be denoted as `( dz). The cardinality of a finite set S is denoted by |S|. We denote by 1n the n× 1
vector of 1’s. Given two n × 1 vectors u,v, we denote their scalar product 〈u,v〉 =

∑
i∈[n] ūivi.

Let a = (ai) an n× 1 vector. We denote by diag(a) the n× n diagonal matrix with the ai’s as its
diagonal elements. For a given matrix A, denote by AT its transpose, by A∗ its conjugate transpose,
and by ‖A‖ its spectral norm. Denote by In the n × n identity matrix. If clear from the context,
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we omit the dimension. For a ∈ C and when clear from the context, we sometimes write a instead
of a I and similarly write a∗ instead of (aI)∗ = āI.

Notations � and < refer to the element-wise inequalities for real matrices or vectors. Namely, if
B and C are real matrices,

B � C ⇔ Bij > Cij ∀i, j and B < C ⇔ Bij ≥ Cij ∀i, j.

The notation B <6= 0 stands for B < 0 and B 6= 0.

2.2. Model assumptions. We will establish results concerning sequences of matrices Yn as in
Definition 1.1 under various additional assumptions on An and Xn, which we now summarize. We
note that many of our results only require a subset of these assumptions. We refer the reader to
[13] for further remarks on the assumptions.

For our main result we will need the following additional assumption on the distribution of the
entries of Xn.

A0 (Moments). We have E|X(n)
11 |4+ε ≤M0 for all n ≥ 1 and some fixed ε > 0, M0 <∞.

We will also assume the entries of An are bounded uniformly in i, j ∈ [n], n ≥ 1:

A1 (Bounded variances). There exists σmax ∈ (0,∞) such that

sup
n

max
1≤i,j≤n

σ
(n)
ij ≤ σmax.

In order to express the next key assumption, we need to introduce the following Regularized
Master Equations which are a specialization of the Schwinger–Dyson equations of Girko’s so-called
Hermitized model associated to Yn (see [13] for more details about this subject).

Proposition 2.1 (Regularized Master Equations). Let n ≥ 1 be fixed, let An be an n×n nonnegative
matrix and write Vn = 1

nAn�An. Let s, t > 0 be fixed, and consider the following system of equations
ri =

(V T
n r)i + t

s2 + ((Vnr̃)i + t)((V T
n r)i + t)

r̃i =
(Vnr̃)i + t

s2 + ((Vnr̃)i + t)((V T
n r)i + t)

, (2.1)

where r = (ri) and r̃ = (r̃i) are n × 1 vectors. Denote by ~r =

(
r
r̃

)
. Then this system admits a

unique solution ~r = ~r(s, t) � 0. This solution satisfies the identity∑
i∈[n]

ri =
∑
i∈[n]

r̃i . (2.2)

A2 (Admissible variance profile). Let ~r(s, t) = ~rn(s, t) � 0 be the solution of the Regularized
Master Equations for given n ≥ 1. For all s > 0, there exists a constant C = C(s) > 0 such
that

sup
n≥1

sup
t∈(0,1]

1

n

∑
i∈[n]

ri(s, t) ≤ C .

A family of variance profiles (or corresponding standard deviation/normalized variance profiles)
for which the previous estimate holds is called admissible.

Remark 2.1. After restating the main theorems we list concrete conditions under which we verify
A2, namely A3 (lower bound on Vn), A4 (symmetric Vn) and A5 (robust irreducibility for Vn), cf.
section 2.4.
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2.3. Results from [13]. The following system of Master Equations will be of central importance.
Given a parameter s ≥ 0, this is the system of 2n+1 equations in 2n unknowns q1, . . . , qn, q̃1, . . . , q̃n
that reads: 

qi =
(V T
n q)i

s2 + (Vnq̃)i(V T
n q)i

q̃i =
(Vnq̃)i

s2 + (Vnq̃)i(V T
n q)i∑

i∈[n] qi =
∑

i∈[n] q̃i

, qi, q̃i ≥ 0, i ∈ [n], (2.3)

where q, q̃ are the n× 1 column vectors with components qi, q̃i, respectively. In the sequel, we shall

write ~q =

(
q
q̃

)
. Observe that these equations are obtained from the Regularized Master Equations

(2.1) by letting the parameter t go to zero. Notice however that condition
∑
qi =

∑
q̃i is required

for uniqueness and not a consequence of the equations as in (2.1).

In what follows, we will always tacitly assume the standard deviation profileAn is irreducible. This
will cause no true loss of generality, as we can conjugate the matrix Yn by an appropriate permutation
matrix to put An in block-upper-triangular form with irreducible blocks on the diagonal. The
spectrum of Yn is then the union of the spectra of the corresponding block diagonal submatrices.

Theorem 2.2 (Cook et al. [13]). Let n ≥ 1 be fixed, let An be an n × n nonnegative matrix and
write Vn = 1

nAn �An. Assume that An is irreducible. Then the following hold:

(1) For s ≥
√
ρ(Vn) the system (2.3) has the unique solution ~q(s) = 0.

(2) For s ∈ (0,
√
ρ(V )) the system (2.3) has a unique non-trivial solution ~q(s) <6= 0. Moreover,

this solution satisfies ~q(s) � 0.
(3) ~q(s) = limt↓0 ~r(s, t) for s ∈ (0,∞).
(4) The function s 7→ ~q(s) defined in parts (1) and (2) is continuous on (0,∞) and is continu-

ously differentiable on (0,
√
ρ(V )) ∪ (

√
ρ(V ),∞).

Remark 2.2 (Convention). Above and in the sequel we abuse notation and write ~q = ~q(s) to mean

a solution of the equation (2.3), understood to be the nontrivial solution for s ∈ (0,
√
ρ(V )).

Theorem 2.3 (Cook et al. [13]). Let (Yn)n≥1 be a sequence of random matrices as in Definition
1.1, and assume A0, A1 and A2 hold. Assume moreover that An is irreducible for all n ≥ 1.

(1) There exists a sequence of deterministic measures (µn)n≥1 on C such that

µYn ∼ µn in probability.

(2) Let q(s), q̃(s) be as in Theorem 2.2, and for s ∈ (0,∞) let

Fn(s) = 1− 1

n
〈q(s), Vnq̃(s)〉. (2.4)

Then Fn extends to an absolutely continuous function on [0,∞) which is the CDF of a proba-

bility measure with support contained in [0,
√
ρ(Vn)] and continuous density on (0,

√
ρ(Vn)).

(3) For each n ≥ 1 the measure µn from part (1) is the unique radially symmetric probability
measure on C with µn({z : |z| ≤ s}) = Fn(s) for all s ∈ (0,∞).

This theorem calls for some comments. Using the fact that µn is radially symmetric along with
the properties of Fn(s) = µn({z : |z| ≤ s}), it is straightforward that µn has a density fn on C \ {0}
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which is given by the formula

fn(z) =
1

2π|z|
d

ds
Fn(s)

∣∣∣
s=|z|

= − 1

2πn|z|
d

ds
〈q(s), V q̃(s)〉

∣∣∣
s=|z|

(2.5)

for |z| 6∈ {0,
√
ρ(Vn)}. We use the convention fn(z) = 0 for |z| =

√
ρ(Vn).

2.4. Sufficient conditions for admissibility. We now recall a series of assumptions that enforce
A2 and are directly checkable on the sequence (Vn) of variance profile matrices.

A3 (Lower bound on variances). There exists σmin > 0 such that infn min1≤i,j≤n σ
(n)
ij ≥ σmin.

A4 (Symmetric variance profile). For all n ≥ 1, the normalized variance profile (or equivalently
the standard deviation profile) is symmetric: Vn = V T

n .

The following assumption is a quantitative form of irreducibility that considerably generalizes
A3, allowing a broad class of sparse variance profiles. We refer the reader to [13] for the definition.

A5 (Robust irreducibility). There exists constants σ0, δ, κ ∈ (0, 1) such that for all n ≥ 1, the
matrix An(σ0) =

(
σij 1σij≥σ0

)
is (δ, κ)-robustly irreducible.

We gather in the following theorem some results from [13], namely Propositions 2.5 and 2.6, as
well as Theorem 2.8.

Theorem 2.4 (Cook et al. [13]). Let (An) be a family of standard deviation profiles for which A1
holds. If either A3, A4, or A5 holds then A2 also holds: the family (An) is admissible.

2.5. Positivity of the density of µn. In this section we consider the positivity of µn. In [7,
Lemma 4.1], it is shown that under Assumption A3, the density of µn is strictly positive on the

disk of radius
√
ρ(V ), centered at the origin. We will begin by giving a more general assumption,

see A6, under which the density of µn, is uniformly bounded from below on its support.

Of particular interest is the behavior of µn near zero. By Theorem 2.3, Fn admits a limit as
s ↓ 0. Is this limit positive (atom) or equal to zero (no atom)? Is its derivative finite at z = 0 (finite
density), zero (vanishing density), or does it blow up at z = 0? In Proposition 2.7, we will give
an explicit formula for the density fn at zero under Assumption A6. In Corollary 2.8, we use this
formula to lower bound the density at zero and give a necessary condition for µn to be given by the
circular law. Proposition 5.2 provides an example of a simple variance profile with large zero blocks
where µn admits a closed-form expression with an atom and a vanishing density at z = 0. Section 5
gives further examples that shed additional light on these questions. Then in Theorem 2.9, we
adapt an argument from [7] to bound the density of µn from below. Our bound does not require
assumption A3, and in particular gives an effective bound even when the variance profile does not
have a spectral gap, as in [7].

We recall the following definition used in [5]:

Definition 2.5. A K ×K matrix T = (tij)
K
i,j=1 with nonnegative entries is called fully indecom-

posable if for any two subsets I, J ⊂ {1, . . . ,K} such that |I| + |J | ≥ K, the submatrix (tij)i∈I,j∈J
contains a nonzero entry.

See [10] for a detailed account on these matrices.

A6 (Block fully indecomposable) For all n ≥ 1, the normalized variance profiles Vn are block fully
indecomposable, i.e. there are constants φ > 0, K ∈ N independent from n ≥ 1, a fully
indecomposable matrix Z = (zij)i,j∈[K], with zij ∈ {0, 1} and a partition (Ij)j∈[K] of [n] such
that

|Ii| =
n

K
, Vxy ≥

φ

n
zij , x ∈ Ii and y ∈ Ij

for all i, j ∈ [K].
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Assumption A6 can be seen as a robust version of the full indecomposability of the matrix V . It is
well known that the full indecomposability implies the irreducibility of a matrix. Therefore, one can
expect that the block full indecomposability implies the robust irreducibility. Indeed, the following
is an immediate consequence of [13, Lemma 2.4].

Proposition 2.6. A6 implies A5.

Remark 2.3. In [18] full indecomposability is shown to be equivalent to the existence and the unique-
ness, up to scaling, of positive diagonal matrices D1 and D2 such that D1V D2 is doubly stochastic.
Below, in Proposition 2.7 and in particular (2.6), we see under Assumption A6, diag(q)V diag(q̃)
is doubly stochastic. Under Assumption A6 an optimal local law for square Gram matrices was
proven in [5]. The boundedness of the density near zero for Hermitian random matrices under the
analogous conditions was proven in [3].

Proposition 2.7 (No atom and bounded density near zero). Consider a sequence (Vn) of normalized
variance profiles and assume that A1 and A6 hold. Let ~q(s) be as in Theorem 2.2, let µn be as in

Theorem 2.3, and let ~r(s, t) =

(
r(s, t)
r̃(s, t)

)
be as in Proposition 2.1. Then,

(1) The limits limt↓0 ~r(0, t) and lims↓0 ~q(s) exist and are equal. Writing q(0) = (qi(0)) =
lims↓0 q(s) and q̃(0) = (q̃i(0)) = lims↓0 q̃(s), it holds that

qi(0)(Vnq̃(0))i = 1 and q̃i(0)(V T
n q(0))i = 1 , i ∈ [n] . (2.6)

In particular, the probability measure µn has no atom at zero: µn({0}) = 0 .
(2) The density fn of µn on C \ {0} admits a limit as z → 0. This limit fn(0) is given by

fn(0) =
1

n

∑
i∈[n]

1

(V T
n q(0))i(Vnq̃(0))i

=
1

n

∑
i∈[n]

qi(0)q̃i(0) .

In particular, there exist finite constants κ,K independent of n ≥ 1 such that

0 < κ ≤ fn(0) ≤ K . (2.7)

This proposition will be proven in Section 4.1.

Corollary 2.8. Let V satisfy Assumptions A1 and A6. Then the density of µn at zero is greater
than or equal to 1/(πρ(V )), with equality if and only if V = D−1SD for some diagonal matrix D
and doubly stochastic matrix S. In the latter case, µn = µcirc, the circular law.

The proof of this corollary is given in Section 4.3.

Theorem 2.9. Assume that A1 holds true and that An is irreducible. Then,

(1) Assuming A2, if |z| ∈ (0,
√
ρ(V )), then the density fn of µn is bounded from below by a

positive constant that depends on |z| and is independent of n.

(2) Assuming A6, then for |z| ∈ [0,
√
ρ(V )), the density fn of µn (for which existence at zero

is stated by Proposition 2.7) is bounded from below by a positive constant that depends on
|z| and is independent of n.

The proof of Theorem 2.9 is postponed to Section 4.2. Part (2) will follow easily by noting that
the proof of Proposition 2.7-(2) shows the lower bound in (4.21) is bounded away from zero. Finally,
we remark the examples in Section 5 show that one cannot expect z independent lower bounds in
general. We do note that our lower bounds only depend on the solution to (2.3).
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3. Sampled variance profile

3.1. Sampled variance profile. Here, we are interested in the case where

σ2ij(n) = σ2
(
i

n
,
j

n

)
,

where σ is a continuous nonnegative function on [0, 1]2. In this situation, the deterministic equiva-
lents will converge to a genuine limit as n→∞. Notice that A1 holds and denote by

σmax = max
x,y∈[0,1]

σ(x, y) and σmin = min
x,y∈[0,1]

σ(x, y) .

For the sake of simplicity, we will restrict ourselves to the case where σ takes its values in (0,∞),
i.e. where σmin > 0, which implies that A3 holds.

We will use some results from the Krein–Rutman theory (see for instance [14]), which generalizes
the spectral properties of nonnegative matrices to positive operators on Banach spaces. To the
function σ2 we associate the linear operator V , defined on the Banach space C([0, 1]) of continuous
real-valued functions on [0, 1] as

(V f)(x) =

∫ 1

0
σ2(x, y)f(y) dy. (3.1)

By the uniform continuity of σ2 on [0, 1]2 and the Arzela–Ascoli theorem, it is a standard fact that
this operator is compact [17, Ch. VI.5]. Let C+([0, 1]) be the convex cone of nonnegative elements
of C([0, 1]):

C+([0, 1]) = {f ∈ C([0, 1]) , f(x) ≥ 0 for x ∈ [0, 1]} .
Since σmin > 0, the operator V is strongly positive, i.e. it sends any element of C+([0, 1])\{0} to the
interior of C+([0, 1]), the set of continuous and positive functions on [0, 1]. Under these conditions,
it is well known that the spectral radius ρ(V ) of V is nonzero, and it coincides with the so-called
Krein–Rutman eigenvalue of V [14, Theorem 19.2 and 19.3].

To be consistent with our notation for nonnegative finite dimensional vectors, we write f <6= 0
when f ∈ C+([0, 1]) \ {0}, and f � 0 when f(x) > 0 for all x ∈ [0, 1].

Theorem 3.1 (Sampled variance profile). Assume that there exists a continuous function σ :
[0, 1]2 → (0,∞) such that

σ
(n)
ij = σ

(
i

n
,
j

n

)
.

Let (Yn)n≥1 be a sequence of random matrices as in Definition 1.1 and assume that A0 holds. Then,

(1) The spectral radius ρ(Vn) of the matrix Vn = n−1(σ2ij) converges to ρ(V ) as n→∞, where

V is the operator on C([0, 1]) defined by (3.1).
(2) Given s > 0, consider the system of equations:

Q∞(x, s) =

∫ 1
0 σ

2(y, x)Q∞(y, s) dy

s2 +
∫ 1
0 σ

2(y, x)Q∞(y, s) dy
∫ 1
0 σ

2(x, y)Q̃∞(y, s) dy
,

Q̃∞(x, s) =

∫ 1
0 σ

2(x, y)Q̃∞(y, s) dy

s2 +
∫ 1
0 σ

2(y, x)Q∞(y, s) dy
∫ 1
0 σ

2(x, y)Q̃∞(y, s) dy
,∫ 1

0
Q∞(y, s) dy =

∫ 1

0
Q̃∞(y, s) dy.

(3.2)

with unknown parameters Q∞(·, s), Q̃∞(·, s) ∈ C+([0, 1]). Then,

(a) for s ≥
√
ρ(V ), Q∞(·, s) = Q̃∞(·, s) = 0 is the unique solution of this system.
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(b) for s ∈ (0,
√
ρ(V )), the system has a unique solution Q∞(·, s) + Q̃∞(·, s) <6= 0. This

solution satisfies

Q∞(·, s), Q̃∞(·, s) � 0 .

(c) The functions Q∞, Q̃∞ : [0, 1] × (0,∞) −→ [0,∞) are continuous, and continuously
extended to [0, 1]× [0,∞), with

Q∞(·, 0) , Q̃∞(·, 0) � 0 .

(3) The function

F∞(s) = 1−
∫
[0,1]2

Q∞(x, s) Q̃∞(y, s)σ2(x, y) dx dy , s ∈ (0,∞)

converges to zero as s ↓ 0. Setting F∞(0) = 0, the function F∞ is an absolutely continuous
function on [0,∞) which is the CDF of a probability measure whose support is contained in

[0,
√
ρ(V )], and whose density is continuous on [0,

√
ρ(V )].

(4) Let µ∞ be the rotationally invariant probability measure on C defined by the equation

µ∞({z : 0 ≤ |z| ≤ s}) = F∞(s), s ≥ 0 .

Then,

µYn
w−−−→

n→∞
µ∞ in probability .

The proof of Theorem 3.1 is an adaptation of the proofs of Lemmas 4.3 and 4.4 from [13] to the
context of Krein–Rutman’s theory for positive operators in Banach spaces.

3.2. Proof of Theorem 3.1. Extending the maximum norm notation from vectors to functions,
we also denote by ‖f‖∞ = supx∈[0,1] |f(x)| the norm on the Banach space C([0, 1]). Given a positive

integer n, the linear operator V n defined on C([0, 1]) as

V nf(x) =
1

n

n∑
j=1

σ2(x, j/n) f(j/n)

is a finite rank operator whose eigenvalues coincide with those of the matrix Vn. It is easy to check
that V nf → V f in C([0, 1]) for all f ∈ C([0, 1]), in other words, V n converges strongly to V in
C([0, 1]), denoted by

V n
str−−−→
n→∞

V

in the sequel. However, V n does not converge to V in norm, in which case the convergence of
ρ(V n) to ρ(V ) would have been immediate. Nonetheless, the family of operators {V n} satisfies the
property that the set {V nf : n ≥ 1, ‖f‖∞ ≤ 1} has a compact closure, being a set of equicontinuous
and bounded functions thanks to the uniform continuity of σ2 on [0, 1]2. Following [9], such a family
is named collectively compact.

We recall the following important properties, cf. [9]. If a sequence (T n) of collectively compact
operators on a Banach space converges strongly to a bounded operator T , then:

i) The spectrum of T n is eventually contained in any neighborhood of the spectrum of T .
Furthermore, λ belongs to the spectrum of T if and only if there exist λn in the spectrum
of T n such that λn → λ;

ii) (λ− T n)−1
str−−−→
n→∞

(λ− T )−1 for any λ in the resolvent set of T .

The statement (1) of the theorem follows from i). We now provide the main steps of the proof of the
statement (2). Given n ≥ 1 and s > 0, let (qn(s)T q̃n(s)T)T ∈ R2n be the solution of the system (2.3)
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that is specified by Theorem 2.2. Denote by qn(s) = (qn1 (s), . . . , qnn(s)) and q̃n = (q̃n1 , . . . , q̃
n
n) and

introduce the quantities

Φn(x, s) =
1

n

n∑
i=1

σ2
(
x,
i

n

)
q̃ni (s) and Φ̃n(x, s) =

1

n

n∑
i=1

σ2
(
i

n
, x

)
qni (s) . (3.3)

By Proposition 2.5 of [13] (recall that A3 holds), we know that the average

〈qn(s)〉n =
1

n

n∑
i=1

qni (s)

satisfies 〈qn(s)〉n ≤ σ−1min. Therefore, we get from (2.3) that

‖qn(s)‖∞ ≤
σ2max〈qn(s)〉n

s2
≤ σ2max

σmins2
. (3.4)

Consequently the family {Φ̃n(·, s)}n≥1 is an equicontinuous and bounded subset of C([0, 1]). Simi-
larly, an identical conclusion holds for the family {Φn(·, s)}n≥1. By Arzela–Ascoli’s theorem, there

exists a subsequence (still denoted by (n), with a small abuse of notation) along which Φ̃n(·, s) and

Φn(·, s) respectively converge to given functions Φ̃∞(·, s) and Φ∞(·, s) in C([0, 1]). Denote

Ψn(x, s) =
1

s2 + Φn(x, s)Φ̃n(x, s)
and Ψ∞(x, s) =

1

s2 + Φ∞(x, s)Φ̃∞(x, s)
.

and introduce the auxiliary quantities

Qn(x, s) = Ψn(x, s)Φ̃n(x, s) and Q̃n(x, s) = Ψn(x, s)Φn(x, s) .

Then there exists Q∞(x, s) and Q̃∞(x, s) such that Qn(·, s)→ Q∞(·, s) and Q̃n(·, s)→ Q̃∞(·, s) in
C([0, 1]). These limits satisfy

Q∞(x, s) =
Φ̃∞(x, s)

s2 + Φ∞(x, s)Φ̃∞(x, s)
and Q̃∞(x, s) =

Φ̃∞(x, s)

s2 + Φ∞(x, s)Φ̃∞(x, s)
.

Moreover, the mere definition of qn and q̃n as solutions of (2.3) yields that{
Qn
(
i
n , s
)

= qni (s) 1 ≤ i ≤ n
Q̃n
(
i
n , s
)

= q̃ni (s) 1 ≤ i ≤ n.
(3.5)

Combining (3.3), (3.5) and the convergence of Qn and Q̃n, we finally obtain the useful representation

Φ∞(x, s) =

∫ 1

0
σ2(x, y) Q̃∞(y, s) dy and Φ̃∞(x, s) =

∫ 1

0
σ2(y, x)Q∞(y, s) dy . (3.6)

which yields that Q∞ and Q̃∞ satisfy the system (3.2).

To establish the first part of the statement (2), we show that these limits are zero if s2 ≥ ρ(V )
and positive if s2 < ρ(V ), then we show that they are unique. It is known that ρ(V ) is a simple
eigenvalue, it has a positive eigenvector, and there is no other eigenvalue with a positive eigenvector.
If T is a bounded operator on C([0, 1]) such that T f − V f � 0 for f <6= 0, then ρ(T ) > ρ(V ) [14,
Theorem 19.2 and 19.3].

We first establish (2)-(a). Fix s2 ≥ ρ(V ), and assume that Q∞(·, s) <6= 0. Since Q∞(·, s) =
Ψ∞V Q∞(·, s), where Ψ∞(·, s) is the limit of Ψn(·, s) along the subsequence (n), it holds that
Q∞(·, s) � 0, and by the properties of the Krein–Rutman eigenvalue, that ρ(Ψ∞V ) = 1. From the

identity
∫
Q∞(x, s) dx =

∫
Q̃∞(x, s) dx, we get that Q̃∞(·, s) <6= 0, hence Q̃∞(·, s) � 0 by the same

argument. By consequence, s−2V f − Ψ∞V f � 0 for all f <6= 0. This leads to the contradiction

1 ≥ ρ(s−2V ) > ρ(Ψ∞V ) = 1. Thus, Q∞(·, s) = Q̃∞(·, s) = 0.
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We now establish (2)-(b). Let s2 < ρ(V ). By an argument based on collective compactness, it
holds that

ρ(ΨnV n) −−−→
n→∞

ρ(Ψ∞V )

and moreover, that ρ(ΨnV n) = 1 (see e.g. the proof of Lemma 4.3 of [13]). Thus, Q∞(·, s) <6= 0

and Q̃∞(·, s) <6= 0, otherwise ρ(Ψ∞V ) = ρ(s−2V ) > 1. Since Q∞(·, s) = Ψ∞V Q∞(·, s), we get

that Q∞(·, s) � 0 and similarly, that Q̃∞(·, s) � 0.

It remains to show that the accumulation point (Q∞, Q̃∞) is unique. The proof of this fact is
similar to its finite dimensional analogue in the proof of Lemma 4.3 from [13]. In particular, the
properties of the Perron–Frobenius eigenvalue and its eigenspace are replaced with their Krein–
Rutman counterparts, and the matrices K~q and K~q,~q′ in that proof are replaced with continuous
and strongly positive integral operators. Note that the end of the proof is simpler in our context,
thanks to the strong positivity assumption instead of the irreducibility assumption. We leave the
details to the reader.

We now address (2)-(c) and first prove the continuity of Q∞ and Q̃∞ on [0, 1] × (0,∞). This is

equivalent to proving the continuity of Φ∞ and Φ̃∞ on this set. Let (xk, sk)→k (x, s) ∈ [0, 1]×(0,∞).
The bound

0 ≤ Q̃∞(y, s) ≤ σ2max

σmin s2

follows from (3.5) and the convergence of Q̃n to Q̃∞. As a consequence of (3.6), the family
{Φ∞(·, sk)}k is equicontinuous for k large. By Arzela–Ascoli’s theorem and the uniqueness of the
solution of the system, we get that Φ∞(·, sk)→k Φ∞(·, s) in C([0, 1]). Therefore, writing

|Φ∞(xk, sk)− Φ∞(x, s)| ≤ ‖Φ∞(·, sk)− Φ∞(·, s)‖∞ + |Φ∞(xk, s)− Φ∞(x, s)|

and using the continuity of Φ∞(·, s), we get that Φ∞(xk, sk)→k Φ∞(x, s).

The main steps of the proof for extending the continuity of Q∞ and Q̃∞ from [0, 1] × (0,∞) to
[0, 1]× [0,∞) are the following. Following the proof of Proposition 2.7, we can establish that

lim inf
s↓0

∫ 1

0
Q∞(x, s) dx > 0 .

The details are omitted. Since

1

Q̃∞(x, s)
=

s2

Φ∞(x, s)
+ Φ̃∞(x, s) > σmin

∫ 1

0
Q∞(y, s) dy ,

we obtain that ‖Q̃∞(·, s)‖∞ is bounded when s ∈ (0, ε) for some ε > 0. Thus, {Φ∞(·, s)}s∈(0,ε) is
equicontinuous by (3.6), and it remains to prove that the accumulation point Φ∞(·, 0) is unique.

This can be done by working on the system (3.2) for s = 0, along the lines of the proof of
Lemma 4.3 of [13] and Proposition 2.7. Details are omitted.

Turning to Statement (3), the assertion F (s) → 0 as s ↓ 0 can be deduced from the proof of
Proposition 2.7 and a passage to the limit, noting that the bounds in that proof are independent
from n.

Consider the Banach space B = C([0, 1];R2) of continuous functions

~f = (f, f̃)T : [0, 1] −→ R2

endowed with the norm ‖~f‖B = supx∈[0,1] max(|f(x)|, |f̃(x)|). In the remainder of the proof, we

may use the notation shortcut Ψs
∞ instead of Ψ∞(·, s) and corresponding shortcuts for quantities

Φ∞(·, s), Φ̃∞(·, s), Q∞(·, s) and Q̃∞(·, s).
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Given s, s′ ∈ (0,
√
ρ(V )) with s 6= s′, consider the function

∆ ~Qs,s
′

∞ =

(
Qs∞ −Qs

′
∞, Q̃

s
∞ − Q̃s

′
∞
)T

s2 − s′ 2
∈ B.

Let V T be the linear operator associated to the kernel (x, y) 7→ σ2(y, x), and defined as

V Tf(x) =

∫ 1

0
σ2(y, x)f(y) dy .

Then, mimicking the proof of Lemma 4.4 of [13], it is easy to prove that ∆ ~Qs,s
′

∞ satisfies the equation

∆ ~Qs,s
′

∞ = M s,s′
∞ ∆ ~Qs,s

′
∞ + as,s

′
∞ ,

where M s,s′
∞ is the operator acting on B and defined in a matrix form as

M s,s′
∞ =

(
s2Ψs

∞Ψs′
∞V

T −Ψs
∞Ψs′

∞Φ̃s
∞Φ̃s′
∞V

−Ψs
∞Ψs′

∞Φs
∞Φs′
∞V

T s2Ψs
∞Ψs′

∞V

)
,

and as,s
′

∞ is a function B defined as

as,s
′

∞ = −
(

Ψs
∞Ψs′

∞V
TQs∞

Ψs
∞Ψs′

∞V Q̃
s
∞

)
.

To proceed, we rely on a regularized version of this equation. Denoting by 1 the constant function
1(x) = 1 in C([0, 1]), and letting v = (1,−1)T ∈ B, the kernel operator vvT on B is defined by the
matrix

(vvT)(x, y) =

(
1(x)1(y) −1(x)1(y)
−1(x)1(y) 1(x)1(y)

)
.

By the constraint
∫
Qs∞ =

∫
Q̃s∞, it holds that (vvT)∆ ~Qs,s

′
∞ = 0. Thus, ∆ ~Qs,s

′
∞ satisfies the identity(

(I − (M s,s′
∞ )T)(I −M s,s′

∞ ) + vvT
)
∆ ~Qs,s

′
∞ = (I − (M s,s′

∞ )T)as,s
′

∞ . (3.7)

We rewrite the left side of this identity as (I −Gs,s′
∞ )∆ ~Qs,s

′
∞ where

Gs,s′
∞ = M s,s′

∞ + (M s,s′
∞ )T − (M s,s′

∞ )TM s,s′
∞ − vvT ,

and we study the behavior of M s,s′
∞ and Gs,s′

∞ as s′ → s.

Let s ∈ (0,
√
ρ(V )) and s′ belong to a small compact neighborhood K of s. Then the first

component of M s,s′
∞

~f(x) has the form∫ (
h11(x, y, s

′)f(y) + h12(x, y, s
′)f̃(y)

)
dy ,

where h11 and h12 are continuous on the compact set [0, 1]2 ×K by the previous results. A similar

argument holds for the other component of M s,s′
∞

~f(x). By the uniform continuity of these functions

on this set, we get that the family {M s,s′
∞

~f : s′ ∈ K, ‖~f‖B ≤ 1} is equicontinuous, and by the

Arzela–Ascoli theorem, the family {M s,s′
∞ : s′ ∈ K} is collectively compact. Moreover,

M s,s′
∞

str−−−→
s′→s

M s
∞ =

(
I 0
0 −I

)
N s
∞

(
I 0
0 −I

)
,

where

N s
∞ =

(
s2Ψ2

∞(·, s)V T Ψ2
∞(·, s)Φ̃2

∞(·, s)V
Ψ2
∞(·, s)Φ2

∞(·, s)V T s2Ψ2
∞(·, s)V

)
.

By a similar argument, {Gs,s′
∞ : s′ ∈ K} is collectively compact, and Gs,s′

∞
str−−−→
s′→s

Gs∞, where

Gs∞ = M s
∞ + (M s

∞)T − (M s
∞)TM s

∞ − vvT .
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We now claim that 1 belongs to the resolvent set of the compact operator Gs∞.

Repeating an argument of the proof of Lemma 4.4 from [13], we can prove that the Krein–Rutman
eigenvalue of the strongly positive operator N s

∞ is equal to one, and its eigenspace is generated by

the vector ~Qs∞ =
(
Qs∞, Q̃

s
∞
)T

. From the expression of M s
∞, we then obtain that the spectrum of this

compact operator contains the simple eigenvalue 1, and its eigenspace is generated by the vector(
Qs∞,−Q̃s∞

)
.

We now proceed by contradiction. If 1 were an eigenvalue of Gs∞, there would exist a non zero

vector ~f ∈ B such that (I −Gs∞)~f = 0, or, equivalently,

(I − (M s
∞)T)(I −M s

∞)~f + vvT ~f = 0 .

Left-multiplying the left hand side of this expression by ~fT and integrating on [0, 1], we get that (I−
M s
∞)~f = 0 and

∫
f =

∫
f̃ , which contradicts the fact the ~f is collinear with

(
Q∞(·, s),−Q̃∞(·, s)

)
.

Returning to (3.7) and observing that {M s,s′
∞ : s′ ∈ K} is bounded, we get from the convergence

(M s,s′
∞ )T

str−−−→
s′→s

(M s
∞)T that

(I − (M s,s′
∞ )T)as,s

′
∞ −−−→

s′→s
(I − (M s

∞)T)as∞ ,

where

as∞(·) = −
(

Ψ∞(·, s)2V TQ∞(·, s)
Ψ∞(·, s)2V Q̃∞(·, s)

)
.

From the aforementioned results on the collectively compact operators, it holds that there is a
neighborhood of 1 where Gs,s′

∞ has no eigenvalue for all s′ close enough to s (recall that 0 is the
only possible accumulation point of the spectrum of Gs∞). Moreover,

(I −Gs,s′
∞ )−1

str−−−→
s′→s

(I −Gs∞)−1 .

In particular, for s′ close enough to s, the family {(I−Gs,s′
∞ )−1} is bounded by the Banach-Steinhaus

theorem. Thus,

∆ ~Qs,s
′

∞ −−−→
s′→s

(
(I − (M s

∞)T)(I −M s
∞) + vvT

)−1
(I − (M s

∞)T)as∞

= (∂s2Q
s
∞, ∂s2Q̃

s
∞)T .

Using this result, we straightforwardly obtain from the expression of F∞ that this function is
differentiable on (0,

√
ρ(V )). The continuity of the derivative as well as the existence of a right

limit as s ↓ 0 and a left limit as s ↑
√
ρ(V ) can be shown by similar arguments involving the

behaviors of the operators M s
∞ and Gs∞ as s varies. The details are skipped.

Since µYn ∼ µn in probability and since we have the straightforward convergence µn
w−−−→

n→∞
µ∞,

the statement (4) of the theorem follows.

4. Positivity of the density

In this section we prove Proposition 2.7, Theorem 2.9 and Corollary 2.8.

In the remainder, the following notation will be useful. For two n× 1 nonnegative vectors a and
ã and two parameters s, t ≥ 0, we shall write ~aT =

(
aT ãT

)
, and

Ψ(~a, s, t) = diag

(
1

s2 + [(Vnã)i + t][(V T
n a)i + t]

; i ∈ [n]

)
. (4.1)
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With these notations, the reals ri and qi in the systems (2.1) and (2.3) respectively can be written
as

ri = (Ψ(~r, s, t))−1ii ((V T
n r)i + t), and qi = (Ψ(~q, s, 0))−1ii (V T

n q)i,

with similar expressions for r̃i and q̃i.

4.1. Proof of Proposition 2.7. Most of the work will go into showing that the limits limt↓0 ~r(0, t)
and lims↓0 ~q(s) exist and are equal. To that end, we rely on some of the results of [5], from which
we start by borrowing some notations. Given to sequences (an) and (bn) of real numbers, an . bn
refers to the fact that there exists a constant κ > 0 independent of n ≥ 1 such that an ≤ κ bn. The
notation an ∼ bn stands for an . bn and bn . an. Given a real vector x, the notation minx refers
to the smallest element of x.

Lemma 4.1 (Lemmas 3.11, 3.13 and Eq. (3.56) of [5]). Let A1 and A6 hold true, and recall that
~r(0, t) is the unique positive solution of (2.1) for s = 0 and t > 0. Then,

1 . inf
t∈(0,10]

min~r(0, t) ≤ sup
t>0
‖~r(0, t)‖∞ . 1 .

The limit ~r0 =

(
r0
r̃0

)
= limt↓0 ~r(0, t) exists and satisfies 1 . min~r0 ≤ ‖~r0‖∞ . 1. Moreover,

writing r0 = (r0,i) and r̃0 = (r̃0,i), it holds that

r0,i(Vnr̃0)i = 1, and r̃0,i(V
T
n r̃0)i = 1 , i ∈ [n] . (4.2)

Proposition 4.2 (Proposition 3.10 (ii) of [5]). Let A1 and A6 hold. Suppose the functions

~d =

(
d

d̃

)
=

(
(di)i∈[n]
(d̃i)i∈[n]

)
: R+ → C2n, and ~g =

(
g
g̃

)
=

(
(gi)i∈[n]
(g̃i)i∈[n]

)
: R+ → (C \ {0})2n

satisfy

1

gi(t)
= (Vng̃(t))i + t+ di(t) ,

1

g̃i(t)
= (V T

n g(t))i + t+ d̃i(t) and
∑
i∈[n]

gi(t) =
∑
i∈[n]

g̃i(t) (4.3)

for all t ∈ R+. Then, there exist λ∗ > 0 and C > 0, depending on V , such that

‖~g(t)− ~r(0, t)‖∞ 1{‖~g(t)−~r(0,t)‖∞≤λ∗} ≤ C‖~d(t)‖∞ for all |t| < 10 .

Let us outline the proof of Proposition 2.7–(1). Lemma 4.1 shows that ~r(0, t) converges as t ↓ 0.
In parallel, we know from Theorem 2.2–(3) that for each s > 0, it holds that ~r(s, t)→t↓0 ~q(s) under
the irreducibility assumption, which is implied by A6. To prove that ~q(s) →s↓0 ~r0, we fix s > 0
small enough and find a sequence tk ↓ 0 such that ‖~r(s, tk) − ~r(0, tk)‖∞ ≤ Constant × s2. This
inequality will be established iteratively on k. Specifically, we start with a t0 large enough so that the
inequality is satisfied, then we apply a bootstrap procedure on k, controlling ‖~r(s, tk)− ~r(0, tk)‖∞
at each step with the help of Proposition 4.2 with ~g(t) = ~r(s, t). We now begin the proof.

Proof of Proposition 2.7. Letting ~g(t) = ~r(s, t), we get from (2.1) that ~g(t) satisfies (4.3) with

di(s, t) =
s2

((V T
n r(s, t))i + t

and d̃i(s, t) =
s2

((Vnr̃(s, t))i + t
.

We now start our iterative procedure by choosing properly the initial value t0. Using the bound

‖~r(0, t)‖∞ ≤ t−1 and ‖~r(s, t)‖∞ ≤ t−1 from (2.1), and ‖~d(s, t)‖∞ ≤ s2t−1 we get that for t0
sufficiently large, ‖~r(s, t0)− ~r(0, t0)‖∞ ≤ λ∗ and thus Proposition 4.2 gives the bound

‖~r(s, t0)− ~r(0, t0)‖∞ ≤ Cs2t−10 . (4.4)
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We now fix this t0 and let K = sup0<t<t0 ‖~r(0, t)‖∞, which is finite by Lemma 4.1. We also introduce
`∗, s∗ > 0 such that

`∗ ≤ min

(
λ∗ ,

1

2σ2maxK

)
and (s∗)2 ≤ min

(
`∗

8CK
,
t0`
∗

4C

)
. (4.5)

Fix s such that 0 < s < s∗. From the choice of s∗ and (4.4), we get that

‖~r(s, t0)− ~r(0, t0)‖∞ ≤ `∗

4
.

By Lemma 4.1 and Theorem 2.2–(3), the functions t 7→ ~r(0, t) and t 7→ ~r(s, t) extend continuously
to t = 0 and hence are uniformly continuous on the compact interval [0, t0]. Thus, there exists η > 0
such that for 0 ≤ t, t′ ≤ t0 and |t− t′| ≤ η, we have

‖~r(0, t)− ~r(0, t′)‖∞ ≤
`∗

4
, ‖~r(s, t)− ~r(s, t′)‖∞ ≤

`∗

4
,
∣∣∣(V Tr(s, t))i + t− (V Tr(s, t′))i − t′

∣∣∣ ≤ 1

4K
.

Consider a sequence of real numbers (tk)k≥0 such that tk ↓ 0 and |tk+1− tk| < η for k ≥ 0. We shall
prove inductively that

‖~r(s, tk)− ~r(0, tk)‖∞ ≤ `∗

4
. (4.6)

Using the uniform continuity and the inductive assumption, we obtain

‖~r(s, tk+1)− ~r(0, tk+1)‖∞
≤ ‖~r(s, tk+1)− ~r(s, tk)‖∞ + ‖~r(s, tk)− ~r(0, tk)‖∞ + ‖~r(0, tk)− ~r(0, tk+1)‖∞ ,

≤ `∗

4
+
`∗

4
+
`∗

4
< `∗ < λ∗ , (4.7)

thus, Proposition 4.2 leads to the bound

‖~r(s, tk+1)− ~r(0, tk+1)‖∞ ≤ C‖~d(s, tk+1)‖∞ .

We now upper bound ‖~d(s, tk+1)‖∞. We have:

(V T
n r(s, tk+1))i + tk+1 ≥ (V T

n r(0, tk+1))i + tk+1 −
(

((V T
n r(0, tk+1))i − (V T

n r(s, tk+1))i

)
,

(a)

≥ (V T
n r(0, tk+1))i + tk+1 − σ2max`

∗ ,

(b)
=

1

ri(0, tk+1)
− σ2max`

∗ ≥ 1

K
− σ2max`

∗
(c)

≥ 1

2K
,

where (a) follows from (4.7), (b) from the system satisfied by ~r(0, tk+1) and (c) from the constraint

(4.5) of `∗. We finally end up with the estimation ‖~d(s, tk+1)‖∞ ≤ 2Ks2. Applying Proposition 4.2
together with (4.7), we obtain

‖~r(s, tk+1)− ~r(0, tk+1)‖∞ ≤ C‖~d(s, tk+1)‖∞ ≤ 2CKs2
(a)

≤ `∗

4
,

where (a) follows from the fact that s < s∗ and the constraint (4.5) on s∗. Hence the induction step
is verified. As a byproduct of the induction, we have, after taking tk ↓ 0,

∀s ∈ (0, s∗) , ‖~q(s)− ~r0‖∞ ≤ 2CK s2 (4.8)

and in particular, ~q(s) converges to ~q(0) = ~r0 as s ↓ 0.

Combining qi(0)(V q̃(0))i = 1 and q̃i(0)(V Tq(0))i = 1 with the definition of µn, we obtain

µn({0}) = 1− lim
s↓0

1

n
〈q(s), V q̃(s)〉 = 1− 1

n

∑
i∈[n]

qi(0)(V q̃(0))i = 0 .

Proposition 2.7-(1) is proven.
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We now turn to Proposition 2.7-(2). To establish the existence of the limit of f(z) as z → 0,
we first show that ∂s2~q(s) can be continuously extended to s = 0 as s ↓ 0. This can be done by
considering [13, Lemma 4.4]. Using the shorthand notation Ψ(s) = Ψ(~q, s, 0) from (4.1), let us
define

M(s) =

(
s2Ψ(s)2V T −diag(q(s))2V

−diag(q̃(s))2V T s2Ψ(s)2V

)
,

A(s) =

(
I −M(s)

(1T
n − 1T

n)

)
∈ R(2n+1)×2n, and b(s) = −

Ψ(s)q(s)
Ψ(s)q̃(s)

0

 ∈ R2n+1.

Then, it is shown in [13, Lemma 4.4] that A(s) is a full column-rank matrix for s ∈ (0,
√
ρ(V )), and

that ∂s2~q(s) = A(s)−Lb(s), where A(s)−L is the left inverse of A(s). Now, the important observation
here is that if we take s ↓ 0, then A(s) converges to the full column-rank matrix

A(0) =

(
I −M(0)

(1T
n − 1T

n)

)
, with M(0) =

(
0 −diag(q(0))2V

−diag(q̃(0))2V T 0

)
.

The convergence to A(0) is an immediate consequence of the convergence of ~q(s) that we just
established, and of Lemma 4.1. To show that A(0) is full column-rank, consider the matrix non-
negative matrix N = −M(0). We show that ~q(0) is the unique eigenvector of N , up to scaling, such
that N~q(0) = ~q(0).

For any non zero vector ~x =

(
x
x̃

)
such that ~x = N~x, we have

diag(q(0))V diag(q̃(0))diag(q̃(0))−1x̃ = diag(q(0))−1x, and

diag(q̃(0))V Tdiag(q(0))diag(q(0))−1x = diag(q̃(0))−1x̃, (4.9)

thus, writing Q = diag(q(0))V diag(q̃(0))2V Tdiag(q(0)), we get that

Qdiag(q(0))−1x = diag(q(0))−1x. (4.10)

We know from Proposition 2.7–(1) that Q is doubly stochastic (see also Remark 2.3). Moreover,
since V is fully indecomposable, Q is also fully indecomposable, see, e.g. [10, Theorem 2.2.2]. Thus,
it is irreducible, which implies that the only non-zero vectors x that satisfy (4.10) take the form
x = αq(0) for α 6= 0. Plugging this identity into (4.9), we also get that x̃ = αq̃(0), which shows
that ~x exists and is equal to α~q(0).

As a consequence, the right null space of the matrix I−M(0) is spanned by the vector

(
q(0)
−q̃(0)

)
.

Since the inner product of the last row of A(0) with this vector is non zero, A(0) is full column-
rank. By the right continuity of A(s) and b(s) at zero and the fact that A(s) is full column-rank on

[0,
√
ρ(V )), we conclude that ∂s2~q(s) can be continuously extended to s = 0 as s ↓ 0.

Now, from the expression (2.5) of the density and Equations (2.3), we have for |z| near zero

fn(z) = − 1

2πn|z|
d

ds
〈q(s), V q̃(s)〉

∣∣∣
s=|z|

= − 1

πn

d

ds2
〈q(s), V q̃(s)〉

∣∣∣
s=|z|

(4.11)

= − 1

πn

∑
i∈[n]

∂s2
(Vnq̃(s))i(V

T
n q(s))i

s2 + (Vnq̃(s))i(V T
n q(s))i

∣∣∣
s=|z|

=
1

πn

∑
i∈[n]

(Vnq̃(|z|))i(V T
n q(|z|))i − |z|2∂s2

(
(Vnq̃(s))i(V

T
n q(s))i

)
|s=|z|

(|z|2 + (Vnq̃(|z|))i(V T
n q(|z|))i)2
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Since ‖∂s2~q(s)‖∞ is bounded near zero by what we have just shown, it is easily seen that

|z|2∂s2
(

(Vnq̃(s))i(V
T
n q(s))i

)
|s=|z| −−−→

z→0
0.

We therefore get that

fn(z) −−−→
z→0

1

πn

∑
i∈[n]

1

(Vnq̃(0))i(V T
n q(0))i

as well as the inequalities (2.7) by using Lemma 4.1 again, which completes the proof of Proposi-
tion 2.7-(2). �

4.2. Proof of Theorem 2.9. The positivity of the density has been established under Assumptions
A1 and A3 in [7, Lemma 4.1]. We will follow a similar strategy. The proof of [7, Lemma 4.1] relies
on two crucial steps: the existence and regularity of solutions to the master equations (2.3), and an
expression for the density (2.5) in terms of a certain operators whose spectrum can be controlled.
In [13, Section 5], the first step is established, as long as |z| is away from 0, under the more general
Assumption A5. Following the calculations from [7], we now carry out the second step, occasionally
referring the reader to [7] for details. We note that while the calculations can be closely followed,
the weaker assumptions on the variance profile V introduces new complications.

In all this section, we follow the notational convention of [7] stating that if u = (ui) and v = (vi)
are n× 1 vectors, then 1

u is the vector ( 1
ui

)i∈[n],
√
u = (

√
ui)i∈[n], uv = (uivi)i∈[n], and so on.

In what follows, O(t) refers to error terms that are bounded in magnitude by Ct for small t,
where the constant C can depend on n or on |z|. We use the notation a(t) . b(t) if there exists
a constant C that might depend on n or on |z|, such that a(t) ≤ Cb(t). The notation a(t) ∼ b(t)
refers to a(t) . b(t) . a(t).

Proof of Theorem 2.9. We now prove part (1), in particular in this section we will always assume

Assumption A2 holds and that s = |z|2 is in the interval (0,
√
ρ(V )). As mentioned in the introduc-

tion, we will prove a lower bound that depends on q and q̃. By Proposition 2.7, we have that under
Assumption A6 these vectors are continuous in a neighborhood of 0, therefore can continuously
extend our lower bound to zero and match it with the bound in the previous section, ensuring the
lower bound stays away from 0 for all z in the support, verifying part (2).

We start with the expression of the density in (2.5). In what follows it will be more convenient to
work on the regularized master equations provided by the system (2.1) rather than those given by
the system (2.3), recalling from Theorem 2.2–(3) that ~q(s) = limt↓0 ~r(s, t) for s > 0. In [13, Section
7], it is indeed proven that we can switch d/ds2 and limt↓0, and write

fn(z) = − 1

πn

d

ds2

(
lim
t↓0
〈r(s, t), V r̃(s, t)〉

) ∣∣∣
s=|z|

= − 1

πn
lim
t↓0

d

ds2
〈r(s, t), V r̃(s, t)〉

∣∣∣
s=|z|

.

Introducing the notation

ϕ(s, t) = V r̃(s, t) + t , ϕ̃(s, t) = V Tr(s, t) + t, and ~ϕ(s, t) =

(
ϕ(s, t)
ϕ̃(s, t)

)
,

we can rewrite the expression of the density as

fn(z) = − 1

πn
lim
t↓0
〈~ϕ(s, t),

d

ds2
~r(s, t)〉

∣∣∣
s=|z|

.

We now use the shorthand Ψ(s, t) = Ψ(~r(s, t), s, t) from (4.1) and let

Ψ(s, t) =

(
Ψ(s, t)

Ψ(s, t)

)
, ~̃r(s, t) =

(
r̃(s, t)
r(s, t)

)
.
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In what follows we will often drop the dependence on s and t. In expressions with t taken to zero
we will use q instead of r. With this notation, we reformulate (2.1) as

~ϕ(s, t) = Ψ(s, t)−1~̃r(s, t). (4.12)

We now turn to the derivative d~r(s, t)/ds2. A straightforward adaption of [13, Lemma 4.4] with
~q(s) replaced by ~r(s, t) yields:

d

ds2
~r(s, t) = A(s, t)−1b(s, t). (4.13)

where

M(s, t) =

(
s2Ψ(s, t)2V T −diag(r(s, t)2)V

−diag(r̃(s, t)2)V T s2Ψ(s, t)2V

)
,

A(s, t) = I −M(s, t) ∈ R2n×2n, and b(s, t) = −Ψ(s, t)~r(s, t) ∈ R2n.

We note that from [13], A(s, t) is invertible.

In [7], a fine analysis of the spectrum of A(s, t) is done for the purpose of establishing an optimal
local law on the eigenvalues of Yn. Here we borrow some of the results of [7] in order to control the
inverse of this matrix. Following the proof of [7, Lemma 4.1], the matrix A(s, t) can be factored as

A(s, t) = W (I − TF )W−1, (4.14)

where W ,T and F are the 2n× 2n symmetric matrices given as

T = Ψ−1
(
−diag(rr̃) s2Ψ2

s2Ψ2 −diag(rr̃)

)
, W =

(
W

W̃

)
, F =

(
WV W̃

W̃V TW

)
=

(
F

FT

)
,

W =

√
diag

(r
r̃

)
Ψ, and W̃ =

√
diag

(
r̃

r

)
Ψ.

We note that T ,F ,W each depend on s, t but we omit the notation for readability. From Equations
(4.12)–(4.14), we have

fn(z) = lim
t→0

1

πn

〈
Ψ−1~̃r,W (I − TF )−1W−1Ψ~r

〉
= lim

t→0

1

πn

〈√
~r~̃r,Ψ−1/2(I − TF )−1Ψ1/2

√
~r~̃r

〉
.

(4.15)

In order to exploit this decomposition, the will need the following lemmas, which all hold under
the assumptions of Theorem 2.9–(1).

Lemma 4.3. ri(s, t) ∼ 1 and r̃i(s, t) ∼ 1 uniformly in i ∈ [n].

Proof. Under A2, the average of r is bounded. Since each term is positive, we trivially have each
term is bounded by an (n-dependent) constant. For the (n-dependent) lower bounds on ri and r̃i,
we refer to [13, Eq. (5.17) and (5.31)]. �

The following two lemmas provide control on the spectrum of the symmetric operators T and
F . While the proofs appeal to arguments from [7], we point out that we only use the parts of their
theorems that hold without that work’s assumption of A3.

Lemma 4.4. Let s > 0 and t ∈ (0, 1). Then, there exists a constant ε > 0 such that the spectrum
spec(T ) of T satisfies

min(spec(T )) = −1 and spec(T ) ⊂ {−1} ∪ (−1 + ε, 1− ε)

Moreover, the eigenspace for the eigenvalue −1 is the span of all vectors of the form (−yT,yT)T.
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This lemma follows from the definition of T , (2.1), and the bound in Lemma 4.3, see [7, Lemma
3.6] for details.

The following lemma gives bounds on the spectrum of F . Unlike in [7], our assumptions on V
do not imply the matrix F is irreducible, but we will not need its Perron-Frobenius subspace to

be one-dimensional. Although we will use that the vector Ψ−1/2
√
~r~̃r is near this Perron-Frobenius

subspace. In particular in the following lemma, we compute the “correction” term.

Lemma 4.5. Let s > 0 and t ∈ (0, 1). There exists a ct ∼ t such that ‖F ‖ = 1− ct. Let V be the
subspace spanned by all eigenvalues with magnitude greater than 1− Ct for some C > 0. Then for
all t sufficiently small, ‖F |V⊥‖ ≤ 1− ε, for some small ε. Moreover, there exists an eigenvector f−
such that

F f− = −‖F ‖f−, and f− = Ψ−1/2
√
~r~̃re− + ε(t), (4.16)

where e− =

(
1
−1

)
, and ‖ε(t)‖ = O(t). Finally, it holds that

(I + F )−1
(

Ψ−1/2
√
~r~̃r − t

2
W1

)
=

1

2
Ψ−1/2

√
~r~̃r. (4.17)

Proof. The bound on the norm and the spectral gap can be obtained by combining Lemma 4.3
with the proof of [7, Lemma 3.4], in particular (4.16) follows from (3.45) and (3.46) in [7]. Let us
verify (4.17). By direct calculation, using Equation (4.12) along with the expression of W , we have

FΨ−1/2
√
~r~̃r = W

(
V r̃
V Tr

)
= W (~ϕ− t1) = W

(
Ψ−1~̃r − t1

)
= Ψ−1/2

√
~r~̃r − tW1. (4.18)

Thus,

(I + F )Ψ−1/2
√
~r~̃r = 2Ψ−1/2

√
~r~̃r − tW1,

and applying (I + F )−1 to both sides of this equation, we obtain (4.17). �

We can now manipulate (4.15), the expression for the density. Following [7], the technique is

based on a factorization of the term I −Ψ−1/2TFΨ1/2. One of the factors will be dealt with by
means of the identity (4.17). In order to be able to use this identity, we shall have to inject the
“correction” term 0.5tW1 into the expression (4.15) of the density. The following lemma shows
that this can be done safely.

Lemma 4.6.
∣∣∣〈Ψ1/2W1 , Ψ−1/2(I − TF )−1Ψ1/2

√
~r~̃r
〉∣∣∣ . 1.

We prove this technical lemma in Appendix A.

Now, writing E =

(
I I
I I

)
∈ R2n×2n, we factor the matrix Ψ−1/2(I−TF )Ψ1/2 as in [7, Equation

4.16], namely

Ψ−1/2(I − TF )Ψ1/2 = (I − s2Ψ1/2EF (I + F )−1Ψ1/2)(I + Ψ−1/2FΨ1/2).
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Using Lemma 4.6 to add a correction term and then substituting this relationship gives:

fn(z) = lim
t→0

1

πn

〈√
~r~̃r − 0.5tΨ1/2W1,Ψ−1/2(I − TF )−1Ψ1/2

√
~r~̃r

〉
= lim

t→0

1

πn

〈
(I + Ψ1/2FΨ−1/2)−1(

√
~r~̃r − 0.5tΨ1/2W1),

(I − s2Ψ1/2EF (I + F )−1Ψ1/2)−1
√
~r~̃r

〉
= lim

t→0

1

2πn

〈√
~r~̃r, (I − s2Ψ1/2EF (I + F )−1Ψ1/2)−1

√
~r~̃r

〉
,

where the final equality uses (4.17). After some algebraic manipulations, it is shown in [7] that

(I − s2Ψ1/2EF (I + F )−1Ψ1/2)−1
(
x
x

)
=

(
(I − s2Ψ1/2BΨ1/2)−1x

(I − s2Ψ1/2BΨ1/2)−1x

)
,

where

Bx =
(
I I

)((I 0
0 I

)
−
(
I F
FT I

)−1)(
x
x

)
.

We thus obtain that

fn(z) = lim
t→0

1

πn

〈√
rr̃, (I − s2Ψ1/2BΨ1/2)−1

√
rr̃
〉
. (4.19)

The matrix B is symmetric. Furthermore, because the spectrum of F is contained in [−1, 1] and

the vector s2Ψ has entries strictly less than 1 we have the eigenvalues of s2Ψ1/2BΨ1/2 are bounded
away from 1, uniformly in t; see [7, Eq. (4.20) - (4.22)] for details (note the matrix B is labeled A

there). To lower bound this expression we begin by noting that if

(
x
x

)
is an eigenvector of F , with

eigenvalue λ, then

Bx =
2λ

1 + λ
x. (4.20)

From Lemma 4.5 we have that

(
Ψ−1/2

√
rr̃

Ψ−1/2
√
rr̃

)
is O(t) from an eigenvector of F with eigenvalue 1.

Let f+ be this eigenvector. Since the operator (I − s2Ψ1/2BΨ1/2)−1 has uniformly bounded norm,

we can replace
√
rr̃ with Ψ1/2f+, at the cost of an error that goes to zero as t→ 0. We now have all

the elements to provide a lower bound on the density. Using the Cauchy-Schwarz inequality (with
respect to the inner product 〈·, (s−2Ψ−1 −B)−1·〉) along with (4.20), we have

lim
t→0
〈
√
rr̃, (I − s2Ψ1/2BΨ1/2)−1

√
rr̃〉 = lim

t→0
〈Ψ−1/2f+, (I − s2Ψ1/2BΨ1/2)−1Ψ−1/2f+〉

= lim
t→0

s−2〈f+, (s−2Ψ−1 −B)−1f+〉

≥ lim
t→0

‖f+‖2

s2〈f+, (s−2Ψ−1 −B)f+〉

= lim
t→0

‖f+‖2

s2〈f+, (s−2Ψ−1 − I)f+〉
.

Taking the limit t→ 0 and using that f+ → Ψ−1/2
√
qq̃ as t→ 0 gives

lim
t→0

‖f+‖2

s2〈f+, (s−2Ψ−1 − I)f+〉
=

‖Ψ−1/2
√
qq̃‖2

s2〈Ψ−1qq̃, (s−2Ψ−11− 1)〉
.
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Then using the equalities

Ψ−1(s−2Ψ−11− 1) = Ψ−1
ϕϕ̃

s2
=

Ψqq̃

s2

gives

fn(z) ≥
∑n

i=1 Ψ−1i qiq̃i∑n
i=1 Ψiq2i q̃

2
i

. (4.21)

From the uniformity in t in Lemma 4.3, qi, q̃i are upper and lower-bounded and hence Theo-
rem 2.9–(1) is proven. �

4.3. Proof of Corollary 2.8. The proof relies on the following theorem by Friedland and Karlin:

Theorem 4.7 (Theorem 3.1, Equation (1.9) in [15]). Let M be an irreducible non-negative ma-
trix with Perron-Frobenius left and right eigenvectors u,v normalized so that

∑
i∈[n] uivi = 1 and

ρ(M) = 1. Let D be a diagonal matrix with positive entries. Then

ρ(MD) ≥
n∏
i

duivii (4.22)

Proof of Corollary 2.8. Without loss of generality we consider V such that ρ(V ) = 1. Proposition
2.7, µn gives the formula for the density at 0. By (2.6), matrix S := diag(q)V diag(q̃) is doubly
stochastic hence with spectral radius 1 and any left or right Perron-Frobenius eigenvector u or v
is proportional to 1n. In particular, the normalization

∑
i∈[n] uivi = 1 implies uivi = n−1. We now

apply Theorem 4.7 with M = S and D = (diag(q̃)diag(q))−1 to get

ρ(S (diag(q̃)diag(q))−1) ≥
∏
i∈[n]

(
1

qi(0)q̃i(0)

) 1
n

.

Since ρ(SD) = ρ((diag(q))−1 S (diag(q̃))−1) = ρ(V ) = 1, we arrive at

1 ≤
∏
i∈[n]

[qi(0)q̃i(0)]
1
n ≤ 1

n

∑
i∈[n]

qi(0)q̃i(0) ,

where the second inequality is the the AM-GM inequality. We note that equality in the final
inequality only occurs if qi(0)q̃i(0) = 1 for all i ∈ [n]. This condition can be rewritten as diag(q)−1 =
diag(q̃), which, by Remark 5.2, implies the desired form V = diag(q)−1 S diag(q) . �

5. Examples and simulations

In this section, we provide simulations for band matrix models in Section 5.1 and exhibit a model
with vanishing density and an atom at zero in Section 5.2.

5.1. Band matrix models. We illustrate Theorem 2.3 with simulations. In the case of band matri-
ces, closed-form expressions for the density seem out of reach but plots can be obtained by numerics.
We consider two probabilistic matrix models with complex entries (with independent Bernoulli real
and imaginary parts) and sampled variance profiles associated to the following functions:

Model A Model B

σ2(x, y) = 1{|x−y|≤ 1
20} σ2(x, y) = (x+ 2y)2 1{|x−y|≤ 1

10}

Clearly, the function associated to Model A yields a symmetric variance profile, admissible by
Theorem 2.4. Model B satisfies the broad connectivity hypothesis (see [13, Remark 2.8]), hence A5
(which is weaker than the broad connectivity assumption).
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Lemma 5.1. Given α ∈ (0, 1) and a > 0, consider the standard deviation profile matrix An =
(σ(i/n, j/n))ni,j=1 where σ2(x, y) = (x + ay)2 1|x−y|≤α. Then, there exists a cutoff σ0 ∈ (0, 1)

such that for all n large enough, the matrix An(σ0) satisfies the broad connectivity hypothesis with
δ = κ = cα for a suitable absolute constant c > 0.

Proof. One can take the cutoff parameter σ0 sufficiently small that the entries σij < σ0 within the
band are confined to the top-left corner of A of dimension n/100, say, at which point the argument
of [12, Corollary 1.17] applies with minor modification. �

Eigenvalue realizations for models A and B are shown on Figure 1.
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Figure 1. Eigenvalues realizations. Setting: n = 2000; the circles’ radii are
√
ρ(V ).

Up to the “corner effects”, the variance profile for Model A is a scaled version of the doubly
stochastic variance profile considered in Section 5.3. It is therefore expected that the density for
Model A is “close” to the density of the circular law.

Due to the form of the variance profile of Model B, a good proportion of the rows and columns of
the matrix Yn have small Euclidean norms. We can therefore expect that many of the eigenvalues
of Yn will concentrate towards zero. This phenomenon is particularly visible in Figure 1b.

5.2. A limiting distribution with an atom at z = 0. The following Proposition gives an
example of a variance profile with a deterministic equivalent that has an atom at zero.

Proposition 5.2 (Example with an atom and vanishing density at zero). Denote by Jm the m×m
matrix whose elements are all equal to one. Let k ≥ 1 be a fixed integer, assume that n = km
(m ≥ 1) and consider the n× n matrix

An =


0 Jm · · · Jm
Jm 0 · · · 0
...
Jm 0 · · · 0

 . (5.1)

Associated to matrix An is the sequence of normalized variance profiles Vn = 1
nAn�An with spectral

radius ρ(Vn) =
√
k−1
k . Denote by ρ∗ =

√
ρ(Vn) =

4√k−1√
k

. Then

(1) Assumptions A1 and A2 hold true.
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(2) The function Fn defined in Theorem 2.3 does not depend on n and is given by

Fn(s) = F∞(s) =
1

k

√
(k − 2)2 + 4k2s4 if 0 ≤ s ≤ ρ∗ ,

and F∞(s) = 1 if s > ρ∗. In particular, F∞(0) = 1− 2
k and lims↑ρ∗ F∞(s) = 1.

(3) The density fn(= f∞) and the measure µn(= µ∞) do not depend on n and are given by

f∞(z) =
4k

π

|z|2√
(k − 2)2 + 4k2|z|4

1{|z|≤ρ∗} ,

µ∞( dz) =

(
1− 2

k

)
δ0( dz) +

4k

π

|z|2√
(k − 2)2 + 4k2|z|4

1{|z|≤ρ∗}`(dz) .

In particular, f∞(0) = 0.

Proof of Proposition 5.2 is left to the reader.

The definition of Fn readily implies that measure µn admits an atom at zero of weight 1− 2
k since

µn({0}) = Fn(0) = 1− 2
k . This result can (almost) be obtained by simple linear algebra: Note that

rank(Yn) = rank(n−1/2An �Xn) ≤ (m− 2)k for any Xn. Indeed, since the top-right m× (k − 1)m
submatrix of Yn has row-rank at most m, its kernel, and hence the kernel of Yn, has dimension at

least m(k − 2). Therefore, µYn has an atom at zero with the weight m(k−2)
mk = 1− 2

k (at least) when
n is a multiple of k.

Remark 5.1 (Typical spacing for the random eigenvalues near zero). We heuristically evaluate the
typical spacing for the random eigenvalues in a small disk centered at zero.

µYn (B(0, ε)) '
(

1− 2

k

)
+

∫
B(0,ε)

f∞(z)`(dz)

If we remove the n
(
1− 2

k

)
= km

(
1− 2

k

)
= (k − 2)m deterministic zero eigenvalues, the typical

number of random eigenvalues in B(0, ε) is

#{λi random ∈ B(0, ε)} = n×
∫
B(0,ε)

f∞(z)`(dz) = 2πn

∫ ε

0
sh(s) ds ∝ nε4,

with h(|z|) = f∞(z). Hence, if we want the number of random eigenvalues in B(0, ε) to be of order

O(1), we need to tune ε = n−1/4 and the typical spacing should be n−1/4 near zero. On the other

hand, the typical spacing at any point z where f∞(z) > 0 is n−1/2. Notice that n−1/4 � n−1/2.
This is confirmed by the simulations which show some repulsion phenomenon at zero, cf. Figure 2.

5.3. Revisiting the circular law. Example 2.1 in [13] uses Theorem 2.3 to rederive the classical
circular law. In [13, Example 2.2] and [13, Theorem 2.4] the circular law is shown to also hold for
any doubly stochastic variance profile that satisfies Assumption A1. In both these cases the master
equations (2.1), (2.3) simplify to:

ri ≡ r =
r + t

s2 + (r + t)2
, r > 0 and qi ≡ q =

q

s2 + q2
, q ≥ 0 . (5.2)

Remark 5.2. Beyond doubly stochastic variance profiles, it is not hard to see that the circular law
also holds for any variance profile of the form DSD−1, where D is a diagonal, positive matrix and
S is a doubly stochastic matrix. Indeed, a random matrix with such a variance profile can be
represented as DCD−1, where C is a random matrix with a doubly stochastic variance profile. As
the matrices DCD−1 and C have the same eigenvalues, we see the circular law is the deterministic
equivalent for both.

We illustrate this observation by recovering a result by Aagaard and Haagerup [1, Section 4].
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Figure 2. Density f∞ and eigenvalue realizations of a 2001 × 2001 matrix for the
model studied in Proposition 5.2 in the case k = 3. A repulsion phenomenon can be
observed near zero.

Example 5.1. Let ε > 0 and consider the variance profile C̃ with entries:

σ2ij =

{
ε if i ≥ j
ε+ 1 if i < j

.

Let A be the associated standard deviation profile and consider the random matrix model n−1/2A�
X. Then its deterministic equivalent is given by µn, the uniform measure on the disk of radius

square root of ε
n

∑n−1
i=0

(
1+ε
ε

) i
n . In the limit n → ∞, the expression for the radius converges to

(1/ log(1 + 1/ε))1/2.

To prove this, we begin by conjugating the variance profile by D, the diagonal matrix with

diagonal element Dii =
(
1+ε
ε

) i−1
n . Matrix n−1DC̃D−1 is a circulant matrix with positive entries.

Since the row and column sums of a circulant matrix are all equal it follows immediately from
Theorem 2.3 and Section 5.3 that the deterministic equivalent for the ESD is uniform on a disk.
The radius of this disk follows from computing the first eigenvalue of the circulant variance profile.

Recall that by Corollary 2.8 the variance profiles given in Remark 5.2 are the only ones that yield
the circular law.

Appendix A. Proof of Lemma 4.6

Before giving the proof, we state several technical lemmas, from which the Lemma 4.6 will
immediately follow. The first step is to define the subspace on which the inverse (I −TF )−1 is not
bounded.

Lemma A.1. Let V−1 be spanned by eigenvectors of F with eigenvalues in (−1,−1 +Ct], that are

additionally of the form

(
x
−x

)
+ ~w, where ‖~w‖ < 2‖ε(t)‖ and C and ε(t) are from in Lemma 4.5.

Then the subspace V−1 is spanned by f−.

Proof. From Lemma 4.5, we have that f− is an eigenvector of F , within an ‖ε(t)‖ distance of

Ψ−1/2
√
~r~̃re−. Now we show f− spans V−1 . Let ~y =

(
y
−y

)
+

(
w
w̃

)
∈ V−1 be a unit vector. The

block structure of F , then implies Fy = y +w + F w̃. The irreducible matrix F has non-negative
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entries, with norm 1− ct and and spectral radius also tending to 1 as t→ 0. Additionally y, up to
an 4‖ε(t)‖ error, saturates this norm bound, so we must have that y = y1 +y2, where the entries of
y1 have the same sign and ‖y2‖ = C1‖ε(t)‖. Otherwise, setting the entries equal to their absolute
values would give a bigger norm. Finally, as the vectors f− and ~y are both C1‖ε(t)‖ away from
vectors who each have the same sign, we conclude they cannot be orthogonal for all small t, and
therefore f− spans V−1 . �

To prove Lemma 4.6, we will use the following identity to bound (I − FT )−1W1:

(I − FT )−1~x =
1

2
~x+ (I − FT )−1

(
FT ~x+ ~x

2

)
(A.1)

or any vector ~x. We will apply this identity with ~x =
(
FT+I

2

)k
W1, for k a non-negative integer.

We now bound the inner product of the final term and f−. Afterwards, we show this is an effective
bound.

Lemma A.2. For any positive integer k,

∣∣∣∣∣
〈
f−,

(
FT + I

2

)k
W1

〉∣∣∣∣∣ ≤
∣∣∣∣∣
〈
f−,

(
FT + I

2

)k−1
W1

〉∣∣∣∣∣+ ‖ε(t)‖

∥∥∥∥∥
(
FT + I

2

)k−1
W1

∥∥∥∥∥ (A.2)

≤ |〈f−,W1〉|+ ‖ε(t)‖
k−1∑
j=0

∥∥∥∥∥
(
FT + I

2

)j
W1

∥∥∥∥∥ .
Furthermore,

|〈f−,W1〉| ≤ ‖ε(t)‖‖W ‖ .

Proof. We will prove the inequality in the first line of (A.2), the second line follows by inductively
applying the first line.

〈
f−,

(
FT + I

2

)k
W1

〉
=

〈(
TF + I

2

)
f−,

(
FT + I

2

)k−1
W1

〉

= ‖F ‖

〈
f−,

(
FT + I

2

)k−1
W1

〉
+ ‖F ‖

〈(
I − T

2

)
ε(t),

(
FT + I

2

)k−1
W1

〉
where we use that

TF f− = −‖F ‖T f− = ‖F ‖f− + ‖F ‖(I − T )ε(t)

then the desired inequality follows by applying the Cauchy-Schwarz inequality to the second term.
The inner product between W1 and f− is bounded using (4.16) along with the identity∑
ri =

∑
r̃i:

|〈W1, f−〉| = |〈r, 1〉 − 〈r̃, 1〉+ 〈W1, ε(t)〉| ≤ ‖ε(t)‖‖W ‖.
�

We now show that final term in the identity (A.1) will have smaller norm than vector on the left
side.

Lemma A.3. There exist a constant c > 0 such that, for each non-negative integer k, we have∥∥∥∥∥
(
FT + I

2

)k
W1

∥∥∥∥∥ ≤ (1− cε)k ‖W ‖ .
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Proof. We prove this lemma by induction. If k = 0 the lemma is trivial. Let k > 0 and let

~x =
(
FT+I

2

)k−1
W1. By the induction hypothesis we have∥∥∥∥∥

(
FT + I

2

)j
W1

∥∥∥∥∥ ≤ (1− cε)j ‖W ‖

for all 0 ≤ j ≤ k − 1.

∥∥∥∥(FT + I

2

)
~x

∥∥∥∥2 =
1

4

(
‖~x‖2 + ‖FT ~x‖2 + 2〈FT ~x, ~x〉

)
. (A.3)

We bound the second term by ‖FT ~x‖ ≤ ‖F ‖‖T ‖‖~x‖ ≤ ‖~x‖. Let ~x = f−〈f−, ~x〉 + ~x′ be the
orthogonal decomposition of ~x onto f− and its orthogonal complement. Then we expand the final
term as

〈FT ~x, ~x〉 = 〈FT ~x, ~x′〉+ 〈FT ~x, f−〉〈~x, f−〉 = 〈FT ~x′, ~x′〉+ 〈FT f−, ~x′〉〈~x, f−〉+ 〈FT ~x, f−〉〈~x, f−〉.

which we bound by

− ‖~x‖2 ≤ 〈FT ~x, ~x〉 ≤ 〈T ~x′,F ~x′〉+ 2‖~x‖‖f−‖〈~x, f−〉 . (A.4)

From the induction hypothesis along with Lemma A.2 we have

|〈f−, ~x〉| ≤ 2‖ε(t)‖
k−2∑
j=0

(1− cε)j ‖W1‖ ≤ 2

c ε
‖ε(t)‖‖W1‖ . (A.5)

To bound 〈T ~x′,F ~x′〉, let ~x′ = ~x1 + ~x2 where ~x1 is the projection onto the eigenspace of T cor-
responding to the eigenvalue −1, and ~x2 is the projection onto the remaining eigenspaces. We
now consider two cases based on the size of ‖~x2‖ compared to ‖~x‖. In what follows c1 will be an
appropriately chosen small constant depending only on ε. Case I. If ‖~x2‖ ≤ c1‖~x′‖ then we begin
by expanding:

〈T ~x′,F ~x′〉 = −〈~x1,F ~x1〉+ 〈T ~x2,F ~x1〉+ 〈T ~x′,F ~x2〉 . (A.6)

To bound −〈~x1,F ~x1〉 from above we project ~x1 onto f− and its orthogonal complement. By choice
of c1, we will make the projection onto f− small. We will bound the orthogonal term by using

that it is of the form

(
x
−x

)
+ ~w and thus not in V−1. Indeed, for c1 is chosen sufficiently small

(compared to ε)

|〈~x1, f−〉| = |〈~x′, f−〉 − 〈~x2, f−〉| ≤ 0 + c1‖~x‖‖f−‖
and then

−〈~x1,F ~x1〉 = −〈~x1,F f−〉〈~x1, f−〉 − 〈~x1,F (~x1 − 〈~x1, f−〉f−)〉 ≤ c1‖~x′‖2‖f−‖2 + (1− ε)‖~x′‖2.

So we have that there exist a constant c2 such that

−〈~x1,F ~x1〉 ≤ (1− c2 ε)‖~x′‖

and if c1 is chosen smaller, then c2 can be chosen closer to 1. Then continuing from (A.6) gives:

〈T ~x′,F ~x′〉 ≤ (1− c2 ε)‖~x′‖2 + 2‖~x′‖‖~x2‖.

Thus, for a sufficiently small choice of c1, there is a c3 such that

〈T ~x′,F ~x′〉 ≤ (1− c3 ε)‖x‖2. (A.7)

Case II: If ‖~x2‖ > c1‖~x‖ From the bound ‖T ~x2‖ ≤ (1− ε)‖~x2‖, we have that

〈T ~x′,F ~x′〉 ≤
√
‖T ~x1‖2 + ‖T ~x2‖2‖~x′‖ ≤

√
‖~x1‖2 + (1− ε)‖~x2‖2‖~x′‖ ≤

√
1− c21 ε‖~x

′‖2.
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Choosing c′ to be the smaller of the bounds between the two cases, we have for any possible ~x′

〈T ~x′,F ~x′〉 ≤ (1− c′ ε)‖x‖2. (A.8)

So for all t sufficiently small, combining (A.4), (A.5), and (A.8) gives for some constant c4:

−‖~x‖2 ≤ 〈FT ~x, ~x〉 ≤ (1− c4 ε)‖~x‖2.
Substituting these estimates into (A.3) gives, that there exist a c such that∥∥∥∥(FT + I

2

)
~x′
∥∥∥∥ ≤ (1− c ε)‖~x′‖.

as desired. �

Proof of Lemma 4.6. By taking the adjoint and then applying the Cauchy-Schwarz inequality we
have ∣∣∣〈Ψ1/2W1 , Ψ−1/2(I − TF )−1Ψ1/2

√
~r~̃r
〉∣∣∣ ≤ ‖(I − FT )−1W1‖

∥∥∥∥Ψ1/2

√
~r~̃r

∥∥∥∥ .
Then applying (A.1) iteratively gives:

(I − FT )−1W1 =
∞∑
k=0

(
I + FT

2

)k 1

2
W1 .

Then applying Lemma A.3 we have

‖(I − FT )−1W1‖ ≤ ‖W1‖
∞∑
k=0

(1− c ε)k .

The desired inequality then follows. �
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