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3

Summary 4

The system formed by a trumpet player and his/her instrument can be seen as a non-linear dynamical 5

system, and modeled by physical equations. Numerical tools can then be used to study these models and 6

clarify the influence of the model parameters. The acoustic input impedance, for instance, is strongly 7

dependent on the geometry of the air column and is therefore of primary interest for a musical instrument 8

maker. In this study, a method of continuation of periodic solutions based on the combination of the 9

Harmonic Balance Method (HBM) and the Asymptotic Numerical Method (ANM), is applied to a physical 10

model of brass instruments. It allows the study of the evolution of the system where one parameter of the 11

model (static mouth pressure) varies. This method is used to compare different B[ trumpets on the basis of 12

two descriptors (hysteresis behavior and dynamic range) computed from the continuation outputs. Results 13

show that this methodology enables to differentiate instruments in the space of the calculated descriptors. 14

Calculations for different values of the lip parameters are also performed to confirm that the obtained 15

categorization is independent of variations of lip parameters. 16

I Introduction 17

In wind instruments, where the basic mechanisms of sound production have been well described in the literature 18

[1–3], the modeling of the dynamical system formed by the {player - instrument} couple has been a research 19

topic of growing interest. In brass instruments, the lip excitation mechanism is commonly modeled by a simple 20

one-degree-of-freedom mechanical oscillator, non-linearly coupled to the air-column of the instrument by a flow 21

model [4–6]. More advanced representations of this model have been considered by concentrating on the fluid- 22

structure interaction between the air-jet and the lips [7], the number of degrees of freedom for the lips [8,9], the 23

acoustical interaction with the upstream airways [10, 11], or the nonlinear propagation inside the bore of the 24
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instrument [12–14].25

The nonlinear dynamical system formed by the couple {player - instrument} can then be studied by numerical26

methods allowing to characterize the behavior of the system. In wind instruments, Linear Stability Analysis27

(LSA) allows to determine the linear oscillation threshold of the instrument with respect to the quasi-static28

mouth pressure for instance [15–17]. More recently, continuation methods have been applied to the study of29

woodwind musical instruments, allowing to calculate bifurcation diagrams that provide a global view of the30

behavior of the instrument (stability of the different periodic regimes, change of regime, etc.) [18].31

Meanwhile, music instrument makers have been interested in the contribution of scientific methods to the32

development of acoustic wind instruments. This particularly requires a more advanced understanding of the33

relationships between certain design choices (geometry of the air column, material) and the behavior of the34

{player - instrument } system. These questions are also triggered by the emergence of new materials and35

manufacturing processes, that provide new possibilities with regards to the design of music instruments, and36

which acoustical and vibroacoustical effects remain to be clarified.37

The question of correlating design attributes to players perceptual experience of an instrument is not new38

in the musical acoustics literature. Several studies attempt to provide answers to that complex problem with39

more or less success [19]. Another complementary approach consists of extracting objective descriptors from40

measurements, with the aim to categorize and highlight differences between instruments on the basis of more41

advanced or meaningful indicators [20–22], the underlying assumption being that these indicators may then42

be easier to correlate to perceptual data. Some studies have followed this strategy, particularly in string43

instruments. More specifically, these studies were able to provide quantitative descriptors allowing comparisons44

of instruments based on global mechanical parameters of the body [20], specific features extracted from the45

bridge admittance [21], or the emergence of inharmonic body components in plucked sounds [22]. In one study,46

the proposed descriptors could be correlated to a perceptual classification proposed by the manufacturer, but47

these results could hardly be generalized to a larger pool of evaluators [21]. In brass instruments, some work was48

conducted on the trumpet using physical modelling and frequency-domain simulations in order to investigate49

differences in tuning and timbre between different instruments [23]. The results were compared with controlled50

perceptual listening tests, showing the ability of the simulated sound to replicate some differences produced in51

real playing conditions, especially in terms of tuning.52

Finally, addressing this problematic is particularly motivated by the important similarities that can be53

observed between instruments when looking at their acoustic characteristics. Figure 1 represents the input54

impedance of two high-end B[ trumpets developed and commercialized by two different makers. The differences55

between these curves are relatively small despite perceived differences reported by the players, and reflect small56

differences in the geometry of the air columns. These small differences are also visible in the modal parameters57

extracted by the modal analysis described in SectionB (cf. Fig. 2).This observation hence confirms the need58

for methods and strategies suitable to highlight differences between instruments, as well as capable of providing59
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quantitative indicators that can be more easily connected to the performance of the instrument. We remind 60

that the effects of the bore material and bore vibrations include a potential vibro-acoustic coupling with the 61

air-column that, if it occurs, is included in the impedance [24]. Other effects, such as radiation of the wall or 62

mechanical coupling with the player are not considered here. 63
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Figure 1: (Color online) Input impedance normalized by the characteristic impedance of two B[ trumpets
(two curves per trumpet) from two different makers. Measurement (top), reconstruction after modal analysis
(bottom).
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Figure 2: Modal parameters extracted from the measured impedances of two B[ trumpets (two measurements
per trumpet).

Therefore, the aim of this study is to apply a numerical continuation method to a physical model of brass 64

instrument, with the objective of extracting quantitative descriptors allowing to categorize a number of high-end 65

B[ trumpets, on the basis of descriptors connected to playing attributes. This paper is organized as follows: 66

the physical model of the system is presented in Section 2, the fundamentals of the continuation method used 67

in this study is provided in Section 3. Results and discussions are presented in Sections 4 and 5. 68
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II Physical model of a trumpet69

A Equations of the model70

The model chosen in order to describe the non-linear dynamical system {player - instrument} is based on three71

ingredients: 1) a mechanical equation describing the dynamics of the lips excitation; 2) an acoustic equation72

describing the linear acoustical behavior of the air column; 3) a flow equation coupling the two previous elements.73

Figure 3: One-dof lip model with mass M , stiffness k, damping c and lip position at rest y0: k = Mω2
l ,

c = Mωl/Ql.

The model chosen for the lips is a one-dof outward striking model (Fig. 3) described by the following second-74

order differential equation, used in previous studies [5, 6, 17]:75

ÿ +
ωl
Ql
ẏ + ωl

2(y − y0) =
1

µl
(p0 − p(t)), (1)

where y is the vertical position of the lips, y0 is the lip position at rest, ωl is lip resonance frequency (in radians/s),76

Ql is the lip Q factor, µl is the lip mass per unit surface area, and p and p0 are the downstream (mouthpiece)77

and upstream (mouth) pressure, respectively. The pressure difference across the lips generates a volume flow78

u(t) at the input of the instrument. Considering a quasi-stationary flow with dissipation of the kinetic energy79

of the jet and no pressure recovery in the mouthpiece, and under the hypothesis of an uncompressible fluid, the80

volume flow u(t) can be simply calculated using the Bernoulli theorem:81

u(t) =

√
2|p0 − p|

ρ
· b · sign(p0 − p(t)) · θ(y(t)), (2)

where b is the lip opening width assumed to be constant, sign(p0 − p(t)) = −1 if (p0 − p(t)) is negative and +182

otherwise, and where θ = |y|+y
2 is the Heaviside function which is used to force the flow u(t) to zero if y(t) is83

negative. This condition on u(t) when y(t) < 0 is motivated by the intention to keep the model simple (with a84

limited number of parameters), without having to include a model of contact when the lips completely close.85

The acoustical behavior of the instrument is described by its frequency-domain input impedance Z(ω) = P (ω)
U(ω)86
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which linearly relates the volume flow U(ω) and pressure P (ω) at the input of the instrument. The input 87

impedance is here represented by considering a mathematical pole-residue model of N poles sk and residues 88

Ck, corresponding to the N different acoustic modes (we refer here to the different resonances induced by the 89

plane-wave mode) of the air column [25]: 90

Z(ω) = Zc

N∑
k=1

Ck
jω − sk

+
C∗k

jω − s∗k
, (3)

where C∗k and s∗k stand for the complex conjugates of Ck ad sk respectively. Each complex pressure component 91

Pk(ω) is then calculated such as: 92

Pk(ω) = Zc
Ck

jω − sk
U(ω), (4)

which in the time domain writes as follows: 93

ṗk(t) = ZcCku(t) + skpk(t). (5)

It can be shown that, because of the hermitian symmetry property of the volume flow, the acoustic pressure 94

in the mouthpiece p(t) is given by the following relation [25]: 95

p(t) = 2

N∑
k=1

<(pk(t)). (6)

B Modal parameters of the impedance 96

In order to estimate the modal coefficients Ck and sk used in Eq. 5, modal analysis (using a high-resolution 97

subspace method [28]) is applied to the input impedance of the trumpets, measured using an impedance sensor. 98

The N poles sk and residues Ck extracted by the high-resolution analysis then become inputs of the physical 99

model. The input impedance is measured in open fingering (no valve pressed) using a sensor developed and 100

commercialized by the Center of Technology Transfer of le Mans (CTTM) and based on a back-cavity method 101

[26]. The same mouthpiece is used for all trumpets measured in this study. The input impedance is measured 102

from 20 Hz to 2 kHz and the frequency axis corrected to 27◦C, an estimate of the temperature inside the 103

instrument [27]. The complex frequency-domain impedance obtained is then converted into a time-domain 104

impulse response h(t) as follows: 105

1. Low-frequency logarithmic interpolation of the real part of the input impedance <(Z), and linear inter- 106

polation of the imaginary part of the input impedance =(Z) down to 0 Hz. 107

2. High-frequency interpolation of <(Z) and of =(Z) between 2kHz and 4 kHz, so that <(Z) is constant and 108

=(Z) decreases linearly. 109
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3. Z is made hermitian: Z(−ω) = Z̄(ω).110

4. Inverse Fourier transform is applied.111

The low-frequency interpolation process is illustrated in Fig.4. For the real part of Z, a section of the measured112

impedance is selected and smoothed by a moving average filter between 40 Hz and 60 Hz (red line in Fig.4).113

This section is then used to perform a logarithmic interpolation down to 0 Hz, which guarantees <(Z) > 0 at114

0 Hz, as it is expected (flow resistance). For the imaginary part, a simple linear extrapolation is performed from115

20 Hz to 0 Hz with the constraint =(Z) = 0 at 0 Hz.116
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Figure 4: (Color online) Low-frequency interpolation of the real part (top) and imaginary part (bottom) of Z,
blue: measured Z, green: interpolated Z, red: smoothed section of Z used for the extrapolation of <(Z).

The modal parameters Ck and sk are then extracted from the impulse response h(t) using the high resolution117

subspace method ESPRIT [28]. The modal parameters are related to the impulse response as follows:118
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h(t) = 2<
{
Zc

N∑
k=1

Ckeskt
}

(7)

The order of the analysis (number of poles considered for the analysis) is estimated using the ESTER criterion 119

[29]. For the trumpets analyzed in open fingering (no valve pressed), the number of modes considered varies 120

between 11 and 12 modes depending on the instrument. For more details about the application of ESPRIT- 121

ESTER to modal analysis, the reader is invited to refer to [20,22,30]. 122

An example of measured and reconstructed impedance using Eq. 3 on the basis of 11 complex modes is 123

presented in Fig. 5. The amplitude difference between the measured and reconstructed impedances remains 124

below 2.5% across the frequency range of interest [0 - 2kHz]. 125
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Figure 5: (Color online) Reconstructed input impedance of a trumpet after modal analysis (red), original
measured impedance (dashed black), difference between reconstructed and measured (solid black).

III Numerical continuation method 126

Numerical continuation methods allow to follow solutions of a nonlinear dynamical system with respect to a 127

parameter of the system. Also refereed to as “path-following methods”, they allow computation of branches 128

of solutions of the system instead of a single solution point. Different continuation methods exist, based on 129

different approaches for the computation of the solution branches (AUTO, MANLAB) [31,32]. In this work, we 130

choose to work with the Asymptotic Numerical Method (ANM) [33] implemented in the software MANLAB [32]. 131

This method is based on the expansion of the solutions under the form of truncated Taylor series, providing 132

analytical formulations of the branch of solution. 133
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Recently, this method has been associated to the Harmonic Balance Method (HBM) for the search of periodic134

solutions of oscillating systems [34]. Indeed, the HBM, based on the Fourier series expansion of the unknowns135

of the system, allows the physical model to be recast into an algebraic system of equations, where the unknowns136

are the Fourier coefficients of each variable [35,36] and the oscillation frequency. This is particularly interesting137

for auto-oscillating instruments, where periodic solutions correspond to playable notes likely to be produced by138

the player. Moreover, MANLAB allows for computation of the stability of the branches, Hopf and Neimark139

Sacker bifurcations, allowing to provide important information on the behavior of the system. For more details,140

the reader is invited to refer to the specific literature on the subject [37,38].141

One requirement of MANLAB relies on the recast of nonlinearities of the model into, at most, quadratic142

nonlinearities. The complete model considered can be written as follows:143


ÿ(t) + ωl

Ql
ẏ(t) + ωl

2(y(t)− y0) = 1
µl

(p0 − p(t))

Rk = <(ṗk(t)) = <(ZcCku(t) + skpk(t)),∀k ∈ [1, N ]

Ik = =(ṗk(t)) = =(ZcCku(t) + skpk(t)),∀k ∈ [1, N ]

(8)

with p(t) = 2
∑N
k=1<(pk(t)) and u =

√
2|p0−p|

ρ b · sign(p0 − p) · θ(y), and θ(y) = |y|+y
2 .144

This system of equations can be made dimensionless by introducing the following variables:145



x = y
y0

PM = µlωl
2y0

γ = p0
PM

p̃ = p
PM

R̃k = Rk

PM

Ĩk = Ik
PM

ũ = u Zc

PM

ṽ = v√
2PM/ρ

ζ = Zcby0
√

2
ρPM

t̃ = t=(s1)

ω̃l = ωl

=(s1)

C̃k = Ck

=(s1)

s̃k = sk
=(s1) .

(9)

The following dimensionless system is then obtained:146
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˙̃Rk = <(C̃kũ+ s̃kp̃k),∀k ∈ [1, N ]

˙̃Ik = =(C̃kũ+ s̃kp̃k),∀k ∈ [1, N ]

1
ω̃l

˜̇x = z̃

1
ω̃l

˜̇z = (1− x− 1
Ql
z̃ + γ − p̃),

(10)

with p̃ = 2
∑N
k=1<(p̃k), ũ = ζ (|x|+x)

2 ṽ and ṽ =
√
|γ − p̃| · sign(γ − p̃). 147

The nonlinearities in ṽ is treated as follows [39]: 148

ṽ|ṽ| = γ − p̃. (11)

Moreover, the absolute values can be handled by considering auxiliary variables w ' |ṽ| and s ' |x|, and 149

regularizing the absolute values using hyperbolic functions such as: 150


w2 = ṽ2 + εv

s2 = x2 + εx,

(12)

with 0 < εv << 1 and 0 < εx << 1, the regularization constants. In the following, εv = εx = 10−3. 151

The final system then writes as follows: 152



˙̃Rk = <(C̃k)ũ+ <(s̃k)R̃k −=(s̃k)Ĩk,∀k ∈ [1, N ]

˙̃Ik = =(C̃k)ũ+ =(s̃k)R̃k + <(s̃k)Ĩk,∀k ∈ [1, N ]

˜̇x = ω̃lz̃

˜̇z = ω̃l(1− x− 1
Ql
z̃ + γ − p̃),

(13)

with the auxilary equations: 153



0 = 2
∑N
k=1 R̃k − p̃

0 = x2 + εx − s2

0 = γ − p̃− ṽw

0 = ṽ2 + εv − w2

0 = ζ (s+x)
2 ṽ − ũ.

(14)

Equations in systems 13 and 14 constitutes the final form of dimensionless and quadratic model implemented 154

in MANLAB. 155
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IV Results156

A Results for one trumpet157

One of the main difficulties in applying the physical model is the choice of the parameter values of the lip model.158

Following recent literature on the subject [17], we choose the following values of the physical parameters:159



Ql = 3

µl = 2 kg.m−2

y0 = 0.1 mm

b = 8 mm

(15)

1 Linear Stability Analysis160

The natural frequency of the lips ωl is estimated by Linear Stability Analysis (LSA) so that the excited regime161

is a B[4 (f0 ' 470 Hz), and the mouth pressure at the oscillation threshold is minimum. The top plot of162

Fig. 6 represents the mouth pressure at oscillation threshold, p0min
, with respect to the lip natural frequency163

fl, obtained by LSA. The bottom part of the figure represents the frequency of the periodic regime at the164

threshold. For the B[4 regime (corresponding to the 4th peak of the input impedance), the threshold pressure165

follows a “U-shaped” curve with a local minimum. We consider that this local minimum corresponds to a166

“sweet spot” where the player will preferably try to play at onset (point of minimal blowing pressure). Indeed167

we may reasonably expect the player to adapt his/her embouchure (lip parameters) in order to minimize the168

blowing static pressure he/she has to produce to produce sound. We then choose the corresponding lip natural169

frequency for the rest of the calculations. Note that this assumption (constant lip frequency from sweet spot) is170

certainly an important simplification of the reality; for a same note, players may vary the lip natural frequency171

with dynamics, timbre, intonation, etc. However for the sake of simplifying this complex problems, and with172

the goal of comparing instruments, we follow this assumption and procedure for all instruments.173

2 Continuation of periodic branches174

Figure 7 represents the bifurcation diagram (peak-to-peak amplitude of p with respect to p0), of the periodic175

branch of solution obtained for a B[4 for trumpet A, obtained by the Asymptotic Numerical Method using176

MANLAB. For this trumpet, the lip natural frequency is set as defined previously to fl = ωl/2π = 382.18 Hz.177

As expected for an outward-striking lip model, the lip natural frequency is smaller than the oscillation frequency178

of the corresponding regime [2]. Some markers indicate specific landmarks: the Hopf bifurcation point (©), the179

fold (5), the amplitude of p at the Hopf bifurcation (4) and at a 5 kPa reference for p0 (�). This reference180

value of 5 kPa is considered as a reasonable upper limit for B[4 as measured in trumpet players’ mouth [39,40].181

The values of p and p0 are derived from dimensionless variables as follows:182



Fréour et al., p. 11

320 340 360 380 400 420

2

3

4

5

6

7

8

320 340 360 380 400 420

450

500

550

600

Figure 6: (Color online) Results from Linear Stability Analysis applied to trumpet A for the fourth regime
(B[4): linear threshold pressure (top), fundamental frequency at threshold (bottom). The circle indicates the
local minimum in threshold pressure for this regime, found for fl = 382.18 Hz.


p = p̃ · PM

p0 = γ · PM
(16)

A Hopf bifurcation appears around p0 = 2.2 kPa. The bifurcation diagram shows an inverse bifurcation with 183

a first part of the branch going on the left of the diagram and being unstable until it reaches a fold. This fold 184

is characterized by a change of stability towards a stable section that evolves almost linearly with the static 185

mouth pressure p0. 186
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This type of behavior is not surprising for a brass instrument. Indeed, the inverse bifurcation induces an187

hysteresis that brass players are usually familiar with: it is easier to play a very quiet sound by decreasing188

p0 while a sustained regime is already established, rather than starting a note very quietly. Another way to189

interpret this result is to consider a crescendo-decrescendo maneuver (sustained note with increase and decrease190

of loudness). The path followed by the musician in the bifurcation diagram is shown in Figure 8. After reaching191

the Hopf point at p0 = 2.2 kPa, the musician “jumps” on the stable periodic branch where sound starts192

(|p| > 0). The musician can increase loudness by increasing the static mouth pressure p0. When decreasing p0,193

the musician follows the same branch in opposite direction, down to the fold, and is therefore able to reach a194

smaller dynamic (loudness) than in the early crescendo phase (hysteresis phenomenon). If the musician further195

decreases the mouth pressure, sound will stop since there is no stable periodic branch below that fold point.196

From this output from continuation it is possible to define some descriptors that characterize important197

features of the obtained bifurcation diagram:198

• The “amplitude of the hysteresis” H is defined as the horizontal distance between the5 and4 landmarks.199

This quantity is linked to the playing phenomenon explained above, that can be also interpreted as the200

difference between onset and offset pressures (mouth pressure and internal acoustic pressure).201

• The “dynamic range” D is defined as the vertical distance between the 5 and � landmarks. It reflects202

how much the internal sound pressure can vary when the player produces a blowing pressure up to 5 kPa.203
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Figure 7: (Color online) Bifurcation diagram (peak-to-peak amplitude of p with respect to p0) of the periodic
branch of solution for a B[4 (470Hz). The dotted line indicates the unstable part of the solution branch,
while the solid line indicates the stable part of the branch. ©: Hopf bifurcation, 5: fold, 4: |p| at the Hopf
bifurcation, �: |p| at 5 kPa.
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Figure 8: (Color online) Path followed by the musician during a slow crescendo-decrescendo. Black arrows:
crescendo phase. Red arrows: decrescendo phase. This figure illustrates the fact that the smallest loudness can
be achieved at the end of a decrescendo (hysteresis phenomenon).

B Results for multiple trumpets 204

The main objective ot this work is to compare different B[ trumpets on the basis of results obtained by 205

continuation. The reconstructed input impedance (after modal analysis) of the eight trumpets considered in 206

this study are represented in Fig. 9. These eight trumpets are all different high-end models chosen in the 207

catalogs of three makers (five different models from a first maker, two different models from a second maker, 208

one model from a third maker). The same mouthpiece was used for all impedance measurements. The tuning 209

slides of the instruments were adjusted by blowing tests before the measurements. To illustrate the differences 210

between instruments, the modal parameters of the fourth mode are given in Table 1 for each trumpet, where 211

s4 = −α4 + jω4 with α4 the damping coefficient and ω4 the angular frequency of the 4th acoustic mode. The 212

mean and standard deviation of the modal parameters across trumpets are also provided in Table 1, shedding 213

more light on the small variability in the modal parameters between the instruments. Furthermore, as shown 214

in Fig. 10, reconstructed input impedances (from the modal parameters extracted by ESPRIT) transcribe very 215

well the differences observed in the measurements. This confirms the precision of our measurements and modal 216

analysis procedures for the purpose of this comparison. 217

The computation of the periodic branch of solution for a B[4 is performed for seven B[ trumpets (B, C, D, E, 218

F, G, H) in the same conditions as for trumpet A: the lip parameters are set to the same values, except for ωl that 219

is set to the “sweet spot” value identified by a preliminary LSA calculation, the modal parameters describing the 220

input impedance of the instrument are adapted according to the trumpets. The values of fl = ωl/2π are given 221
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α4 f4 = ω4

2π |C4| fl = ωl

2π
(s−1) (Hz) (Pa.m−3) (Hz)

TP A (1) 34.02 462.98 2445.2 382.18
TP A (2) 34.14 463.75 2451.6 382.38
TP B (1) 34.05 463.50 2285.3 377.95
TP B (2) 33.99 463.48 2281.9 377.75
TP C (1) 33.96 462.80 2252.7 377.31
TP C (2) 33.93 462.51 2254.1 376.94
TP D (1) 34.30 464.21 2361.0 380.97
TP D (2) 34.36 464.58 2369.9 381.09
TP E (1) 34.33 466.15 2409.2 381.07
TP E (2) 34.04 466.01 2399.4 380.85
TP F (1) 34.97 467.55 2489.7 385.09
TP F (2) 35.04 467.53 2492.2 385.08
TP G (1) 34.82 466.38 2381.5 382.36
TP G (2) 34.80 466.08 2383.8 382.15
TP H (1) 33.86 464.39 2216.3 377.43
TP H (2) 33.75 463.34 2222.4 376.92

MEAN 34.27 464.70 2356.0 380.47
STD 0.41 1.67 92.66 2.77

Table 1: Modal parameters for the fourth mode of the input impedance of each trumpet, lip natural frequency
at “sweet spot” obtained by LSA. The last two rows indicate the mean and standard deviation across trumpets.

Figure 9: (Color online) Reconstructed input impedance of the eight trumpets analyzed.

in Table 1. The obtained bifurcation diagrams are presented in Fig. 11. For each trumpet, two calculations222

are performed from two repetitions of the impedance measurement, performed non-consecutively. This aims223

at performing a basic check that the variability in the impedance measurements is smaller than the variability224

across instruments.225
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Figure 10: (Color online) Zoom on the fourth peak of the input impedance of the eight trumpets. Measured
(top) and reconstructed from extracted modal parameters (bottom).

Figure 11: (Color online) Bifurcation diagram (peak-to-peak amplitude of p with respect to p0) of the periodic
branch of solution for a B[4 (470Hz) and for 8 trumpets (two impedance data for each trumpet).

Differences between the different trumpets can be observed in the bifurcation diagrams represented in Fig. 11. 226

These are visible at the different landmarks: Hopf point, fold, and location of the periodic branch, although 227

some instruments show almost overlapping periodic branches. The hysteresis H and dynamic range D are 228
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extracted for each diagram.229

Each trumpet analyzed is represented by two dots in the 2D space formed by these two descriptors. The230

result is presented in Fig. 12. The variability in the impedance within each trumpet is small enough so that231

clear differences appear between the instruments in this two-dimensional space. Variations across trumpets are232

about 58% of the maximum value for H (comprised between 0.25 and 0.59 kPa) and 14% of the maximum233

value for D (comprised between 8.4 and 9.8 kPa). From the performance perspective, we may conjecture that234

an instrument on the top-right corner will show larger sensitivity to blowing pressure in terms of dynamics235

and important difference between onset and offset pressures, while an instrument on the bottom left will be236

less sensitive to mouth pressure and present less difference between onset and offset pressures. Note that the237

question of the threshold of perceptible differences by trumpet players is beyond the scope of this study.238

Figure 12: (Color online) Clustering of 8 trumpets (two impedance data for each trumpet) in the space (H,D)
for a B[4 (470Hz), obtained from bifurcation diagrams.

C Sensitivity of the results to lip parameters239

In brass instruments, the excitation mechanism relies on the vibrations of the lips of the players, that is on240

human tissues, with shape and mechanical properties likely to vary from one player to another. The issue241

of generalizing these numerical results to other embouchure configurations is therefore important in order to242

confirm the calculated differences between instruments.243

As explained in previous sections, the results of Fig. 12 are obtained for a same set of values of the lip244

parameters (Ql, µl, y0, b). The physical model constructed is non linear, there is therefore no guarantee that245

the calculated differences between instruments are robust to variations of the lip parameters. To address this246
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issue, 20 “virtual players”, each defined by a set of lip parameters, are generated by random variations of {Ql, µl, 247

y0} within ±10% of the values used in previous section (±10% is expected to represent inter-player variability), 248

while {b, ωl} are kept constant. Figure 13 illustrates the dispersion of the lip-parameter values for the 20 virtual 249

players. 250

Figure 13: (Color online) Lip model parameters {Ql, µl, y0} of the 20 virtual players generated.

Each virtual player is applied to each impedance and the corresponding bifurcation diagram is calculated in 251

the same conditions as in previous section. For illustration, all the diagrams obtained are represented in Fig. 252

14. The hysteresis H and dynamic range D are extracted for each diagram and used to locate each result in a 253

two-dimensional space. For each impedance, the means of H and D are calculated across the 20 virtual players. 254

The results are plotted in Fig. 15 and 16, where the transparent dots indicate the results from each diagram, 255

and the plain dots correspond to the means across the virtual players for each impedance. In Fig. 15, although 256

the clouds for each trumpet have roughly the same shape, they appear distorted in different ways depending 257

on the instruments. They are also “centered” at different locations for each instrument. The differences in the 258

mean values are clearly visible in Fig. 16. 259

Introducing variability in the lip parameters leads to variations of H of 94% of the maximum value, and 260

variations of D of 43% of the maximum value. 261

A zoom on the mean values obtained is presented in Fig. 17. The cluster obtained is qualitatively very 262

similar to the one of Fig. 12 obtained with a single set of lip parameters: the values of H remain within 0.31 263

and 0.71 kPa that is a variation of 56 % of the maximum value, while the values of D are found within 8.0 and 264

9.6 kPa, that is a variation of 17 % of the maximum value. 265

Therefore, one can say the cluster provided by the mean values agrees with the calculation of previous section 266
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Figure 14: (Color online) Bifurcation diagrams (peak-to-peak amplitude of p with respect to p0) of the periodic
branch of solution for a B[4 (470Hz), for 20 virtual players applied to 8 trumpets (two impedance data for each
trumpet). For faster computation, the stability of the branches was not computed.

with a single set of lip parameters. This supports the hypothesis that the obtained trumpet categorization267

is robust to the variations of the lip parameters in this space of descriptors. In other words, the numerical268

categorization obtained by our procedure seems dominated by the influence of the trumpets, and not dependent269

on the lip parameters.270

V Discussion and conclusions271

Understanding differences perceived by players between different instruments with slight design variations is272

a difficult problem. What we can call a “hybrid” physical model”, where modal parameters extracted from a273

measurement of the instrument input impedance are used as input of the model, might contribute to solve this274

question. Indeed, some advanced numerical methods provide attractive tools to analyze in depth the dynamical275

system formed by the {player - instrument} model, and extract information that we hope to be more closely276

related to the performance of the instrument.277

In this study, we combined and adapted different technologies (High Resolution modal analysis, Linear Sta-278

bility Analysis, numerical continuation by HBM and ANM) in order to build and analyze a physical model of279

trumpet in different configurations. The application of the ANM, to our knowledge one of the first to a brass280

instrument model after the work of Velut [39], allows to calculate bifurcation diagrams from which descriptors281

(hysteresis and dynamic range) related to the performance of the instrument can be extracted. Although a sim-282

ple model of the lips is considered (one degree of freedom, no model of contact between the lips), the different283
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Figure 15: (Color online) Clusterings obtained from 20 virtual players applied to 8 trumpets (two impedance
data for each trumpet and one plot per trumpet) in the space (H,D) for a B[4 (470Hz). Transparent dots:
results extracted from each diagram. Plain dots: means calculated across the virtual players for each impedance
data.

Figure 16: (Color online) Clustering obtained from 20 virtual players applied to 8 trumpets (two impedance
data for each trumpet) in the space (H,D) for a B[4 (470Hz) and gathered in the same figure. Transparent
dots: results extracted from each diagram. Plain dots: means calculated across the virtual players for each
impedance data. Same data as in Fig. 15.

trumpets examined in this study can then be differentiated in the space of these descriptors, showing the ability 284

of the method to identify consistent differences between instruments. 285
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Figure 17: (Color online) Zoom on Fig.16.

In order to account for variability in the control between players, at the level of the lip embouchure in286

particular, calculations were performed for a range of values of the lip model parameters. The results confirmed287

the categorization obtained with one set of parameters, and therefore support the hypothesis that the obtained288

categorization of the instruments is primarily determined by the impedance.289

This type of outcome may be of interest for a musical instrument maker. Indeed, although it is applied to a290

single regime of oscillation here, it allows to clarify and quantify differences between instruments on the basis of291

numerical indicators related to the performance of the instrument. In the process of designing a new trumpet292

with a new geometry, the proposed analysis can be conducted from a calculation of the impedance, and the new293

instrument compared to existing instruments using this numerical approach.294

From the point of view of the perception of real players, these numerical indicators may be easier to correlate295

with perceptual evaluations conducted with human players. More specifically, in this article we suggested that296

the hysteresis could be associated to the difference between onset and offset pressures, while the dynamic range297

could be correlated to the actual dynamic range for that note. These hypotheses could be the starting point of298

a future work.299

Regarding comparison with experiment, another challenge is to validate the obtained categorization exper-300

imentally, using an artificial player system for instance. At first by comparison of the calculated bifurcation301

diagrams with measurements performed with slow variation of the mouth pressure p0, then by comparing the302

categorizations of trumpets obtained numerically and experimentally.303

Finally, extending this approach to more notes, to be able to obtain a more global view at the beheaviour of304

instruments is definitely part of the next plans.305
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[11] V. Fréour, N. Lopes, T. Hélie, R. Caussé, and G.P. Scavone. In-vitro and numerical investigations of the 326

influence of a vocal-tract resonance on lip auto-oscillations in trombone performance. Acta Acustica united 327

with Acustica, (101):256–269, 2015. 328

[12] S. Bilbao and J. Chick. Finite difference time domain simulation for the brass instrument bore. J. Acoust. 329

Soc. Am., 134(5):3860–3871, 2013. 330

[13] H. Berjamin, B. Lombard, C. Vergez, and E. Cottanceau. Time-domain numerical modeling of brass 331

instruments including nonlinear wave propagation, viscothermal losses, and lips vibration. Acta Acustica 332

united with Acustica, 103:117–131, 2017. 333

[14] L. Maugeais and J. Gilbert. Nonlinear acoustic propagation applied to brassiness studies, a new simulation 334

tool in the time domain. Acta Acustica united with Acustica, 103:67–79, 2017. 335
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