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Arctic Ocean primary productivity is limited by light and inorganic nutrients. With
sea ice cover declining in recent decades, nitrate limitation has been speculated to
become more prominent. Although much has been learned about nitrate supply from
general patterns of ocean circulation and water column stability, a quantitative analysis
requires dedicated turbulence measurements that have only started to accumulate
in the last dozen years. Here we present new observations of the turbulent vertical
nitrate flux in the Laptev Sea, Baffin Bay, and Young Sound (North-East Greenland),
supplementing a compilation of 13 published estimates throughout the Arctic Ocean.
Combining all flux estimates with a Pan-Arctic database of in situ measurements of
nitrate concentration and density, we found the annual nitrate inventory to be largely
determined by the strength of stratification and by bathymetry. Nitrate fluxes explained
the observed regional patterns and magnitudes of both new primary production
and particle export on annual scales. We argue that with few regional exceptions,
vertical turbulent nitrate fluxes can be a reliable proxy of Arctic primary production
accessible through autonomous and large-scale measurements. They may also provide
a framework to assess nutrient limitation scenarios based on clear energetic and mass
budget constraints resulting from turbulent mixing and freshwater flows.

Keywords: Arctic, turbulence, nitrate, flux, primary production, climate change, sea ice

INTRODUCTION

Without upward mixing of nutrients, much of the ocean would harbor no life (Ambühl, 1959;
Margalef, 1978); the Arctic Ocean is no exception. As dead algae and other particulate matter have
the tendency to sink due to their higher density, nutrients are constantly removed from surface
waters. Phytoplankton therefore relies on a resupply of nutrients to grow and re-build its standing
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stock every year. Consequently, primary production, occurring
in the euphotic zone where light levels are sufficient to support
net growth, is controlled by the vertical flux of new nutrients
from below the photic zone each year and thus available
to new production, i.e., uptake of allochthonous nitrate (see
Supplementary Appendix and Dugdale and Goering, 1967).

While turbulence is an important factor for aquatic life
everywhere, the Arctic Ocean is special in certain regards such as
a ubiquitous sea ice cover and strong stratification (Aagaard and
Carmack, 1989). Large summertime accumulation of meltwater
from sea ice and terrestrial runoff has profound impacts on
vertical mixing in the upper ocean (McPhee and Kantha, 1989;
Randelhoff et al., 2017; Cole et al., 2018). In winter, brine rejection
from freezing ice weakens stratification and creates turbulence
(McPhee and Stanton, 1996). We will show throughout this paper
that winter mixing is disproportionately important for setting
mixed-layer properties.

Sea ice is often assumed to be a rather rigid lid (Padman,
1995) that shuts out a large portion of the sunlight as well as
wind energy that could otherwise mix the ocean. With continued
decline of sea ice extent and thickness in the 21st century
(Comiso, 2012; Stroeve et al., 2012; Meier et al., 2014), the factors
limiting Arctic marine growth will likely change. Such a transition
in limiting factors usually leads to difficulties in predicting
systems (Allen and Hoekstra, 2015). Indeed, Vancoppenolle
et al. (2013) found that three different coupled biogeochemical
general circulation models and their predictions for integrated
Arctic Ocean primary production until the end of this century
show diverging trajectories with opposite trends beyond a few
decades from now. In their analysis, a prominent uncertainty
concerned the evolution of the nitrogen pool in the photic zone.
Yet since phytoplankton growth is a rate and not a stock, one
should ideally measure the nitrogen flux, not its concentration
at a given time, to determine primary production in the long
term. Our lack of understanding of the vertical nitrate flux has
resulted in the failure to consistently predict future Arctic Ocean
primary production.

Stratification inhibits vertical mixing (Osborn, 1980) and
consequently vertical turbulent nitrate fluxes. The Arctic Ocean
can be divided into a weakly stratified Atlantic sector and a
strongly stratified Pacific one (e.g., Carmack, 2007; Bluhm et al.,
2015; Tremblay et al., 2015). Vertical turbulent nitrate fluxes
are therefore routinely invoked to explain patterns of primary
production across the Arctic, such as basin scale differences
(Carmack et al., 2006; Tremblay et al., 2015; Randelhoff and
Guthrie, 2016), but also an apparently increasing prevalence
of fall blooms (Ardyna et al., 2014; Nishino et al., 2015) and
even fjord scale differences depending on glacier morphology
(Hopwood et al., 2018). These observations are mostly qualitative
and rarely quantified with direct measurements. Whereas the
vertical nitrate flux in the world ocean has received attention
at least since the late 1980s (Lewis et al., 1986), dedicated
measurements in the Arctic Ocean have only started to
accumulate in the last dozen years. We use this opportunity to
summarize the current state of knowledge and investigate the
role of vertical turbulent nitrate fluxes in regulating Arctic marine
productivity. Interestingly, we find that vertical mixing largely

explains marine primary productivity at the pan-Arctic scale.
Finally, we outline further research directions to unify physical
constraints of Arctic Ocean primary production.

MATERIALS AND METHODS

This study compiles measurements and estimates of the upward
vertical turbulent flux of nitrate in different locations across the
Arctic Ocean. We present four new estimates of the turbulent
vertical nitrate flux, along with a dozen more values derived from
the literature. We further supplement the nitrate fluxes with a
collection of vertical profiles of seawater nitrate concentration.

Compilation of NO3
− Concentrations

The Pan-Arctic data base carefully compiled by Codispoti et al.
(2013) was downloaded from the NOAA website under NODC
accession number 0072133. An additional database covered the
Canadian Archipelago using various ArcticNet and Department
of Fisheries and Oceans Canada cruises, compiled in 2019 by
Pierre Coupel. We included more winter data, notoriously scarce
in the Arctic, by downloading data from the Chukchi shelf as
presented by Arrigo et al. (2017). For each profile, we derived (1)
the Brunt-Väisälä buoyancy frequency in the depth interval from
30 to 60 m as an indicator of the strength of stratification and
(2) the surface nitrate concentration. For the latter, only profiles
were used where the depth of the shallowest nitrate measurement
was at most 15 m. The shallowest nitrate measurement was then
extrapolated to the surface (0 m depth), after which values were
averaged over the interval 0–15 m.

Compilation of Turbulent Vertical Nitrate
Fluxes
In order to compile previously published estimates of vertical
turbulent nitrate fluxes in the Arctic Ocean, we relied mostly
on our knowledge of the literature, given the small amount
of relevant publications. Additionally, we performed a search
on Web of Science (Clarivate Analytics) using the search term
TS = [(nitr∗ AND suppl∗) OR (nitr∗ AND flux∗) OR (nitr∗
AND mix∗)] AND TS = [(Arctic OR Polar) AND Ocean]
AND TS = (vertical OR turbulen∗) AND WC = Ocean∗, which
resulted in 95 publications that were individually screened for
relevance. We only included measurements and estimates based
on in situ observations.

The resulting list comprised just above a dozen flux estimates
going back to less than 10 publications. To improve data
coverage, we present new vertical nitrate flux estimates from
the Laptev Sea, Baffin Bay, and Young Sound, as well as a
re-calculation of published observations from the Chukchi Sea
(Nishino et al., 2015). In order to not disrupt the flow of the main
text, details of the respective methods and field campaigns are
deferred to the Supplementary Appendix.

Briefly, our 3-week-long summer sampling campaign in
Young Sound (a North East Greenland fjord) sought to quantify
turbulent mixing, vertical nitrate supply, and new (nitrate-
based) production in a fjord strongly stratified by meltwater
from the Greenland Ice Sheet. From the Laptev Sea, we
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present a small selection of representative vertical profiles of
nitrate concentrations and oceanic microstructure, collected in
the years 2008–2018. From Baffin Bay, we made use of a
novel year-long 2017–2018 time series of autonomous profilers,
so-called biogeochemical (BGC) Argo floats (Biogeochemical-
Argo Planning Group, 2016). These were specially adapted in
order to function under the ice cover lasting from November
to July. Based on the evolution of the upper-ocean nitrate
inventory, we inferred the part due to vertical mixing.
We further used a data set of nitrate concentrations and
turbulent microstructure in the Chukchi Sea (Nishino et al.,
2015) to calculate another estimate of vertical nitrate fluxes
during early fall.

For the majority of those experiments, turbulence
(microstructure) data were measured; just as was the
case for the literature values. In some cases, turbulent
mixing was inferred from current finestructure; see also the
Supplementary Appendix. Nitrate fluxes were calculated across
the nitracline, meaning by combining a nitracline-average
turbulent diffusivity with the strength of the nitrate gradient.
Individual methodologies may, however, vary regarding, e.g.,
choice of vertical layer or averaging procedures. According to
our personal experience, such choices may make a difference
for individual calculations, but less so for large-scale averages,
and therefore we take the fluxes recorded in the literature at
face value. A systematic assessment of potential methodological
errors has to our knowledge, however, not been conducted. For
a more detailed discussion of how vertical nitrate fluxes are
measured, and in particular the uncertainties and caveats that
come with each method, see the Supplementary Appendix.

For each of the estimates of the vertical turbulent nitrate flux
across the nitracline and into the surface layer, we extracted
the end-of-winter surface nitrate concentration either from the
same publication or from related studies. We also classified each
nitrate flux value as either “perennial stratification” or “winter
overturning.” The former means that surface layer stratification
persisted year-round; the latter means that the winter mixed layer
was significantly deeper than the meltwater-stratified summer
surface layer. The classification was done based on perusal of the
available literature. The full rationale with a detailed description
of the vertical layering in relation to the nitrogen budget is given
in the Supplementary Appendix.

The specific references for each data point are given in the
Supplementary Material. Our entire data set is presented in
Table 1; note that it mixes vertical nitrate fluxes across different
seasons, vertical levels, regions, and sample sizes.

Comparison Between Nitrate Fluxes and
Primary Production
We compared nitrate fluxes with new production (primary
production based on assimilation of nitrate, see Dugdale and
Goering, 1967) and export production. New production estimates
were taken from Sakshaug (2004). Export production estimates
were taken from Wiedmann (2015), who has compiled the
vertical carbon export flux at 200 m depth. To enhance data
coverage, we added measurements from two studies from the

Central Arctic Ocean (Cai et al., 2010; Honjo et al., 2010). Details
can be found in the Supplementary Material.

Both biomass and primary production are frequently given in
units of carbon. To convert between units of carbon and nitrate
fluxes, we employed a C:N ratio of 6.6 mol C: mol N, the so-called
Redfield ratio (Redfield et al., 1963). This particular choice of C:N
ratio may be criticized on the grounds that it varies depending
on the type of organic matter and other environmental factors
(Brzezinski, 1985; Tamelander et al., 2013), and that C:N ratios
observed in the Arctic in particular are usually higher (Frigstad
et al., 2014). However, turbulence measurements come with a
much larger margin of error, with one detailed study giving
the systematic bias between two different sets of microstructure
probes, signal processing, and calibration procedures as within
a factor of 2 (Moum et al., 1995). This is impressive for
microstructure measurements but significantly larger than the
precision with which the C:N ratio is frequently discussed in
biogeochemical contexts. Therefore, by assuming a standard,
constant C:N ratio, we make our results easy to adapt to other
ratios should the reader want to change this number.

RESULTS

Seasonal Cycle of Surface Nitrate
Concentration
Winter surface nitrate concentrations in the Atlantic sector
reached high values around 11 µM (Figure 1). In the Central
Arctic Ocean, concentrations stayed constant at roughly 1–3 µM
throughout the year, whereas in the coastal Beaufort Sea they
occasionally reached intermediate values in winter. Most regions
of the Arctic however became nitrate limited (<1 µM) during the
summer, with the exception of the Eurasian Basin, the Makarov
Basin, and some regions in Southern Fram Strait.

Nitrate Fluxes
Nitrate flux estimates are still scarce given that they require
co-located measurements of both turbulence and nitrate
concentrations; however, they approach Pan-Arctic coverage
(Figure 2). Highest values (>1 mmol N m−2 d−1) were found
in the Atlantic sector. The lowest values (<<0.1 mmol N m−2

d−1) occurred in the central basins (Canada Basin) and in Young
Sound and the Laptev Sea, two locations strongly impacted by
terrestrial freshwater.

Nitrate Flux Seasonality
The seasonal cycle of surface nitrate concentration was also
reflected in its upward fluxes (Figure 3). In areas where the
water column overturned in winter, summer fluxes were an
order of magnitude below winter values. A notable exception was
observed at one station in the Barents Sea south of the polar front
(Wiedmann et al., 2017), where the water was weakly stratified
even in summer and hence nitrate fluxes were probably at least
as high as in winter with 5 mmol N m−2 d−1 (Table 1), although
sample size (N = 1) was not sufficient to draw further conclusions.

Observations over a full seasonal cycle were only available in
areas where the water column overturns, notably in the Barents
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TABLE 1 | Nitrate fluxes observed in the Arctic Ocean.

Region Season NO3
− flux* References Sample size Turbulence meas. NO3

− meas.

Amundsen Basin Winter 0.05 Randelhoff and Guthrie, 2016 Large Microstruct. Optic

Baffin Bay Winter 1.7 This study Large N/A Optic

Barents Sea Summer 0.1 Sundfjord et al., 2007 Small Microstruct. Bottle

Barents Sea Summer 0.1 Wiedmann et al., 2017 Small Microstruct. Optic

Barents Sea Summer 2.0 Sundfjord et al., 2007 Small Microstruct. Bottle

Barents Sea Summer 5.0 Wiedmann et al., 2017 Small Microstruct. Optic

Barents Sea, AABC Winter 2.5 Randelhoff et al., 2015 Large N/A Optic

Beaufort Sea Winter 0.12 Bourgault et al., 2011 Large Microstruct. Optic

Canada Basin Winter 0.01 Randelhoff and Guthrie, 2016 Large Finestruct. Optic

Chukchi Sea Summer 0.02 This study, Nishino et al., 2015 Small Microstruct. Bottle

Chukchi Sea Summer 0.19 Nishino et al., 2018 Large Microstruct. Bottle

Laptev Shelf (outer) Summer 0.015 This study Small Microstruct. Bottle and Optic

Makarov Basin Winter 0.015 Randelhoff and Guthrie, 2016 Large Finestruct. Optic

N Svalbard/Fram Strait Summer 0.3** Randelhoff et al., 2016 Large Microstruct. Optic

N Svalbard/Fram Strait Summer 0.7*** Randelhoff et al., 2016 Large Microstruct. Optic

Nansen Basin/Yermak Plateau Winter 0.2 Randelhoff and Guthrie, 2016 Large Microstruct. Optic

Young Sound (Interior) Summer 0.035 This study Large Microstruct. Optic

Young Sound (Sills) Summer 0.33 This study Large Microstruct. Optic

*Turbulent vertical nitrate flux given in mmol N m−2 d−1. **Under ice cover. ***Open water. AABC: Anticyclonic Arctic Boundary Current. Perennial: Measured below the
extent of seasonal nitrate variation. See Supplementary Material for complete data set.

sea and shelf slope area (Table 1). In contrast, in the non-
overturning regions, fluxes were lower overall, but there is not
enough data to test whether the seasonality itself is, in relative
terms, really much weaker there.

DISCUSSION

Nitrate Fluxes as a Function of
Stratification and Seasonality
The vertical nitrate flux (FN) in winter was remarkably
well correlated with the pre-bloom nitrate surface
concentration [NO−3 ]0 (Figure 4A). A linear model
[NO−3 ]0 = 7.6 µM + 3.4 µM · log10(FN/mmol N m−2 d−1)
yielded an adjusted R2 = 0.85 and p = 0.002 for the linear
coefficient. Consequently, deep winter mixing, where it occurs,
likely is a controlling factor of the annual nitrate inventory,
expanding on direct measurements of a full annual cycle over
the Barents Sea shelf break (Randelhoff et al., 2015). Our results
quantitatively support the perception that vertical nitrate fluxes
explain the seasonality of the upper ocean nitrate inventory,
as has been surmised multiple times in the literature (see e.g.,
Carmack and Wassmann, 2006; Tremblay et al., 2015) based on
general considerations of stratification and bathymetry.

Stratification and bathymetry also governed pre-bloom
surface nitrate concentrations (Figure 4B) and, by extension
from the aforementioned, vertical nitrate fluxes. Stratification
represents the resistance of the water column against overturning
and vertical mixing, making its link to vertical nitrate fluxes
explicit. As for bathymetry, locations with the same strength of
upper-ocean stratification had on average consistently highest
pre-bloom nitrate over the shelf slope (200 m < depth < 1500 m),

lower on the shelves (<200 m), and lowest over the basins
(>1500 m). These findings correspond to general expectations
as rough or shallow topography lets currents interact with the
bathymetry. Mixing in the Arctic has indeed been found to be
especially elevated over the shelf slope (Rippeth et al., 2015). Tidal
velocities are generally higher over the shelves than over the deep
basins (Kowalik and Proshutinsky, 2013). The Arctic boundary
current close to the shelf break may also provide opportunities for
localized upwelling through interaction with topography or wind
(Carmack and Chapman, 2003; Kämpf and Chapman, 2016).

Primary Production Constrained by
Nitrate Fluxes
Annual Basin-Scale Productivity
Nitrate supply should constrain primary production.
Regenerated production is a large if not dominant fraction
of primary production where nitrogen is scarce and is therefore
not directly related to nitrate fluxes, unlike new production,
which relies on nitrate brought up from below the photic zone
(Dugdale and Goering, 1967). In the absence of significant
advection, new production is even stipulated to be similar to the
upward nitrate flux based on conservation of mass alone (see
Supplementary Appendix and Figure 9).

On annual time scales, both the upward nitrate flux in winter
into the surface mixed layer, the particle export at 200 m depth,
and new production (nitrate uptake) matched up reasonably
well for Baffin Bay, the Barents Sea, the Southern Beaufort Sea,
and the Central basin (Figure 5), both in regional patterns
and order of magnitude. (Other regions lack estimates of the
winter nitrate flux.) Indeed, annual budgets have to be closed
if nitrate inventories are not to change in the long term.
The relatively minor differences between export production,
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FIGURE 1 | (A) Seasonal cycles of surface nitrate concentrations in different
regions of the Arctic. (B) The delineation of these regions largely follows
Codispoti et al. (2013) and Peralta-Ferriz and Woodgate (2015).

new production, and the vertical nitrate flux may reflect the
extreme disparity of spatial and temporal scales of the different
measurements. However, no study has systematically investigated
all three quantities on annual to interannual time scales and at
the same location.

FIGURE 2 | All nitrate flux compilation across the Arctic Ocean compiled for
this study, irrespective of season and vertical levels. The smaller dots indicate
single stations, whereas the big dots represent averages over larger time or
space scales.

Short-Term New Production
A different matter is whether or not during summer, upward
mixing of nitrate limits the amount of new production in the
short term. Here, the published literature gives a less clear
picture (Figure 6A). Randelhoff et al. (2016) measured vertical
nitrate flux and new production for both spring and summer
in the marginal ice zone around northern Fram Strait. In
spring, new production was considerably larger than vertical
nitrate supply as nitrate was not yet depleted and hence did
not limit photosynthesis. In summer, on the other hand, when
the surface water was nitrate-depleted, new production was
an order of magnitude smaller than nitrate supply, contrary
to the hypothesis.

A likely contribution to this discrepancy was the seasonal
buildup of dissolved organic nitrogen (Figure 6B) observed
during the same field campaigns by Paulsen et al. (2018). The
nitrate uptake rate measurements by Randelhoff et al. (2016)
only considered assimilation into the particulate pool due to
methodological constraints. The simultaneous production of
dissolved organic nitrogen could have diverted nitrate from the
particulate to the dissolved production. However, even if there
were an imbalance between supply and uptake of nitrate, the
associated change in the nitrate concentration would be slow and
necessitate Lagrangian measurements over weeks to detect them.
Recycling of nitrogen in the microbial loop may turn out to be
important when balancing nutrient fluxes with new production
over short subseasonal time scales. Nishino et al. (2018) found
good agreement between upward nitrate flux, nitrate uptake,
and export of particulate organic matter, based on a case study
in the Chukchi sea. This may represent geographic differences
in the dynamics of the system, or even in the methodology.
Nishino et al. (2018) used different methods from those of
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FIGURE 3 | Vertical turbulent nitrate fluxes as a function of the month. Black lines mark the regions where the water column overturns in winter and orange those
where it does not. Dotted lines reflect flux estimates based on small sample sizes (N), potentially not very representative of the regional or seasonal scale, whereas
solid lines indicate data that are representative of a larger spatial or temporal scale.

FIGURE 4 | The surface nitrate inventory dominated by variations in turbulent mixing. The annual pre-bloom surface nitrate concentration graphed as a function of
(A) the vertical nitrate flux during winter and (B) the strength of water column stratification in the upper 30–60 m depth interval. The bold curves show average nitrate
concentration for a given strength of stratification for either of three bathymetry types. Vertical bars (horizontally slightly offset to increase readability) indicate the
standard deviation of data for each bin. Data sources: (A) nitrate flux compilation, (B) nitrate profile database.

FIGURE 5 | Annual nitrogen fluxes in the Arctic surface ocean. Winter average upward nitrate flux, new production, and vertical downward particle export (converted
to nitrogen units using the Redfield ratio) at 200 m depth compared across four regions of the Arctic Ocean. Data sources: Nitrate fluxes, see Table 1; new
production, Sakshaug (2004); export production, Cai et al. (2010), Honjo et al. (2010), and Wiedmann (2015). Error bars were systematically only available for nitrate
fluxes.
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FIGURE 6 | (A) New production incubations compared with upward nitrate flux for three case studies. Data sources: Nishino et al. (2018) and Randelhoff et al.
(2016), this study (see Supplementary Appendix). (B) Annual cycle of dissolved (DON) and particulate organic nitrogen (PON) observed in the seasonal ice zone of
Fram Strait. Shaded areas indicate the standard deviation. Data source: Paulsen et al. (2018), their Table 1.

Randelhoff et al. (2016), even though they neglected assimilation
into the dissolved nitrogen pool as well (Shiozaki et al., 2009).

Our measurements in Young Sound, North-East Greenland
(see Supplementary Appendix), gave a diametrically opposed
perspective: Here, vertically integrated new production was
significantly above the vertical turbulent supply of new nitrate
in this extremely quiescent fjord. Overall productivity in Young
Sound is therefore likely limited by strong stratification and
weak vertical mixing (Holding et al., 2019). Tidal mixing over
the two shallow sills in concert with isopycnal mixing may
contribute to overall upward nitrate supply (see e.g., Fer and
Drinkwater, 2014), but terrestrial runoff may also contribute
significantly to the nutrient cycling (Rysgaard et al., 2003) as
nitrate concentrations in run-off water are higher than those
measured in the sea surface (Paulsen et al., 2017). This scenario
is likely specific to this fjord and cannot be generalized around
Greenland as nitrate concentrations in Greenland Ice Sheet run-
off often act to dilute surface nitrate concentrations (Meire et al.,
2016; Hopwood et al., 2019).

In the same vein, but outside the Arctic Ocean, Law et al.
(2001) and Rees et al. (2001) found that vertical mixing supplied

only 33% of the nitrate demand at a North Atlantic site,
in agreement with a study by Horne et al. (1996) in the
Gulf of Maine. Even in the Mauritanian upwelling region,
nitrate fluxes in excess of 100 mmol N m−2 d−1 accounted
for only 10–25% of observed net community production
(Schafstall et al., 2010). More extremely, Shiozaki et al. (2011)
found that one location on the continental shelf of the East
China Sea “exhibited a considerable discrepancy between the
nitrate assimilation rate (1500 mmol N m−2 d−1) and vertical
nitrate flux (98 mmol N m−2 d−1),” and they went so far
as concluding that “the assumption of a direct relationship
between new production, export production, and measured
nitrate assimilation is misplaced, particularly regarding the
continental shelf of the East China Sea.”

The scarcity of dedicated measurements that evaluate both
nitrate fluxes, new production, and organic nitrogen pools at
relevant space-time scales is a major impediment to evaluating
the direct impact of nitrate fluxes on primary productivity in the
Arctic on time scales of days. However, given the correspondence
we observed between new production and vertical nitrate supply
over annual Pan-Arctic scales, any mismatch between the two
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on sub-seasonal time scales may be caused by asynchronous
evolution of the different nitrogen pools (Figures 6, 9B).
Phytoplankton growth responses may also lag nutrient supply
pulses, perhaps necessitating time series approaches when
studying scales as short as weeks (Omand et al., 2012).

Nitrogen Limitation of Primary
Production
Nitrogen scarcity plays a large role in constraining Arctic marine
primary production (Moore et al., 2013; Tremblay et al., 2015).
Nutrient limitation of phytoplankton growth is usually quantified
in terms of a half-saturation constant (of a Michaelis-Menten
kinetics), above which nutrient uptake rates benefit less and
less from increasing ambient nutrient concentrations. Reported
values of such half-saturation constants vary widely according
to species and physiological state, but reasonable values usually
range around orders of magnitude from 0.1 to 10 µM, but
clustering around 1 µM (e.g., Eppley et al., 1969), with larger
ones for larger cells (Chisholm, 1992) and values in the lower
end for picophytoplankton (Cochlan and Harrison, 1991; Agawin
et al., 2000). We infer that larger (usually bloom-forming)
species are nitrate-limited in summer across large swaths of
the Arctic, but not including some of the central basin, where
summer surface concentrations are in excess of e.g., 5 µM in
the Makarov and Nansen basins (Figure 7). These high nitrate
concentrations in the Central Arctic are usually taken to indicate
regionally important light limitation by perennial sea ice cover
(Codispoti et al., 2013).

A cautionary remark is in order regarding nitrate
concentrations as indicators of potential growth. Since the
nitrate supply, like phytoplankton growth, is a rate and not a
stock, its present-day inventory alone does not yield sufficient
information to infer possible limitations in future scenarios.

FIGURE 7 | Summer surface nitrate concentration.

Therefore the summer surplus nitrate observed in the central AO
may only be available transiently while the ice cover shrinks, but
not in a steady-state situation without summer sea ice.

TABLE 2 | Nitrate fluxes in the global ocean, excluding the Arctic.

References NO3
− flux* Region

Lewis et al., 1986 0.14 Subtropical North Atlantic

Jenkins, 1988 1.6 Subtropical North Atlantic

Hamilton et al., 1989
re-analyzing Lewis
et al., 1986

0.85 Subtropical North Atlantic

Carr et al., 1995 1.9 Equatorial Pacific (5◦N–5◦S)

Carr et al., 1995 4.3 Equatorial Pacific (1◦N–1◦S)

Horne et al., 1996 0.047 North Atlantic, Georges Bank

Horne et al., 1996 0.18 North Atlantic, Georges Bank

Planas et al., 1999 0.38 Central Atlantic

Law et al., 2001 1.8 Subarctic North Atlantic

Sharples et al., 2001 12.0 New Zealand Shelf

Law, 2003 0.17 Antarctic Circumpolar Current

Hales, 2005 9.0 Oregon Shelf Upwelling System

Sharples et al., 2007 1.3 Celtic Sea shelf edge (neap tide)

Sharples et al., 2007 9.0 Celtic Sea shelf edge (spring tide)

Hales et al., 2009 0.9 New England shelf break front (seaward
side)

Hales et al., 2009 5.2 New England shelf break front
(shoreward side)

Rippeth et al., 2009 1.5 Irish Sea

Martin et al., 2010 0.09 North Atlantic, Porcupine Abyssal Plain

Schafstall et al., 2010 1.0 Mauritanian Upwelling (offshore)

Schafstall et al., 2010 3.7 Mauritanian Upwelling (shelf)

Schafstall et al., 2010 10.0 Mauritanian Upwelling (slope)

Shiozaki et al., 2011 0.25 North Pacific, East China Sea shelf

Kaneko et al., 2013 0.003 North Pacific, Kuroshio (south of front)

Kaneko et al., 2013 0.34 North Pacific, Kuroshio (north of front)

Cyr et al., 2015 0.21 St. Lawrence Gulf, Canada

Cyr et al., 2015 95.0 St. Lawrence Gulf, Canada (shallow sill)

*Turbulent vertical nitrate flux given in mmol N m−2 d−1.

FIGURE 8 | Distributions (kernel density estimates) of observed nitrate fluxes
based on Tables 1, 2. Note that these curves give each observation the same
weight, regardless of areal or temporal scope.
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FIGURE 9 | A simplified marine nitrogen cycle and idealized Arctic hydrography. (A) General schematic of a vertical profile of nitrate concentration, along with the
respective portion of the nitrogen cycle that takes place in each layer. In this idealized case, there is a clear separation between the seasonal variations in nitrate
concentrations in the surface layer which give rise to the seasonal nitracline, and the underlying perennial nitracline. (B) In areas with deep overturning into the waters
of maximum nitrate concentration, the deep nitracline ceases to be meaningful. Instead, nitrate fluxes tap into high-nutrient water every winter. (C) Highly stratified
areas do not see large seasonal excursions in surface layer nitrate concentrations or mixing depths.

In other words: If fall blooms are due to upward mixing of
new nitrate, they increase new production in the short term.
Whether such increases are long-term or if they instead serve to

deepen the nitracline depends on the vertical mixing in winter.
Similarly, a lengthening ice-free season or a more transparent ice
cover lead to a deeper euphotic zone and could enhance growth
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in subsurface waters, richer in nutrients, but the resupply rate
of nitrogen ultimately decides about potential lasting increases
in new production.

Future Scenarios
Randelhoff and Guthrie (2016) provided estimates of end-of-
century new production, given presently observed turbulence
and potential future increases in the freshwater inventory
observed in a numerical circulation model (Nummelin et al.,
2015). They concluded that a potential increase in new
production in the Amundsen Basin (if the system were to turn
to nitrate limitation) may fall victim to future increases in
vertical stability. Little is known about the future of seasonal
and especially summertime stratification in the surface layer
(Randelhoff et al., 2017).

Contrarily, Polyakov et al. (2017) posited that an ongoing
Atlantification will lead to deeper winter convection in the
Eurasian Basin. As Atlantic Water is also the principal source of
heat in the Arctic Ocean, it has been implicated in recent sea ice
loss (Ivanov et al., 2016; Polyakov et al., 2017), and hence could
regionally relieve nutrient and light limitation at the same time
(Randelhoff et al., 2018). The recent decreases of sea ice extent
in Northern Fram Strait and north of Svalbard (Onarheim et al.,
2018) indicate that such a process is already well underway. The
analog may be happening in the Chukchi sea, where the Alaskan
Coastal Current brings in both large amounts of heat (Woodgate
et al., 2012) and nutrients (Torres-Valdés et al., 2013), but the
published literature is less clear on the presence and effects of
such a tentative advective borealization of the Chukchi sea.

Ice Cover and Wind-Driven Turbulence
The published literature is also equivocal on whether or not
the decreasing ice cover will enhance turbulent mixing in the
upper ocean. While less sea ice may enhance the input of
wind energy into the ocean (Rainville and Woodgate, 2009;
Dosser and Rainville, 2016), this energy may be dissipated at
shallow depths due to the strong stratification (Lincoln et al.,
2016). Reanalysis of conductivity-temperature depth and acoustic
Doppler current profiler finestructure data has not shown trends
in turbulent mixing in recent decades either (Guthrie et al., 2013;
Chanona et al., 2018).

Broken-up, free-drifting sea ice in summer may enhance wind
energy input into the upper ocean compared to ice-covered areas
by enhancing surface roughness (Martin et al., 2016) but also
decrease vertical turbulent mixing in the surface layer through
the associated layer of meltwater (Randelhoff et al., 2016, 2017).
Larger freezing rates, caused by increasing proportions of first-
year ice, may increase upward mixing, but the potential effects
on entrainment of nitrate into the surface layer has to our
knowledge not been systematically studied. A major uncertainty
in any future prognoses is the scarcity of large-scale surveys of the
ice-ocean boundary layer.

Arctic Nitrate Fluxes in a Global Context
Based on a literature review (Table 2), Arctic vertical nitrate
fluxes tend to be approximately one order of magnitude lower
than in the rest of the world ocean (Figure 8). Even though study

sites in the global ocean may be biased by measurements seeking
to explain high biological productivity (most often as the result of
strong mixing and upwelling), there is a considerable difference
between new production in the Arctic Ocean and the world’s most
productive areas.

CONCLUSION

Summary
(1) Determining nitrate fluxes is a laborious task. With

measurements accumulating through the last 10 years, we
are now approaching a Pan-Arctic baseline. In individual
regions however, seasonal coverage remains patchy.

(2) Arctic nitrate fluxes are, on average, one to two orders
of magnitude smaller than those observed elsewhere in
the world ocean.

(3) The spatial patterns of the upper ocean nitrate inventory in
the Arctic are well explained by vertical nitrate fluxes.

(4) On annual timescales, nitrate fluxes are a powerful tool to
constrain export fluxes and new production, both of which
are hard to measure autonomously.

(5) On weekly or shorter timescales, the relation between
nitrate supply and new production is unclear, mostly
due to lack of appropriate time series data. A certain
asynchronicity between the different nitrogen pools may
confound budget calculations.

Avenues for Further Research
Besides further aggregate scale (seasonal or basin-scale)
measurements of the turbulent vertical nitrate flux, two avenues
emerge from our conclusions.

(1) Advances in turbulence-ecosystem coupling will require
dedicated or autonomous sampling and time series.
Purely physics-oriented turbulence sampling often does not
sufficiently resolve the biologically relevant surface layer.

(2) Prediction of upper ocean mixing and ice-ocean interaction
depends on sea ice melt and freeze rates, expressed
as buoyancy fluxes or in units of meters of freshwater
equivalent per unit area. Yet, to our knowledge, this
quantity is not routinely investigated as output of coupled
ice-ocean circulation models and so no such data product
exists that could aid in the extrapolation of Pan-Arctic
patterns of the seasonal vertical nitrate flux.

Upscaling Primary Production
Measurements
While currently publicly available datasets may be more
comprehensive for new and export production than for nitrate
fluxes, they possess some drawbacks concerning evaluating large-
scale patterns. As incubations to determine new production
are usually point measurements, averaging them is not trivial.
Sediment traps, while measuring export fluxes at a single location,
integrate the time dimension, and so are more representative, but
also require a large logistic effort. Chemical tracer approaches
(e.g., Moran et al., 2003) make the data acquisition phase
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easier, but still require water samples and are hence not easily
amenable to autonomous exploration. In sum, current Arctic
Ocean exploration does not scale well. Nitrate fluxes, on the other
hand, can be estimated purely based on physical sensor data and
hence with larger scope both in time and space.

Such turbulence measurements do not necessarily have to be
conducted using microstructure profilers – mixing can also be
estimated from current shear or density strain fine-structure with
more standard instruments, which may work especially well in
discerning relative magnitudes but can also be calibrated using
regional microstructure estimates (Gargett and Garner, 2008;
Guthrie et al., 2013; Polzin et al., 2014; Chanona et al., 2018).
Parameterizations of this kind, relying on models of internal wave
breaking, are most useful away from boundaries, in scenarios
of perennial stratification where year-round background fluxes
dominate (Randelhoff and Guthrie, 2016), and less so to
characterize near-surface mixing. Other promising avenues are
approaches based on turbulence structure functions (Wiles
et al., 2006), high-frequency Acoustic Doppler Current Profiler
measurements, or microstructure sensors deployed on moorings
and gliders (Scheifele et al., 2018).

Turbulence also obeys tight physical constraints imposed by
wind, tidal and other energy available for mixing, and by the
freshwater (density) fluxes that cause background stratification.
Nitrate fluxes may therefore be more easily constrained than
plankton photophysiology that is notoriously variable across
species and environmental conditions (e.g., Bouman et al., 2018).

Perspectives
This study has focused on vertical diffusive transport, largely
ignoring other transport modes. Upwelling (Carmack and
Chapman, 2003; Kämpf and Chapman, 2016), horizontal
advection (Torres-Valdés et al., 2013), mesoscale eddy shedding
(Watanabe et al., 2014), benthic processes (Renaud et al., 2015),
and river biogeochemistry (Frey and McClelland, 2009) all
likely affect Arctic Ocean primary production at least regionally.
The fact that Pan-Arctic patterns of primary production
can seemingly be explained without the need to invoke
any of these mechanisms also showcases the stark contrasts
between the different Arctic regimes that likely shadow intra-
regional nuances.

Mesoscale turbulence can contribute to cross-shelf transport
and nutrient supply in the Chukchi sea (Watanabe et al., 2014).
Some studies suggest that eddies may also contribute to cross-
shelf transport along the West Spitsbergen Current (Hattermann
et al., 2016). Crews et al. (2018) found eddies may contribute to
ventilation of halocline waters in the European Arctic, meaning
they would be apparent in the upward vertical fluxes measured
out of the halocline waters instead of contributing directly to
mixed-layer nitrate pools. Johnson et al. (2010), working in
the Subtropical North Pacific, stressed the importance of event-
driven upward nitrate transport not easily captured by vertical
diffusivities, and even the possibility of immediate utilization of
nitrate in an otherwise diabatic isopycnal excursion, for example
associated with a passing eddy. Attention is required summing
these contributions, however, as there is a certain danger of

double counting nitrate fluxes in eddies (Martin and Richards,
2001; Martin and Pondaven, 2003).

Advection with ocean currents manifests itself largely as
transport with the Pacific and Atlantic currents that, e.g., Torres-
Valdés et al. (2013) have discussed. For the most part, these
currents are subducted under local (Arctic) water masses and
can hence be accounted for as part of the vertical fluxes
downstream. Randelhoff et al. (2016) have argued that as these
currents come from further south where primary production
starts earlier and terminates later, the surface waters they
carry are as nutrient-depleted as the Arctic surface waters.
This argument has, however, never been tested quantitatively.
Similarly, upwelling along coasts, shelf breaks, in eddies, and
at marine-terminating glaciers may contribute regionally to
ocean productivity (Carmack and Chapman, 2003; Kämpf and
Chapman, 2016; Meire et al., 2017). Arguments as to how exactly
upwelling is caused and how it impacts nutrient fluxes have
largely remained qualitative (Randelhoff and Sundfjord, 2018; but
see Spall et al., 2014 for a careful modeling exercise).

Lastly, turbulent mixing is much more than only the vertical
nitrate flux. It affects predator-prey interactions (Kiørboe, 2008),
nutrient uptake rates at the cell level (Karp-Boss et al., 1996),
light exposure of individual cells (Sverdrup, 1953), etc. In fact,
mixing and variability is a resource in itself that can be exploited
by different plankton life strategies (Margalef, 1978). These
concepts may turn out to be important in particular when
interpreting regional specifics such as biological hotspots. As
methods advance and measurements accumulate, we expect that
more efforts can be dedicated to studying regional phenomena in
a Pan-Arctic unified manner.
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