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ABSTRACT

End-to-end architectures have been recently proposed for spo-
ken language understanding (SLU) and semantic parsing. Based
on a large amount of data, those models learn jointly acoustic and
linguistic-sequential features. Such architectures give very good
results in the context of domain, intent and slot detection, their
application in a more complex semantic chunking and tagging
task is less easy. For that, in many cases, models are combined
with an external a language model to enhance their performance.

In this paper we introduce a data efficient system which is
trained end-to-end, with no additional, pre-trained external mod-
ule. One key feature of our approach is an incremental training
procedure where acoustic, language and semantic models are
trained sequentially one after the other. The proposed model has
a reasonable size and achieves competitive results with respect to
state-of-the-art while using a small training dataset. In particular,
we reach 24.02% Concept Error Rate (CER) on MEDIA/test
while training on MEDIA/train without any additional data.

Index Terms— End-to-End SLU, sequence-to-sequence
models, joint learning, data efficiency, MEDIA corpus

1. INTRODUCTION

Spoken Language Understanding (SLU) aims at extracting a
semantic representation from a speech signal in human-computer
interaction applications [1]. First SLU systems were based on
pipeline architectures where an automatic speech recognition
(ASR) module generates a transcription of utterances and a SLU
module predicts the semantic labels. Pipeline systems now tend to
be replaced by end-to-end1 architectures based on neural models,
where semantic representations are produced directly from a
speech input without using transcriptions [2, 3, 4, 5]. Most of
recently proposed end-to-end models are based on sequence-to-
sequence architectures. They were initially applied to speech
translation [6, 7] and then to SLU tasks where the main goal is
to extract the domain and user intent from an utterance, together
with some semantic slots [2, 5].

In this paper we address end-to-end semantic chunking and
tagging of spoken utterances. The most relevant works of the
literature with respect to this task [3, 4] propose models based

1Our approach, like previous approaches in the literature, is end-to-end at in-
ference time, that is we do not use any intermediate representation between speech
and semantic level at decoding; however we do use transcriptions at training time.

on Feed-Forward Neural Networks (FFNN) similar to the Deep
Speech 2 model proposed for ASR [8], and an independent pre-
trained language model re-scores semantic outputs. Except for [5],
most end-to-end SLU systems of the literature are trained on huge
amount of data. [3] also apply pre-training and transfer learning
from other NLP tasks such as Named Entity Recognition (NER).

The contribution of this paper lies in the proposal of a data ef-
ficient architecture which is trained end-to-end, with no additional
pre-trained external module. The proposed model achieves com-
petitive results with respect to state-of-the-art while using a small
training dataset (French MEDIA [9]) and having a reasonable
computational footprint. In particular, we reach 24.02% Concept
Error Rate (CER) on MEDIA/test while training on MEDIA/train
without any additional data.

The remainder of this paper is organised as follows. After
presenting the task addressed by this work in Section 2, we
describe our sequence-to-sequence neural model in Section 3.
Section 4 provides our experimental study on the French MEDIA
corpus and we conclude in Section 5.

2. SLU TASK ADDRESSED (MEDIA)

In this work we are interested in the task of semantic chunking
and tagging of speech signals, corresponding to the user utterances
in a conversation with a spoken dialog system. We focus on
the specific domain of hotel information and reservation via
an automatic system. This particular context is offered by the
French MEDIA corpus [9]. It is made of 1 250 human-machine
dialogs acquired with a Wizard-of-OZ approach, where 250 users
followed 5 different reservation scenarios. Spoken data was man-
ually transcribed and annotated with domain concepts, following
a rich ontology. Statistics on the training, development and test
data of the MEDIA corpus are shown in Table 1. We note that,
while all turns have been manually transcribed (total duration in
the table) and can be used to train ASR models, only user turns
have been annotated with concepts (user sentences) and can be
used to train SLU models.

Before the diffusion of neural networks, SLU was performed
with pipeline systems [10, 11]. ASR was trained on large amount
of data and refined on a specific SLU task. ASR transcripts were
used as input to the SLU module, whose purpose was to tag words
with the concepts. A further module was in charge to extract
normalized values from tokens instantiating a particular concept.
This is the processing applied also by a recent pipeline system
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Train Dev Test
total duration 41.5 hours 3.5 hours 11.3 hours
# user sentences 12,908 1,259 3,005

Words Tags Words Tags Words Tags
# tokens 94,466 43,078 10,849 4,705 25,606 11,383
# types 2,210 99 838 66 1,276 78
OOV% – – 1.33 0.02 1.39 0.04

Table 1. Statistics of the MEDIA corpus

Fig. 1. Schema of concept (attribute names) and value (attribute values)
extraction in the SLU task for spoken dialog systems [11]

based on neural networks [12]. The concept (attribute names) and
value (attribute values) extraction schema is shown in Figure 1.
In this work we focus on attribute names extraction only, and we
decode directly whole concepts, without passing through the BIO
intermediate format.

All these modules can be seen as different sub-tasks. More-
over the ASR can be further split into acoustic and language model
learning sub-tasks. Thanks to neural networks, the sub-tasks can
be learned jointly in an end-to-end framework. The literature
also shows that it might be convenient to learn incrementally the
different sub-tasks involved in SLU: acoustic features, characters,
tokens and finally concepts. We adopt a similar incremental
strategy learning different features at different learning stages.
We use sequence-to-sequence neural models for learning jointly
acoustic and linguistic features, without using any externally
pre-trained language model to rescore local predictions from the
acoustic feature encoder. Joint training is performed at different
sub-task levels, eventually resulting in learning semantic features
jointly with acoustic and linguistic features. Our neural models
are detailed in the following section.

3. A DATA EFFICIENT
SEQUENCE-TO-SEQUENCE MODEL FOR SLU

3.1. Basic, Sequential and 2-Stage Models

The architecture proposed in this paper is based on sequence-
to-sequence neural models [13, 14]. The encoder has a similar
architecture as the one used in the Deep Speech 2 architecture [8].
It takes as input the spectrogram of the speech signal, which is
passed through a stack of convolutional and recurrent layers, and
generates representations of the output. This can be characters, to-
kens or semantic classes, depending on which sub-task is targeted.

The decoder has the same architecture as in [15]. It has
characteristics of both recurrent and Transformer [14] neural
networks. It takes as input the output of the encoder, but also its
own previous predictions. These are integrated into the decoder
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Fig. 2. Basic Model (left), Sequential Model (right)

as embeddings of discrete items (indexes), the hidden layer of the
decoder embeds thus a concatenation of both acoustic and linguis-
tic/semantic features. Thanks to this choice, the architecture learns
joint characteristics of both acoustic and language models, when
characters or tokens are the items to be predicted. The model
learns jointly acoustic and semantic features, when semantic tags
are the items to be predicted. The fact that the current prediction
depends also on previous predictions, allows the hidden layer to
encode the sequential nature of output items.

Basic (acoustic) model. Since in general it is easier to learn
acoustic and linguistic-sequential features incrementally, we use
the encoder of our architecture as a basic model. In order to
be trained individually, we add on top of it a linear layer with
a log-softmax output function. A schema of this basic model is
given in Figure 2 (left).

Sequential (acoustic+language) model. In order to obtain
our sequence-to-sequence model, we replace the log-softmax
with a decoder. A schema of this sequential model is given in the
Figure 2 (right). We note that the basic model predicts an output
item for each spectrogram frame independently, as a sequence of
local decisions. The sequential model in contrast takes previous
predicted items into account for the current prediction, and thus
makes contextual decisions.

2-stage (acoustic+language) model. We use the same idea
as [5] who proposed a model learning phones and tokens together.
Our only difference is that instead of predicting phones, we
decode characters. This has the advantage of being pronunciation
dictionary free. Our 2-stage model is obtained by stacking a
sequential model (cf. Figure 2, on the right) on top of a basic
model (cf. figure 2, on the left).

2-stage (acoustic+language+semantic) model. The final
SLU model is obtained by adding another decoder on top of
a 2-stage model. It is trained to decode semantic concepts. A
schema of our final SLU model is depicted in Figure 3.
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Fig. 3. Schema of our End-to-End SLU model

3.2. Incremental Training Strategy

We use the neural architectures introduced in the previous section
for training incrementally, one after the other, all the sub-tasks in-
volved in SLU: acoustic features, characters, tokens and concepts
decoding from speech. We learn first a basic model for decoding
characters, this is used as starting point for learning a sequential
model for characters. The sequential model for characters is used
as starting point for a basic 2-stage model decoding tokens, which
in turn initializes parameters of a sequential 2-stage model. The lat-
ter decodes tokens, it learns jointly acoustic and linguistic features
of tokens, together with token sequences. It thus performs at the
same time the role of acoustic and language models of traditional
ASR systems. Finally, a sequential model for decoding concepts
(SLU) is learned by stacking a new decoder on top of a 2-stage
model. All models are learned minimizing the CTC loss [16].

When learning our sequential model with gold items, previous
items given as input to the decoder are a much stronger predictor
of the current item compared to representations of spectrogram
input. The model gives thus much more importance to the
previous items than to acoustic features, creating a mismatch
between training and testing conditions, when previous items
must be predicted. In order to avoid this behavior, we use a
similar strategy as [17]: sequential models are trained starting
with predicted items, when the learning rate is the greatest. After
a given number of training epochs (an hyper-parameter), when
weights have sufficiently been shaped from acoustic features, we
switch to training with gold items. The rest of the training is lead
by the error rate on development data (see section 4.1).

Another learning problem may be introduced by the very
different length between input sequence (speech spectrograms)
and gold output sequences (characters, tokens or concepts). Let the
input sequence have lengthN and the output sequence have length
M . In general N�M .2 When the decoder is at processing step i,
it has no information on which spectrogram frames to use as input.
This problem can be solved using an attention mechanism [18] to

2In our data we found that N
M
≤30

Model Dev WER Test WER
Basic Char 27.74 (*) –
Seq Char 24.05 (*) 23.32 (*)
Basic Tok 30.79 –
Seq Tok 29.42 28.71
Basic 2-Stage 28.00 –
Seq 2-Stage 27.95 27.01
Seq 2-Stage (no-incremental) 63.70 63.61
Seq 2-Stage (no-curriculum) 28.15 27.96

Table 2. ASR Results on MEDIA - (*) is a character error rate

focus on the correct part of the input sequence depending on the
part of the output sequence being decoded. However, in this work
we propose a simpler but efficient solution (inspired by [19, 20,
21]), based on a basic mechanism (since alignment is monotonic
in SLU): we compute the ratio between output and input sequence
lengths r=M

N , and when the model decodes at position i, it uses
the sum of the encoder states around position bi·rc.

We further improve our training procedure with a variant of
the curriculum strategy used in [8]. We sort speech turns based
on their increasing length. Shorter turns, which have simpler
sequential structures, are presented first to the model. After a
given number of training epochs (an hyper-parameter), we switch
to training with whole-dialog turn sequences.

4. EVALUATION

4.1. Settings

The size of layers in our models, resulted from optimization on
the Dev data, are as follows: the input spectrogram features are
of dimension 81 and so is the dimension of convolutional layers,
recurrent layers (LSTMs) have 256 dimensions. In the decoder,
embeddings of previous predictions have 150 dimensions while
hidden layers have 300. The decoder predicting concepts has
twice more dimensions for each layer. Our basic and sequential
models use only 1 CNN layer with stride 2 and 2 Bi-LSTM layers,
in contrast to [4, 3] where 2 and 6 are used, respectively. Layer
normalization and Dropout regularization [22] (with p=0.5) are
applied between each two layers. Our most complex model (see
section 4.2) has less than 9.8M parameters, in contrast to e.g. [23]
with 97M. All models are learned with an ADAM optimizer [24],
with learning rate of 0.0005 decayed linearly over 60 epochs. The
training procedure starts with the incremental training strategy
described in previous section and using predicted items. After 5
epochs we switch to gold items. At this point, each time the error
rate is not improved on DEV data for 2 consecutive epochs, we
switch between gold and predicted items learning.

4.2. Results

We evaluate both ASR (Word Error Rate) and SLU (Concept
Error Rate) results on MEDIA corpus (Dev and Test).



Model Training Dev CER Test CER
Speech

Seq 2-Stage +
−−→
Dec 41.5h 28.11 27.52

Seq 2-Stage +
−−→
Dec tune 41.5h 28.18 27.35

Seq 2-Stage +
−−→
Dec XT 41.5h 23.39 24.02

State-of-the-art Models
E2E SLU [4] 300h 30.1 27.0
E2E Baseline [3] 41.5h – 39.8
E2E SLU [3] 500h – 23.7
E2E SLU + curr. [3] 500h – 16.4

Table 3. SLU Results on MEDIA. For full comparison we report
the best result of [3] (16.4), which is obtained with a beam-search
decoding, while the others are obtained, like our results, with
greedy decoding.

ASR results are presented in Table 2. Together with the char-
acter and the 2-stage models, we show performance from a model
decoding directly tokens. We observe that the sequential model
outperforms the basic model, which does not use information of
the output’s sequential structure. The 2-stage model always outper-
forms the token model which demonstrates that using pre-trained
character models gives an advantage over training directly for
decoding tokens. Training incrementally the different stages of the
model is the most effective choice: training a 2-stage model from
scratch (no-incremental in the table), the error rate is much higher
(over 60%). Finally, using the curriculum learning (sort speech
turns based on their increasing length) proves also to be slightly
beneficial: 1% lower WER compared to a model trained without
curriculum strategy (no-curriculum in the table). Our best results
are competitive with previously published ASR performance on
MEDIA: ASR used in [11] had an error rate of 30.4 on Dev data,
which we improve by a large margin. Our own ASR baseline
based on an HMM-DNN model trained with Kaldi3 reached
an error rate of 25.1 on Dev. The best results shown in table 2
are not too far, and they provide the advantage of being trained
end-to-end without any external data nor language model. Better
ASR performances were published lately on MEDIA [12, 3] but
these were trained on up to 12 times more ASR training data. In
particular [3] trains the ASR part of the model with 4 different
corpora, for a total of roughly 300 hours of speech. [3] used 5
different corpora, accounting for 500 hours of speech. [12] uses
even more data. Our system is trained on MEDIA training data
only, consisting of 41.5 hours of speech. A comparison of the
amount of speech training data used for end-to-end ASR systems
on MEDIA is given in the column Training Speech of table 3.4

SLU performances are given in Table 3. Our results can be
compared with some previous works [4, 3]. We note however that
results reported in [4, 3] are obtained with models trained with

3https://kaldi-asr.org/
4The amount of speech data for training the SLU is not always detailed in

those papers, it is generally smaller or equal to the amount for training ASR
reported in the table.

much more data exploiting NER tasks with transfer learning. In
particular [3] uses 3 NER corpora for bootstrapping an end-to-end
system. This is then fine-tuned on a first SLU corpus similar to
MEDIA, and finally on MEDIA (see [3] for details). For train-
ing our system, we note that only user turns are annotated with
concepts, these account for 16.8 hours, that is less than half of the
41.5 hours of speech available, containing both machine and user
turns. The only result that is obtained in similar training conditions
as ours, is the baseline model of [3]. We can see that our model
improves such baseline by a large margin, proving that learning
jointly acoustic and linguistic-sequential features in an end-to-
end framework is more effective than rescoring outputs with an
independent language model. More importantly, our results are
comparable to the best results reported in [4]. Once again these are
obtained with models trained with much more data and a curricu-
lum strategy via transfer learning among different corpora. This
outcome highlight even more our data efficient training procedure.

Our SLU results in Table 3 are obtained with a model decod-
ing both concepts and tokens. This choice is imposed by the need
of keeping track of which words instantiate a concept. Using the
example in Figure 1, the words “chambre double” (double room)
for instance, instantiate the concept chambre-type. Our model,
similar to [4], generates the output < chambre double chambre-
type >, which allows for attribute value extraction.5 This choice
constrains the model to learn chunking and tagging at the same
time, which is a much harder problem than just tagging [1]. To
improve this, we propose two alternatives: (1) refining token rep-
resentations during SLU model training (tune in the table) and (2)
decoupling chunking and tagging using a second decoder which
decodes only concepts (XT in the table for extended). In this latter
decoding strategy, the first decoder generates a first output with
concept boundary annotation while the second decoder generates
concepts only, aligned to the output of the previous decoder. As
we can see in the results, the XT model obtains results comparable
to those obtained by models trained with much more training data.

5. CONCLUSIONS

In this paper we proposed a data efficient end-to-end SLU system.
Our model learns jointly acoustic and linguistic-sequential features,
allowing to train SLU models without an explicit language model
module (pre-trained independently and/or on huge amount of data).
The efficiency of our system comes mostly from an incremental
training procedure. The proposed model achieves competitive
results with respect to state-of-the-art while using a small training
dataset and having a reasonable computational footprint.
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