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Many real-world social networks constantly change their global properties over time, such as the number of
edges, size, and density. While temporal and local properties of social networks have been extensively studied,
the origin of their dynamical nature is not yet well understood. Networks may grow or shrink if (a) the total
population of nodes changes and/or (b) the chance of two nodes being connected varies over time. Here, we
develop a method that allows us to classify the source of time-varying nature of temporal networks. In doing so,
we first show empirical evidence that real-world dynamical systems could be categorized into two classes, the
difference of which is characterized by the way the number of edges grows with the number of active nodes, i.e.,
densification scaling. We develop a dynamic hidden-variable model to formally characterize the two dynamical
classes. The model is fitted to the empirical data to identify whether the origin of scaling comes from a changing
population in the system or shifts in the connecting probabilities.

DOI: 10.1103/PhysRevE.102.052302

I. INTRODUCTION

Along with the increasing availability of high-resolution
data sets, dynamics of human social communication have
been extensively studied over the past decades [1–6]. Many
of these studies are based on data sets of online interactions,
such as emails [7], text messages [8,9], and mobile phones
[2,3,10,11], but the recent development of sensor devices has
also enabled us to collect time-stamped data from face-to-face
interactions in physical space [1,12–15]. Those data therefore
cover a wide range of social contexts in which dynamic in-
teractions among individuals form temporal social networks
[6,16].

These real-world social networks exhibit very often non-
stationarity: their structure constantly changes over time not
only in shape but also in size. Generally, these dynamics are
present because the studied system is not closed: it is in fact a
common property of real-world social and economic networks
that agents are free to enter and exit. In online social networks
like Twitter and Facebook, anyone can basically join or quit
the existing communication at any time. In financial markets,
a bank becomes a part of an interbank network if it borrows
from or lends to other banks and exits the network when
the loan is repaid [17,18]. Another nonconservative aspect of
real-world networks is the fact that, even if the population is
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constant, the networking activity might vary due to external
factors such as schedule and diurnal rhythm; coffee breaks in
a conference [13], pauses between classes in a school [5,19],
lunch breaks in a company [15,20], etc.

In the present work, we focus on the evolution of two
fundamental quantities that condition the global property of
networks: the number of active nodes N and the number of
edges M. The scaling relationship M ∝ Nγ , known as the
“densification power law,” has been found in many real-world
systems [21,22], where the scaling exponent γ is constant and
1 < γ < 2. In this work, we present further empirical evi-
dence that there exist two types of scaling in the evolution of
networks. In addition to the well-known densification power
law, we also show that some systems exhibit an accelerating
growth of M in which the scaling exponent itself is increasing.

We consider two key factors that would lead networks to
be time varying: N and M will vary over time if (a) the size
of population (i.e., potential number of active nodes) changes
and/or (b) the chance of two nodes being connected changes.
Clearly, the size of the population in a system constrains
the number of active nodes that form a network: at constant
probability for links to appear, more nodes implies more links.
Similarly, bilateral matching probability determines the num-
ber of edges in the network and thereby its density: at constant
population size, the higher the probability for a link to exist,
the higher the number of links. The question is then: given
an empirical temporal network exhibiting time-varying global
quantities, is it possible to identify the source of the dynamics?

Here, we develop a method to perform such a task by ex-
ploiting a scaling relationship between the numbers of active
nodes and edges. To model the behavior of nodes, we use a
dynamical version of a hidden-variable model in which the
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temporal probability of two nodes being connected is given
by a product of “fitness” parameters [23,24]. The fitness pa-
rameters are considered to be intrinsic and constant features
of the nodes. In the present model, the time-evolving aspect
arises from two distinct channels. First, we introduce a param-
eter that modulates the average activity level of nodes. This
modulation parameter allows the size of generated networks
to vary through a change in the connecting probabilities while
keeping the population size, including resting nodes, constant.
Second, we allow the population size to vary with time. In
the original fitness model [23,24], there is no distinction be-
tween population and the number of active nodes, because
the population size is assumed to be large enough so that
virtually all nodes in the system are active [18]. However, if
the population in a system is not sufficiently large, a certain
fraction of existing nodes may not be active [18], and thereby
a change in the population size affects the rate at which the
number of edges grows with the number of active nodes.

In the following, we first expose empirical evidence for
the existence of two different types of scaling relationships
between N and M. We then present a dynamical hidden-
variable model with which we investigate the emergence of
the two types of scaling patterns. Specifically, we define two
classes of theoretical equations that connect N and M under
different specifications on the average activity of nodes and
the population size. By identifying a class of equations that
better fits the observed data, the proposed method allows us
to estimate the actual average activity and the (unobservable)
population size. From this we are then able to identify for
each empirical data which key factor drives the dynamics of
the temporal network. We also briefly mention a variation of
the model for cases where the population is fixed and known,
allowing us to fit the empirical distribution of node fitnesses to
a beta distribution. We conclude by a discussion of our results
and the limitations of the model.

II. SCALING RELATIONSHIP BETWEEN N AND M

A. Data

We consider six data sets of social and economic interest,
taken from contexts of very different nature (see Appendix A
for a full description of the data sets):

(1) Interbank (bilateral transactions in the online interbank
market in Italy);

(2) Enron (email communication network from the Enron
Corporation [7,25]);

(3) CollegeMsg (online social network at the University of
California, Irvine [8,9]);

(4) RealityMining (phone call data from the Reality Com-
mons project [2]);

(5) LondonBike (bike trips from the London Bicycle Shar-
ing Scheme [26]);

(6) Highschool (face-to-face contacts network in a French
high school [19]).

All data sets are converted to temporal networks with
undirected and unweighted edges. Bidirectional edges (i.e.,
edges in both directions) are regarded as undirected edges
with weight 1. From each dataset, we construct a sequence
of network snapshots by defining particular time intervals in

each of which all the interactions between nodes are regarded
as the edges of the corresponding network. We define N to
be the number of nodes that have at least one edge in a given
snapshot, and M denotes the corresponding number of edges.
This suggests that N/2 � M � N (N − 1)/2, where N/2 cor-
responds to the minimum number of edges that can exist
between N active nodes (when all the nodes are connected
to exactly one edge), while N (N − 1)/2 corresponds to the
maximum number of edges that can exist between N active
nodes (i.e., a complete graph).

B. Evidence from empirical data

We investigate the dynamical relationship between N and
M. Figure 1 shows scatter plots of M against N for each social
context. Two important features appear. First and foremost,
there is a strong positive correlation between N and M in all
the data sets we examine. In particular, we observe superlinear
scaling, i.e., the rate at which M rises with N is larger than
that expected by a linear growth, as is occasionally reported
for many real-world systems [21,22]. This phenomenon is
also known as the “densification power law” or “densification
scaling” [21,22,27].

Second, there are two different patterns as to how M grows
with N . One is the densification scaling we mentioned, in
which the scaling exponent is constant (>1), showing as a
straight line on a log-log scale plot. In Fig. 1, Interbank,
Enron, CollegeMsg, and RealityMining appear to belong to
this category. Contrarily, for LondonBike and Highschool the
growth of M for large values of N is accelerating: the slope
itself increases in log-log space as N grows [28].

Both behaviors are striking, as they suggest the existence
of simple mechanisms for the dynamics of global activity
in temporal networks. However, the empirical dynamical re-
lationship we observe in Fig. 1 cannot be reproduced by a
class of common growing network models in which a new
node joins the network with a given number of edges [29–31].
While these models are intended to explain the emergence of
scaling in empirical degree distributions [29], the number of
edges has a linear correlation with the number of active nodes
asymptotically, i.e., M ∝ N , which is not consistent with our
finding. In the following, we present a model which explains
how these different types of global behaviors can emerge from
temporal social interactions.

III. A DYNAMIC HIDDEN-VARIABLE MODEL

A. Model

To explain the two types of scaling in a unified model, we
consider a dynamical version of the hidden variable model in
which the probability of two nodes being connected at time
interval t is given by

pi j,t = κt aia j, i, j = 1, . . . , Np,t , t = 1, . . . , T . (1)

where ai is the “fitness” of node i that represents the ac-
tivity level of the node [23,24,32,33]. In the baseline model
we assume that ai is uniformly distributed on [0, 1] because
in general we do not have any prior information about the
distribution of activity levels. We will also consider a beta
distribution as an alternative case in Sec. IV D.
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FIG. 1. Relationship between the number of active nodes N and the number of edges M in each snapshot for different social contexts. For
Interbank, Enron, CollegeMsg, and RealityMining data, each dot represents the realization of (N, M ) in a particular time window (annotated
at the top) of a day. For LondonBike and Highschool data, each dot represents the realization of (N, M ) in a 10-minute time window of a day
(0:00–24:00). Black dotted and dashed lines denote the theoretical upper [M = N (N − 1)/2] and lower (M = N/2) bounds, respectively.

There are two time-varying parameters in the model. One is
Np,t , which represents the potential number of active nodes in
the system at time t , i.e., the total of active and inactive nodes
that are in the system at time t . The number of active nodes
having at least one edge at time t is denoted by Nt . We note
that the number of active nodes Nt is always observable, but
the potential number of nodes Np,t is not. In social networks,
for instance, we do not usually know how many people are
ready to interact with other people and what fraction of them
actually created at least one edge. In many cases, what we can
observe from data is the number of active nodes that appear
in the record of interaction history, while there is no record of
nodes without interactions. Since the observed active nodes
may account for only a fraction of the potential nodes, it is
generally written as Nt = (1 − q0,t )Np,t , where q0,t denotes
the fraction of inactive nodes that have no edge at time t , or
equivalently, the probability of a randomly chosen node being
isolated. To take an example of social networks, changes in
Np may represent a situation in which the number of students
in the classroom changes over time according to the class
schedule, leading to a variation in the maximum possible
size of face-to-face contact networks. The potential number
of nodes that are ready to interact with others is the first key
parameter of the model, as it physically constrains the size of
networks to be observed.

The second time-varying parameter of the model is κt > 0,
which modulates the global activity level of nodes. In the
financial system, for instance, the chance that two banks trade

during the lunch time would be intrinsically lower than that in
the morning [18], in which case the banks’ activity levels may
have a certain diurnal pattern. In social networks where indi-
viduals communicate with each other, κ would vary according
to the time schedule of the school, workplace, academic con-
ferences, or the circadian rhythm of humans [4,34–36].

With this specification, the observed network size N and
the number of edges M coevolve as either Np or κ or both
change over time. One can see a change in N due to a shift
in Np represents an extensive margin effect, while a shift in κ

leads to an intensive margin effect. Parameters κ and Np can
thus explain two different origins of the time-varying nature
of networks.

B. Analytical expression for N and M

In this section we show an analytical solution for the
dynamic hidden-variable model when the network size
is not necessarily large enough [18]. Suppose that node
i (1� i�Np) is assigned activity ai ∈ [0, 1] which is drawn
from density ρ(a) [23]. The numbers of active nodes N and
edges M can be expressed as functions of parameters κ and
Np (we drop time subscript t for notational convenience):

N = [1 − q0(κ, Np)]Np,

M = k(κ, Np)Np

2
, (2)
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where k(κ, Np) denotes the average degree over all the ex-
isting nodes including isolated ones. To obtain the functional
forms of N and M, we need to find the functional forms of
q0(κ, Np) and k(κ, Np).

Let u(a, a′) be the probability that there is an edge between
two nodes having activity levels a and a′, respectively. As is
shown in Appendix B, the average degree k(κ, Np) is given by

k(κ, Np) = (Np − 1)
∫∫

da da′ρ(a)ρ(a′)u(a, a′), (3)

which simply states that the average degree is equal to the
number of nodes (excluding the focal node itself) times the ex-
pected connecting probability. It should be noted that Eq. (3)
is equivalent to Eq. (21) of Ref. [24] if Np − 1 is replaced with
N , which is asymptotically true as will be shown below. From
(B11) in Appendix B, the probability of a randomly chosen
node being isolated is given by

q0(κ, Np) =
∫

da′ρ(a′)
[

1 −
∫

u(a′, a)ρ(a)da

]Np−1

. (4)

Substituting ρ(a) = 1 (i.e., uniform distribution on [0, 1]) and
u(a, a′) = κaa′ into Eq. (3) gives

k(κ, Np) = κ

4
(Np − 1). (5)

Similarly, q0 is given by

q0(κ, Np) =
∫ 1

0

(
1 − κa′

2

)Np−1

da′. (6)

By defining a variable x ≡ 1 − κa′
2 , we have

q0(κ, Np) = 2

κ

∫ 1

1− κ
2

xNp−1dx

= 2

κNp

[
1 −

(
1 − κ

2

)Np
]
. (7)

Combining these results with Eq. (2), we have

N = Np

[
1 − 2

κNp

(
1 −

(
1 − κ

2

)Np
)]

, (8)

M = 1

8
κNp(Np − 1). (9)

This leads to interesting limit behaviors: if |1 − κ/2| < 1 and
Np is sufficiently large, then q0(κ, Np) � 0 and thereby N �
Np and M ∝ N2, as is shown in the study of the static fitness
model [23,24,32]. In contrast, if Np is not large enough, then
q0(κ, Np) > 0 and N < Np, in which case M is not of order
N2 and the scaling exponent will take a value between 1 and
2 as is observed in empirical data (Fig. 1) [18]. Note that κ is
not per se a probability, and that its value does not have any a
priori upper bound (as it depends on the activity distribution).
Clearly, the larger the population Np and the overall activity
κ , the lower the share of resting nodes q0 in the population
[Fig. 2(a)].

C. Role of κ and Np in the emergence of scaling

Using Eqs. (8) and (9), we are now able to analyze numer-
ically how M scales with N . First, we observe that if the value

FIG. 2. Scaling in the dynamic hidden variable model. (a) Frac-
tion of inactive nodes in the population, q0. (b) Two types of scaling
relationships between N and M. Each color represents a particular
value of Np, while different symbols denote different values of κ .
Each colored line represents a scaling relation when Np is fixed at
a given value, i.e., scaling driven by time-varying κ . The gray solid
line represents a scaling relation when κ is fixed (= 0.3), i.e., scaling
driven by time-varying Np.

of κ is kept constant while Np varies, the dynamical relation-
ship between N and M is close to a straight line in a log-log
plot [gray solid in Fig. 2(b)], as seen in some empirical data.
If κ is small enough, the scaling is close to linear, approaching
the lower bound of M indicated by the dashed line in Fig. 2(b).
However, as κ increases, the scaling becomes more and more
superlinear, which can be seen in Fig. 2(b) by following the
same symbols in different colors.

By contrast, if we vary κ for a given value of Np, the
slope will bend upward. This can be seen in Fig. 2(b) by
following different symbols in the same color (colored line).
This reproduces the accelerating growth behavior observed
in the empirical data, namely LondonBike and Highschool.
We note that although the scaling relationships appear to be
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quite regular, it proves to be very difficult (if not impossible)
to extract from Eqs. (8) and (9) an analytical expression for
them, because of the complicated dependencies of N on Np.

IV. IDENTIFYING THE SOURCE
OF NETWORK DYNAMICS

A. Estimation of model parameters from empirical data

We now propose a method to identify the dynamical class
of a system and at the same time estimate κ and Np from
the empirical data. In fact, the two model parameters may
be estimated in two ways. One is to directly solve the two
nonlinear equations Eqs. (8) and (9) with respect to (κ, Np) for
a given observation of (N, M ). This direct calculation gives us
a one-to-one mapping of (N, M ) to (κ∗, N∗

p ), where an asterisk
denotes the solution of the system of two equations. However,
such a method proves to be unable to accurately estimate
the parameters when the network is small, where there is a
large degree of overlap of (N, M ) generated under multiple
combinations of (κ, Np) [Figs. 2(b) and 4(a)].

B. Exploiting the dynamical relationship between N and M

1. Two classes of models for the two types of scaling

The other method is to use the dynamical relationship
between N and M. This method is based on the idea that the
estimation bias due to the overlap of (N, M ) could be avoided
if we exploit the dynamical relationship between N and M
rather than a particular observation of (N, M ) in a given snap-
shot. In this method, we fit the empirical N-M relationship
to theoretical equations, which will give us nonlinear least
squares estimators of κ and Np.

Since the observable variables N and M appear separately
in Eqs. (8) and (9), respectively, we formulate a regression
equation by relating N with M through the substitution of κ

or Np. By doing so, we essentially categorize the empirical
dynamic networks into two classes. In the regression equation
for the first class, we express N as a function of M and
parameter κ to endogenize the time variation of Np. Hereafter
we call this type of formulation “Model I.” This corresponds
to a situation in which the connecting probability pi j,∀i 	= j
is constant while the potential size of networks Np is time
varying.

In “Model II,” on the other hand, we specify N as a function
of M and parameter Np to endogenize the time variation of
κ . This type of model would be appropriate when the set of
nodes is fixed while the connecting probabilities are affected
by diurnal or circadian rhythms.

The regression equations in the two models are respectively
given as follows:

Model I: Np is time varying and κ is constant.

N = G(M; κ )

≡ Np(M, κ )

[
1 − 2

κNp(M, κ )

(
1 −

(
1 − κ

2

)Np(M,κ ))]
,

(10)

where Np is expressed as a function of M and κ: Np(M, κ ) ≡
1+√

1+32M/κ

2 [Eq. (9)]. We obtain the estimator of κ , denoted
by κ̂ , by regressing N on M using a method of nonlinear least

FIG. 3. Schematic of model selection. If Model I (resp. Model II)
is selected, each bilateral connection probability κ̂ (resp. population
size N̂p) is constant while N̂p (resp. κ̂) is time varying.

squares, where N = G(M; κ̂ ) + εI, and εI denotes the T ×1
vector of residuals. Estimates of time-varying Np are then
given by

N̂p,t = 1 + √
1 + 32Mt /̂κ

2
. (11)

Model II: Np is constant and κ is time-varying.

N = F (M; Np)

≡ Np

[
1 − 2

κ (M, Np)Np

(
1 −

(
1 − κ (M, Np)

2

)Np
)]

,

(12)

where κ is expressed as a function of M and Np: κ (M, Np) ≡
8M

Np(Np−1) [Eq. (9)]. We estimate N̂p based on a nonlinear regres-

sion equation N = F (M; N̂p) + εII. Estimates of time-varying
κ are given by

κ̂t = 8Mt

N̂p(N̂p − 1)
. (13)

After estimating the parameters in both specifications, we
select one that attains the lower sum of squared errors:

Model I is selected if ε�
I εI < ε�

II εII,

Model II is selected otherwise.

A schematic of the model selection is illustrated in Fig. 3.
Note that the criterion of model selection is effectively the
same as that of the Akaike information criterion (AIC) and
Bayesian information criterion (BIC) because we have only
one parameter in both models.

2. Validation

We check the accuracy of the proposed estimation method
by using synthetic networks. For the estimation of Model I
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FIG. 4. Validation of estimation methods. Error bars are calculated over 1000 runs. (a) Solutions of Eqs. (8) and (9). (b) Estimation for
Model I, in which Np is time varying and κ is constant. (c) Estimation for Model II, in which Np is constant and κ is time varying.

(resp. Model II), we generate 500 synthetic networks under
various Np ranging from 20 to 300 (resp. κ ranging from 0.001
to 0.99) for a given κ (resp. Np).

While solving the system of two nonlinear equations
is straightforward in principle, the question is whether the
obtained solution matches the true values of κ and Np. Ob-
viously, the network generating mechanism is in reality not
deterministic but stochastic, which means the same parame-
ter combination (κ, Np) may yield different observations of
(N, M ). Using a particular pair of (N, M ) is therefore not suf-
ficient to infer the true model parameters. Indeed, the solution
of Eqs. (8) and (9) leads to a biased estimate of Np especially
when the true values of κ and Np are small [Fig. 4(a)]. This
is expected from Fig. 2(b) in which there is a large amount
of data overlap in the lower left area of the corn. In fact, κ

tends to take small values (e.g., <0.1) in real-world networks,
in which case the biased estimation can become a serious
problem.

Figures 4(b) and 4(c) shows the error bars of the estimated
parameters for the second method over 1000 runs. The esti-
mated values of Np and κ nicely match the true values even
when the network size is fairly small and thereby multiple
combinations of (κ, Np) can yield the same (N, M ). This is
an advantage of this method with which we do not rely on
a particular realization of (N, M ), but rather we exploit the
whole dynamical relationship. Furthermore, in the case where
Np is fixed and κ varies in time, Model II also gives a better
estimate than the direct calculation.

It should be noted that the observed N can be much lower
than its potential value Np, which suggests that the potential
number of active nodes cannot necessarily be inferred di-
rectly from the observed number of nodes. This is particularly
true when κ is so small that the network is fairly sparse
(see Fig. S1 in the Supplemental Material [37]).

3. Empirical results

Figure 5 shows the empirical results for the CollegeMsg
and LondonBike data sets (see Figs. S2 and S3 in the Sup-
plemental Material [37] for the other data sets). Our results
illustrate the fact that scaling relations in social and eco-
nomic temporal networks may be driven by the two previously
described factors. For Interbank, Enron, CollegeMsg, and
RealityMining, Model I is selected, which means the time-
varying nature of the global network properties comes from
shifts in the potential number of nodes, i.e., the population in
the system changes over time. On the other hand, for London-
Bike and Highschool, Model II is selected, which means the
population remains almost unchanged, and the changes in the
numbers of edges and active nodes are due to time-varying
connecting probabilities.

Since all we need for the model classification is a va-
riety of combinations of (N, M ), one can implement the
method for any timescale. For instance, if we see intra-
day activity in the Interbank data set, the scaling behaviors
on the vast majority of days are still better explained
by Model I (Fig. S4). For the LondonBike dataset, the
scaling relationship over different days is identified as be-
ing driven by a time-varying κ for each time interval
(Fig. S5), again indicating that the population (i.e., the num-
ber of bike stations) is essentially fixed throughout the data
period.

For the data sets for which Model I is selected, we
note that the estimated values of κ are fairly small, rang-
ing from 0.011 (RealityMining) to 0.078 (Interbank). κ̂ is
time varying for LondonBike and Highschool, but their val-
ues are still small with the maximum value being no larger
than 0.02. This suggests that the direct calculation dis-
cussed above would not work well for empirical networks
[Fig. 4(a)].
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FIG. 5. Estimation results for (a) CollegeMsg and (b) LondonBike data sets. Model I is selected for CollegeMsg and Model II is selected
for LondonBike. In each panel, the left column shows the fitted N-M curves. Black dotted and dashed lines denote the theoretical upper
[M = N (N − 1)/2] and lower (M = N/2) bounds, respectively. The middle column shows in (a) the estimated N̂p and in (b) the estimated κ̂ .
The right column shows the fitted theoretical density. In (a), the asymptotic density derived from Eq. (14) is marked by the dotted line.

C. Network density

Another global quantity that might be of interest is network
density. From the estimates of κ and Np we can write the
theoretical network density as

2M

N (N − 1)
= κ̂

4

(
1

1 − q0 (̂κ, N̂p)

)2(
1 + q0 (̂κ, N̂p)

N − 1

)
. (14)

As discussed above, the parameter q0 approaches 0 as
Np → ∞. This suggests that in Model I, in which κ is constant,
the network density converges to κ/4 as Np (and N) grows.

We compare the theoretical and the empirical network den-
sity in Fig. 5 (right panels) for CollegeMsg and LondonBike
(see Fig. S6 for the other data sets). For the data sets for
which Model I is selected (Interbank, Enron, CollegeMsg,
and RealityMining), the density monotonically decreases as
N increases, approaching the asymptotic value κ̂/4 (dashed
line).

For the other data sets (LondonBike and Highschool), on
the other hand, the relationship is nonmonotonic; density in-
creases with N when N is sufficiently large. In Model II,
where Np is constant, the density can be regarded as a function
of κ , and a shift in κ has two effects on the density. First,

an increase in κ leads the network to be denser because it
has a positive impact on the probability of two nodes being
connected. Second, an increase in κ would cause the number
of active nodes N to rise, which has a negative impact on the
density. Since there is a finite fraction of inactive nodes when
the network is not large enough (i.e., q0 > 0), the number of
active nodes can increase in accordance with a rise in κ . This
increases the denominator of the density by definition, which
would lead to a reduction in the theoretical density. Indeed, we
find that there exists a threshold of N above which the former
effect dominates the latter [Fig. 5(b), right].

D. A more general activity distribution

The estimation methods we proposed above assume that
activity parameters {ai} are distributed uniformly, because in
many real-world systems we have no prior knowledge about
the activity level of (unobservable) resting nodes. Neverthe-
less, if we could have further information about the system
(in addition to N and M), we could also obtain an estimate of
the empirical activity distribution that covers the entire set of
nodes.

In this section, we propose a method to estimate activity
distribution when the total number of potentially active nodes

052302-7



TERUYOSHI KOBAYASHI AND MATHIEU GÉNOIS PHYSICAL REVIEW E 102, 052302 (2020)

FIG. 6. Estimates based on generalized regression equations. In the left panels, the red line shows the theoretical equation [Eq. (15)] with
optimized parameters (α∗, β∗). Inset: Estimated activity distribution ρ(a). In the right panels, the number of active nodes N (dotted blue),
estimated N̂p (black solid), and the empirical counterpart of Np, denoted by Nmax

p (red circle), are shown. The 5% confidence interval for N̂p is
depicted by black dotted lines.

in the system (i.e., Np) is known. We focus on the systems in
which Np is considered to be constant (i.e., systems for which
Model II is selected), namely LondonBike and Highschool,
and assume that the true Np is given by the total number of
active nodes of a day. The implicit assumption here is that
nodes that are ready to be active would have at least one
temporal edge during a day. We choose a beta distribution,
ρ(a) = f (a; α, β ) ≡ aα−1(1−a)β−1

B(α,β ) for a ∈ [0, 1], as a general
form for the activity distribution. Parameters α and β are
estimated such that the estimated N̂p matches the empirical
counterpart.

A generalized version of the nonlinear regression equation
[Eq. (12)] is given by [see Eq. (B11) in Appendix B)

N = F (M; Np, α, β )

≡ Np

[
1 −

∫
da f (a, α, β )

×
(

1 −
(

α + β

α

)
2Ma

Np(Np − 1)

)Np−1]
. (15)

Note that endogenous variable κ is now expressed as a
function of M, taking parameters Np, α, and β as given:

κ (M; Np, α, β ) ≡ ( α+β

α
)
2 2M

Np(Np−1) .
The estimation procedure under a generalized activity dis-

tribution is then given by the following four steps:
(1) For a given combination of (α, β ), obtain the estimate

of Np, denoted by N̂p(α, β ), by implementing the nonlinear
least squares on Eq. (15).

(2) Repeat step 1 for various combinations of (α, β ).
(3) Find a combination of (α∗, β∗) such that (α∗, β∗) =

arg minα,β |N̂p(α, β ) − Nmax
p |, where Nmax

p denotes the empir-
ical counterpart of the total number of nodes in the system
including temporally resting nodes.

(4) The estimator of Np is given by N̂p(α∗, β∗).
The estimation results suggest that the activity distribution

is skewed to the left in both data sets (Fig. 6, insets), and
the generalized regression equation still well fits the empirical
N-M curve (Fig. 6). We note that while the goodness of fit
generally improves due to the introduction of additional pa-
rameters (i.e., α and β), the fitted curve is little affected by the
specification of activity distribution [see Figs. 5(b) and S2].
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This suggests that the dynamic hidden variable model well
explains the macroscopic fluctuations of empirical networks
for alternative specifications of activity distribution.

V. DISCUSSION

We proposed a method to identify the source of scaling
in temporal networks, namely the dynamical relationship be-
tween the numbers of active nodes and edges. Building on a
model including both population and activity dynamics, we
showed that these two mechanisms are sufficient to explain
the two types of scaling observed in real-world systems. The
estimating method we developed enables us to compute the
parameters for the activity rhythm κ and the population size
Np (and thereby the number of resting nodes Np − N). While
an observation of (N, M ) in a particular snapshot is not suf-
ficient to identify the source of dynamics, a sequence of N
and M allows for such an estimation. We apply the method to
six empirical data sets, and identify for each the main driving
factor responsible for the emergence of scaling.

It should be noted that our proposed framework does not
depend on whether the network under study is growing or
shrinking. As we already pointed out, the only information
needed for the method is a time variation of N and M. Indeed,
in many real networks such as the six networks we examined,
the size of networks does not exhibit a monotonic behavior
but rather nonmonotonic shifts, depending on external factors
that affect the activity rhythm and/or the population. Thus, the
method can reveal the key factor that may lead a network to
grow or shrink.

While our framework is useful for understanding the evolu-
tion of temporal networks in any contexts, there remain some
issues that need to be addressed in future research. First, our
method assumes that there are two types of systems, which are
described as Model I (i.e., activity rhythm κ is constant and
population size Np is time varying) and Model II (i.e., popula-
tion size Np is constant and activity rhythm κ is time varying).
In real-world systems, there may exist an intermediate state
in which both the activity rhythm and the population size are
evolving with similar time scales. To study those systems, one
would need to include additional information other than N
and M to inform the model, in order to be able to separate
the effects of both mechanisms. Second, one key parameter of
the model is the distribution of node fitnesses. Currently, we
specified this distribution to be either a uniform or a beta dis-
tribution, which gives satisfactory estimates of the dynamical
parameters. The method would of course yield more accurate
estimates if we could incorporate an empirical distribution of
fitnesses. However, measuring those is a complicated task: to
do so, one needs to observe the activity levels of totally inac-
tive nodes (i.e., nodes without edges), which is paradoxical.
The fitness of a node in the model is indeed a rather abstract
property, which integrates many realistic characteristics that
depend on the context. Such characteristics can also be time
dependent. Third, in the hidden variable model, the structure
of the generated network is basically the same as that in a
configuration model. Therefore, the model is not sufficient to
replicate the empirical structural properties while the aggre-
gate properties are well explained by the model. Explaining

the structural and local properties, however, is beyond the
scope our paper and should be left for future research.
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APPENDIX A: DATA SETS

The Interbank data set is constructed from bilateral trans-
actions in the online interbank market in Italy between
September 4, 2000 and December 31, 2015 (i.e., 3922 busi-
ness days). The data are commercially available from e-MID
SIM S.p.A. based in Milan, Italy [38] From the data we build
a temporal network where nodes are banks, with one snapshot
per day. For each day, two banks are connected by an edge if a
loan is made from a bank to another between 11:00 and 12:00.

The Enron data set is an email-based communication net-
work from the Enron Corporation [7,25] collected from May
11, 1999 to June 21, 2002. From the data we build a temporal
network where nodes are employees, with one snapshot per
day. For each day, two employees are connected by an edge
if at least one e-mail has been sent from one employee to the
other between 14:00 and 16:00. The data are taken from [39].

The CollegeMsg data set is an online social network at the
University of California, Irvine collected from Mar 23, 2004
to October 26, 2004 [8,9]. From the data we build a temporal
network where nodes are users, with one snapshot per day.
For each day, two users are connected if one has sent a private
message to the other between 14:00 and 16:00. The data are
taken from [40].

The RealityMining data set is built from the call data from
the Reality Commons project [2] collected from September
24, 2004 to January 7, 2005. From the data we build a tem-
poral network where nodes are individuals, with one snapshot
per day. For each day, two individuals are connected if there
has been a phone call between them or a voicemail has been
left, during the 8:00–12:00 time window. The data are taken
from [39].

The LondonBike data set describes the trips taken by cus-
tomers of London Bicycle Sharing Scheme [26] collected on
January 12, 2016. From the data we build a temporal network
where nodes are bike sharing stations, with snapshots every 20
seconds aggregating the data from a 10-minute sliding time
window. For each 10-minute time interval, two stations are
connected if there has been at least one trip between them.

The Highschool data set is a face-to-face contacts network
recorded in a high school in France on December 6, 2013,
using wearable sensors by the SocioPatterns collaboration
[1,19]. As in LondonBike, from the data we build a tem-
poral network where nodes are individuals, with snapshots
constructed every 20 seconds with a 10 minutes sliding time
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window. For each 10-minute time interval, two individuals are
connected if they have been at least once in contact.

APPENDIX B: FULL DERIVATION OF EQS. (8) AND (9)

In this Appendix we show a full derivation of Eqs. (8) and
(9). The numbers of active nodes N and edges M are expressed
as functions of parameters κ and Np:

N = [1 − q0(κ, Np)]Np,

M = k(κ, Np)Np

2
, (B1)

where q0(κ, Np) is the probability of a randomly chosen node
being isolated and k(κ, Np) denotes the average degree over
all the existing nodes including isolated ones.

Given the vector of each node’s activity �a =
(a1, a2, . . . , aNp ), the probability that node i has degree
ki is written as

g(ki|�a) =
∑

�ci

[∏
j 	=i

u(ai, a j )
ci j [1 − u(ai, a j )]

1−ci j

]

× δ

(∑
j 	=i

ci j, ki

)
, (B2)

where ci j ∈ {0, 1} is the (i, j) element of the Np × Np

adjacency matrix, whose ith column is given by �ci =
(c1i, c2i, . . . , cNpi )�, and function δ(x, y) denotes the Kro-
necker delta.

Let us redefine a product term in the square brackets of
(B2) as

f j (ci j ; ai, a j ) ≡ u(ai, a j )
ci j [1 − u(ai, a j )]

1−ci j . (B3)

Since g(ki|�a) is the convolution of { f j (ci j ; ai, a j )} j , its gener-
ating function

ĝi(z|�a) ≡
∑

ki

zki g(ki|�a) (B4)

is decomposed as

ĝi(z|�a) =
∏
j 	=i

f̂ j (z; ai, a j ), (B5)

where f̂ j is the generating function of f j (ci j ; ai, a j ), given by

f̂ j (z; ai, a j ) ≡
∑
ai j

zai j f j (ai j ; ai, a j ). (B6)

Degree distribution p(ki; κ, Np) is defined by the probabil-
ity that node i has degree ki and is related to g(ki|�a) so that

p(ki; κ, Np) =
∫

g(ki|�a)ρ(�a)d�a, (B7)

where we define ρ(�a) ≡ ∏
i ρ(ai ) and d�a ≡ ∏

i dai. There-
fore, differentiation of ĝi(z|�a) with respect to z gives the
average degree k(κ, Np):

k(κ, Np) =
∑

ki

ki p(ki; Np)

=
∑

ki

ki

∫
g(ki|�a)ρ(�a)d�a

= d

dz

∫
ĝi(z|�a)ρ(�a)d�a

∣∣∣
z=1

= d

dz

∫
ρ(ai )dai

∏
j 	=i

∫
f̂ j (z; ai, a j )ρ(a j )da j

∣∣∣∣
z=1

=
∫

ρ(ai )dai
d

dz

[∫
f̂ (z; ai, h)ρ(h)dh

]Np−1∣∣∣∣
z=1

= (Np − 1)
∫

ρ(ai )dai

[∫
daρ(a) f̂ (z; ai, a)

]Np−2

×
∫

daρ(a)
d

dz
f̂ (z; ai, a)

∣∣∣∣
z=1

. (B8)

From Eqs. (B3) and (B6), we have f̂ (z; ai, a) =∑
ci j

zci j f (ci j ; ai, a) = (z − 1)u(ai, a) + 1. It follows that∫
da ρ(a) f̂ (z; ai, a) = (z − 1)

∫
da ρ(a)u(ai, a) + 1,

(B9)∫
da ρ(a)

d

dz
f̂ (z; ai, a) =

∫
da ρ(a)u(ai, a). (B10)

From (B7), the probability of a node being isolated,
q0(κ, Np) ≡ p(ki = 0; κ, Np), is given by

q0(κ, Np) =
∫

g(ki = 0|�a)ρ(�a)d�a

=
∫

daiρ(ai )

[
1 −

∫
u(ai, a)ρ(a)da

]Np−1

.

(B11)

Then, substituting ρ(a) = 1 (i.e., uniform distribution on
[0, 1]) and u(a, a′) = κaa′ into Eq. (3) gives

k(κ, Np) = κ

4
(Np − 1). (B12)

Similarly, substituting the same conditions into Eq. (B11)
gives

q0(κ, Np) =
∫ 1

0

(
1 − κai

2

)Np−1

dai. (B13)

By defining a variable as x ≡ 1 − κai
2 , we have

q0(κ, Np) = 2

κ

∫ 1

1− κ
2

xNp−1dx

= 2

κNp

[
1 −

(
1 − κ

2

)Np
]
. (B14)

Note that q0(κ, 1) = 1 and limNp→∞ q0(κ, Np) = 0. Combin-
ing these results with Eq. (B1), we have

N = Np

[
1 − 2

κNp

(
1 −

(
1 − κ

2

)Np
)]

,

M = 1

8
κNp(Np − 1). (B15)
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