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Abstract—This paper addresses the problem of communication
in resource-limited broadcast/receive wireless networks. In large
scale and resource-limited wireless networks, as the Internet of
Things (IoT), a massive amount of data is becoming increasingly
available, and consequently implementing protocols achieving
error-free communication channels presents an important
challenge. Indeed, in this new kind of network, the prevention
of message conflicts and message collisions is a crucial issue. In
terms of graph theory, solving this issue amounts to solve the
distance-2 coloring problem on the network. This paper presents
a first study on dynamic management in distance-2 coloring in
resource-limited wireless networks. We propose a distributed
distance-2 coloring in a dynamic network where a new node
can join the network. Thanks to the proposed protocol, we
assign a time slot to the new node without re-running the whole
algorithm of time slot assigning. Our protocol is time-efficient
and uses only local information with a high probability.

Keywords: Wireless network, Broadcast/receive, Collision,
Conflict, Distance-2 graph coloring, Dynamic Networks,
Synchronous system, Time slot assignment

I. INTRODUCTION

In recent years, there have been major advances in the
development of objects equipped with microcontrollers and
radio frequency transceivers for digital communications. This
gave birth to a new paradigm of networks called Internet of
Things (IoT), which are constituted by a wide variety of com-
municating things (e.g., sensors, mobile phones, car, domestic
appliances) that have the ability to collect and exchange data
of the most various nature (e.g., temperature, traffic conditions,
pollution) for processing and decision-making. The IoT will
soon occupy a place comparable to that of electricity in our
everyday life and will play a fundamental role in socio-
economic development. However, large IoT scale networks,
usually deployed in open environments, are vulnerable to
failures resulting from collisions on communication channels
or from component failures [1], [2], [3].

Broadcast communication is advantageous when a node
needs to find information without knowing exactly what an-
other node can provide, or when a node wants to provide infor-
mation to a large number of nodes in due time. Broadcasting
is the most general and intensive method of communication

in the sense that many messages are required and many
network devices are involved. Many fundamental problems of
distributed computing such as fault tolerance, consensus, the
election of leaders, routing, are based on broadcast/receive op-
erations. With the recent advances in miniaturization, networks
have become large-scale and with limited and heterogeneous
resources which creates several communication problems. In-
deed, in large-scale restricted resource networks, interference
in the communication channels is one of the most important
problems [4], [5].

In a synchronous system, the nodes execute a sequence
of rounds, where a round is a bounded time slot where any
message sent at the beginning of a slot is received at most
by the end of the same time slot by its receiver [6]. A broad-
cast/receive communication system provides nodes with two
operations: a broadcast that allows sending a message to all
its (one hop) neighbors, and a receive which allows receiving
messages. This paper considers a synchronous system with
broadcast/receive communication. In such a system:

• if two neighbor nodes of a node pi invoke the operation
broadcast() during the same time slot (round), a message
collision occurs.

• if a node pi and one of its neighbors invoke broadcast()
during the same time slot (round), a message conflict
occurs.

In case of collision or conflict in a channel C, the status of C is
S(C) = COLLISION. Otherwise, the status is SINGLE (only
one broadcast on the channel) or NULL (no broadcast). As
already mentioned, this paper considers this broadcast/receive
communication model.

In terms of graph theory, solving this issue of communi-
cation amounts to solve the distance-2 coloring problem on
the network. A large number of works [11-20] have proposed
distributed vertex coloring algorithms applicable to wireless
networks. Unfortunately, so far these proposed coloring pro-
tocols are not robust to both conflicts and collisions on the
level of communication channels. Additionally, some of them
use centralized algorithms. Furthermore, they are not all suited
for resource-limited wireless nodes.



Therefore, our goal and original contribution of this work
is to provide a scalable communication for large scale and
resource-limited communicating things. That is, a collision and
conflict-free communication whatever the number of nodes
in the network and whatever the number of neighbors a
node can have. Towards this objective, we presented several
research results. In [7], [8], we proposed a distance-2 coloring
algorithm that allows a safe communication for tree networks.
In [10], we proposed a parallel multi-coloring algorithm for
tree networks and in [9], we proposed a distributed distance-
2 coloring algorithm that allows a safe communication for
general networks. However, this last is not optimal in terms of
communication. All these papers do not deal with the problem
of dynamic (nodes joining) in limited resources wireless using
distributed protocols. Our paper is the first to provide a
solution to such a problem.

The remainder of this paper is organized as follows. In
Section II, we present the system model and some definitions.
In Section III, we present the problem formulation and some
mathematical tools used to prove and analyze the proposed
solution. This section is followed by Section IV, where we
present the proposed protocol. In section V we present the
protocol analysis and its computational. Finally, Section VII
concludes our paper.

II. SYNCHRONOUS BROADCAST/RECEIVE MODEL

In this section, we present the timing model and the com-
munications operations.

A. System model and definitions

a) Nodes, initial knowledge, and the communication
graph: The system model consists of n sequential nodes
denoted p1, ..., pn, connected by an arbitrary communication
graph.

Each node pi has an identity idi, which is known only
by itself and its neighbors (nodes at distance 1 from it). The
constant neighborsi is a local set, known only by pi, including
the identities of its neighbors (and only them). As noticed in
the Introduction, so that a node pi not to confuse its neighbors,
it is assumed that each two nodes at distance less than or equal
to 2 have distinct identities. Hence, any two nodes at distance
greater than 2 may have the same identity. When computing
complexities, log x refers to the logarithm in base 2 and lnx
refers to the natural logarithm.

Let ∆i denote the degree of a node pi (i.e. |neighborsi|)
and ∆ denote the maximal degree of the graph
(max{∆1, · · · ,∆n}).

When considering a node pi, 1 ≤ i ≤ n, the integer i is
called its index. Indexes are not known by the nodes. They are
only a notation convenience used as a subscript to distinguish
nodes and their local variables.

b) Timing model: We assume that processing duration is
equal to 0. This is justified by the following observations: (a)
the duration of the local computations of a node are negligible
concerning message transfer delays and (b) the processing

duration of a message maybe considered as a part of its transfer
delay.

Communication is synchronous in the sense that there is an
upper bound D on message transfer delays and this bound is
known by all the nodes (global knowledge). From an algorithm
design point of view, we consider that there is a global clock,
denoted CLOCK , which is increased by 1, after each period
of D physical time units. Each value of CLOCK defines what
is usually called a time slot or a round.

c) Communication operations: The nodes are provided
with two operations denoted broadcast() and receive(). A
node pi invokes broadcast TAG(m) to send the message m,
whose type is TAG, to all its neighbors. It is assumed that
a node invokes broadcast() only at the beginning of a time
slot. When a message TAG(m) arrives at a node pi, this node
is immediately warned of it, which triggers the execution of
operation receive() to obtain the message. Hence, a message
is always received and processed during the time slot –round–
in which it was broadcast.

From a linguistic point of view, we use the two following
when notations when writing algorithms, where predicate is
a predicate involving CLOCK and possibly local variables of
the concerned node:

when TAG(m) is received do processing of the message.
when predicate do code entailing one broadcast() invocation.

III. THE DISTANCE-2 COLORING PROBLEM

This problem is a well-known graph coloring problem called
distance-2 coloring. The aim is to design distributed algo-
rithms associating colors with each node (which will define
the time-slots during which it will be allowed to broadcast)
such that the following properties are satisfied.

a) Communication operations : Traditional wired round-
based synchronous systems assume a dedicated communica-
tion medium for each pair of nodes (i.e., this medium is not
accessible to the other nodes). Hence, in these systems, a
node pi obeys the following sequential pattern during each
round: (a) first pi sends a message to all or a subset of its
neighbors, (b) then pi receives the messages sent to it by its
neighbors during the current round, and (c) finally executes
a local computation which depends on its local state at the
beginning of the round and the messages it has received during
the current round.

b) Using the colors to define the time slots: The colors
obtained by the nodes are used as follows, where colorsi are
the colors obtained by node pi. The time slots (rounds) during
which pi is allowed to broadcast a message to its neighbors
correspond to the values of CLOCK such that ∃c ∈ colorsi
with

(
(CLOCK mod (K + 1)

)
= c). As we will see, these

time slots are different from the time slots used during the
distributed distance-2 algorithms which are presented below.
It follows that these algorithms must provide each node with
the (initially unknown) value of K.



IV. PROBLEM FORMULATION AND TOOLS

We have a distance-2 colored network where each node
knows the colors of its neighbors [6-7], the degree of the
networks is ∆. The colors already used in the network
are {0, 1, 2, ...,∆− 1}. For each node i in the network, let
Ci = {c1, c2, ..., cm} be the set of channels that it uses to
communicate with its m neighbors.
If a new node N wants to join the network, how we assign
using a distributed solution a correct color to N under the
following constraints:

• The nodes do not know at which time a new node will
join the network

• If collision or conflict situations arise the message is lost
• The node N will have a color which is not used by its

future neighbors and the neighbors of its future neighbors

Due to space constraints, we assume in this paper that the
new node knows ∆ and when the new node arrives its future
neighbors do not broadcast any message (except the messages
of our protocol in Section 4) until the new node informs them
about the obtainment of its color. These assumptions will be
lifted in the journal version.

The following tools are used in the protocol analysis:
The De Morgan law for a set of events E1, E2, ..., Em

provides that:
m⋂
i=1

Ei =

m⋃
i=1

Ei (1)

To analyze the tail of a nonnegative random variables X , we
use the following bounds of Chernoff [20]:

Pr [X > (1 + δ)c · E [X]] <

(
eδ

(1 + δ)(1+δ)

)
(2)

Pr[X > (1 + ε)E[X]] < e−
ε2

3 E(x) (3)

And the Markov’s inequality, if X is a nonnegative random
variable and a > 0, then

Pr

[
X ≥ a · E[x] ≤ 1

a

]
(4)

It is well known that, for every constant c

lim
x→∞

f(1 +
c

x
)x = ec (5)

V. SOLUTION

Our solution consists of two phases. In the first phase, the
new informs its future neighbors about its presence. In the
second phase, the future neighbors exchange information with
the new node to allow it choosing a correct color.

A. Phase 1

During this phase the new node N attracts the attention
of its future neighbors about its presence in the network. Let
neighborsN be the set of future neighbors of the new node.
The detail of this phase are spelled out in following protocol:

(01) t← 0
(02) repeat
(03) broadcast HELLO (idi, t)
(04) t← t+ 1
(05) while ((∃C ∈ CN ) ∧ (S(C) = COLLISION ) ∧(t < ∆))

Algorithm 1: Hello protocol (code for N )

The node N broadcasts a HELLO message on all channels
in the list CN . It repeats this operation while there was a
collision in the previous broadcast. This message contains its
ID and the current time slot t. The parameter t will be used
by nodes in neighborsN to start the execution of phase 2 at
the same time. Then N waits for the message responses of
its future neighbors where they broadcast their colors already
used. To correctly color N , these colors must not be in colorN .

B. Phase 2

This phase consists of two stages. In the first stage, the
future neighbors of N try concurrently to send to N the colors
already used by them. This set of given by:⋃

h∈neighborsN

colorh (6)

In the second stage, after the reception of all used colors from
its future neighbors, N chooses a new color that allows it to
is to broadcast correctly in future communication. The details
of these stages explained in the following:

1) Stage 1: At the reception of the message HELLO ,
the node do not broadcast any message expect the message
in protocol Sending used colors until it receives a message
adding completed from N . In this phase, the future
neighbors of N try to send to N theirs list of colors using
the protocol Sending used colors. Using the parameter
t and ∆ the nodes in neighborsN call this protocol at the
same time. More precisely, let θ be the number of time
slots since node i received t in the first HELLO message
received. Each node checks if t+ θ = ∆ to start the protocol
Sending used colors. The details of this protocol are
described in Algorithm 2

Procedure color(t) for node i

(01) if (CLOCK mod ∆ = colori)
(02) then with a probability equal to 1

2t
broadcast COLOR (idi)

(03) end if
(04) return(S(c))

Procedure color(t) for node i



Protocol for node i
(01) L← 1
(02) while (L ≤ ∆)
(03) j ← 0
(04) repeat
(05) r ← COLOR (2j)
(06) ← j + 1
(07) until (r = NULL)
(08) φ← ∆
(09) l← 0
(10) u← 2i

(11) while (l + 1 < uφ) do
(12) m←

⌈
l+u
2

⌉
(13) r ← COLOR (m)
(14) if (r = SIGNLE)
(15) then end of the protocol for node p
(16) endif
(17) if (r = NULL)
(18) then u← m
(19) else
(20) l← m
(21) endif
(22) endwhile
(23) while (r 6= SINGLE)
(24) r ← COLOR (m)
(25) if (r = NULL)
(26) then u← u2

(27) else
(28) u←

⌈√
u
⌉

(29) endwhile
(30) L← L+ 1
(31) endwhile

Algorithm 2: Sending used colors (code for nodes in
neighborsN )

2) Stage 2: After the reception of all messages from the
nodes in neighborsN , the node N can choose a color that is
not used by its neighbors at distance 1 and its neighbors at
distance 2. More precisely, it chooses a color c where 63 n ∈
neighborsN with c ∈ colorsn. Once this color is chosen, N
uses the time slot corresponding to its color to broadcast a
message adding completed to its neighbors.

VI. PROTOCOL ANALYSIS

Lemma 1. Phase 1 takes at most ∆ times slots. And at the
end of Phase 1 all nodes in neighborsN have received at least
one HELLO message correctly.

Proof
Given that all nodes in neighborsN can have different

colors. Therefore, in this case, there is no pair of nodes
that can broadcast or receive any message at the same time
slot. As every node in neighborsN does not broadcast any
message to the node N (as assumed in Section 3), a message
HELLO(idN, t) that was sent in the time slot t corresponding
to the color of a node neighborsN is received correctly.
Therefore in the worst case (all nodes in neighborsN have
different colors), in ∆ rounds there were ∆ messages that
were received correctly.

2Lemma 1

Let us now take, without loss of generality (w.l.o.g), one
execution of the protocol Sending used colors (i.e. L =
1). We obtain for this case the following results:

Lemma 2. The second loop (repeat loop) of the pro-
tocol Sending used colors terminates in log log(∆3) +
log log log n time slots with a probability of at least 1 −

1
∆2 logn .

Proof
Let us assume w.l.o.g, that there is a time slot R where the

return r = NULL in line 13 of Algorithm 2. This means all
calls to the procedure color(t), 0 ≤ t < R returned SINGLE
or COLLISION .

Let us assume:

R = log log(∆3 log n) (7)

Let X be the random variable that denotes the number
of nodes that transmitted in the call color(R) in line 02 of
Algorithm 2 of the procedure color(t). It is clear that in this
round a node broadcasts with a probability equal to 1

22R
. As all

nodes broadcast with the same probability and we have at most
∆ nodes trying to broadcast, X is with Binomial distribution
X ∼ Bin(∆, 1

22R
). Therefore the expected value if X is:

E[X] = ∆
1

22R
<

∆

22R
≤ ∆

∆3 log n
=

1

∆2 log n
(8)

The probability that the return is NULL in round R is

Pr[X = 0] = 1− Pr[X ≥ 1] (9)

We bound now this probability using the expected value and
Markov inequality presented in (4):

Pr[X = 0] = 1− Pr[X ≥ 1]

< 1− Pr[X ≥ E[X]∆2 log n]

< 1− 1

∆2 log n

(10)

These completes the proof. 2Lemma 2

Lemma 3. With a probability equal to 1− 1
∆2 logn , the third

loop terminates in ∆ log log(∆3 log n) time slots.

Proof
Let us assume, w.l.o.g, that φ = 1 in line 8. Then, the

reader can see that this loop is a variant of a binary search
tree. Let us consider a binary search tree with logm divisions
if in each division we make a broadcast then the number of
time slots is log log(∆3 log n). Let us observe that the stop
condition in line 11 is set to ∆ · u, consequently, there is
∆ execution of the binary search tree. Therefore, the number
of time slots is ∆ log log(∆3 log n). These and the results of
lemma 2 complete the proof.

2Lemma 3



Lemma 4. With probability exceeding 5
4∆2 logn when the

third loop terminates, the last value of u satisfies the double
inequality

∆4

(ln(R16∆2 log n))2
≤ 22u ≤ 16R2∆4(log n)2 (11)

Proof
Let E1 be the event that when color(t) is called in line

12, then ∆ ≤ 2m

4R∆2 logn and yet the status of the channel is
NULL. And let E2 be the event that when color(t) is called
in line 12 ∆ ≥ 2m ln(4R∆2 log n) and yet the status of the
channel is collision.

Let Z be the random variable that denotes the number nodes
broadcasting in the call color(m). If ∆ ≤ 2m

4R∆2 logn then
E[Z] = ∆

2m ≤
1

4∆2log . By using Markov inequality, we obtain:

Pr[Z > 1] ≤ Pr[Y > E[Z]4R∆ log n] <
1

4R∆2 log n
(12)

If ∆ ≥ 2m ln(4R∆2 log n), the status of the channel is
NULL with a probability at most:

Pr[Z = 0] = (1− 1

2m
)∆

< e−
∆

2m

< e− ln(4R∆2 logn) =
1

4R∆2 log n

(13)

As we make R calls at most with a probability equal to
1− 1

∆2 logn , from equations (12) and (13) it is clear that with
a probability 1 − 5

4∆2 logn at the end of the second loop the
following double inequality is satisfied:

∆2

(ln(16R∆2 log n))
≤ 2m ≤ 4R∆2(log n) (14)

These completes the proof. 2Lemma 4

Lemma 5. If (14) is satisfied at the end of the third loop in
Sending used colors algorithm, then with a probability of at
least (1− 1

∆2 logn ), the fourth loop in Sending used colors al-
gorithm terminates in at most (elog ∆ ln(∆2 log n)+log ∆ lnn)
time slots.

Proof
Let p be the smaller integer satisfying:

2p−1 ≤ ∆ ≤ 2p (15)

Let E3 be the event that when color(m) is called in line
(23) the following inequality is satisfied:

p− log(∆) ≤ m ≤ p+ log(∆) (16)

Then the return r of color(m) is SINGLE with a proba-
bility equal to:

P [r = SINGLE|E3] =

(
∆

1

)
1

2u
(1− 1

2u
)∆−1 >

∆

2u
e

−∆
2u

>
2u+log ∆

2u
e

−2u+log ∆

2u

>
∆

elog ∆

(17)

Therefore if the event E3 is satisfied elog ∆

∆ ln(∆2 log n)
times the message is broadcast correctly with a probability:

Pr = 1− (1− ∆

elog ∆
)
elog ∆

∆ ln(∆2 logn)

= (1− ln(∆2 log n)
elog ∆

∆ ln(∆2 log n)
)
elog ∆

∆ ln(∆2 logn)

> 1− e− ln(∆2 logn)

> 1− 1

∆2 log n

(18)

In what follows, we give a born on the number broadcasts
to satisfy E3

elog ∆

∆ ln(∆2 log n) times with a high probability.
Let E4 be the event that when color(m) is called m ≥

p + log ∆ and the status of the channel is collision. Let E5

be the event that when color(m) is called m ≥ p + log ∆
and the status of the channel is null. Let E6 be the event that
when color (m) is called m ≤ p − log ∆ and the status of
the channel is null. Let E7 be the event that when color(m) is
called m ≤ p−log ∆ and the status of the channel is collision.

Let V (Ex), 3 ≤ x ≤ 7 be the random variable that counts
the number of times the event Ex is satisfied. Then, it is clear
that:

Pr[E3] = Pr[E4] ∩ Pr[E5] ∩ Pr[E6] ∩ Pr[E7] (19)

We have
Pr[E4] = Pr[Z > 1|m ≥ p+ log ∆]

< Pr[Z >
2m

2p
E[Z]]

< Pr[Z > ∆E[Z]]

<
1

∆ + 1

(20)

And we have

Pr[E6] = (1− 1

2m
)∆

< e−
∆

2m

< e−
2p−1

2m

< e−
∆
2

<
1

∆ + 1

(21)

Let suppose that color(m) in the fourth loop is executed
t = (elog ∆ ln(∆2 log n) + log ∆ lnn) times.



From (11) we have:

∆2

(ln(16R∆ log n))
≤ 2m ≤ 4R∆2(log n) (22)

m ≤ log(4R∆2(log n))

≤ p+ log ∆ + 2 + log log log(∆3 log n) + log log n
(23)

m ≥ log
∆2

(ln(16R∆ log n))

≥ p+ log ∆− log(log(16∆ log n))− 1

≥ p+ log ∆− log log log n− log log ∆−
log log log log(∆3 log n)− 3

(24)

From (23) and (24) it is clear that |m − p| < log ∆ +
log log n+ 2 log log log n+ 3. Then, we have:

V (E5)+V (E7) < V (E4)+V (E6)+log log n+2 log log log n+3
(25)

Since color(m) is executed t times:

E[V (E4) + V (E6)] =
(elog ∆ ln(∆2 log n) + log ∆ lnn)

∆ + 1
(26)

Thus, the probability that there are elog ∆ log n+ log ∆ lnn
satisfied events of E4 and E6 is:

PS = Pr[V (E4) + V (E6) >
elog ∆

∆
ln(∆2 log n) + log ∆ lnn]

< Pr[V (E4) + V (E6) > (1 +
1

∆
)E[V (E4) + V (E5)]]

< e−
1

∆2·3
E[V (E4)+V (E5)]

< e−
1

∆2·3
(elog ∆ ln(∆2 logn)+log ∆ lnn)

∆+1

<
1

∆2 log n
(27)

Let us suppose that
V (E4)+V (E5) < elog ∆

∆ ln(∆2 log n)+log ∆ lnn is satisfied.
Then the flowing result completes the proof:

V (E3) = t− (V (E4) + V (E5) + V (E6) + V (E7))

V (E3) > t− (2V (E4) + 2V (E6))

> (elog ∆ ln(∆2 log n) + log ∆ lnn)−
(2(V (E4) + V (E6)) + log log n+ 2 log log log n+ 3)

>
elog ∆

∆
ln(∆2 log n)

(28)

These complete the proof. 2Lemma 5

Theorem 1. From lemma 1, lemma 2, lemma 5, for L =
1 with a probability of at least (1 − 9

4∆2 logn ), the protocol

terminates in ∆ + log log(∆3 log n) + (elog ∆ ln(∆2 log n) +
log ∆ lnn) = ∆ +O(log ∆ lnn) times slot.

Theorem 2. The protocol Sending used colors is exe-
cuted ∆ times. And the new node will be added correctly
if all nodes in neighborsN succeed to broadcast the message
color(idi, colori) of line 2 of Algorithm 2 in procedure color(t)
to the new node. Therefore, as |neighborsN | ≤ ∆, with a
probability of more than (1− 9

4∆ logn ), our protocol termites
in ∆ + ∆O(log ∆ lnn) times slot.

VII. CONCLUSION

In this paper, we presented a first study on dynamic manage-
ment in distributed time slots assignment based on distance-2
coloring. Given the fact that in a dynamic network the new
nodes may arrive randomly and unpredictably in each time
slot, during these time slots future neighbors of new nodes can
be busy receiving or sending messages, creating a situation
of interference in communication channels. Therefore, it is
impossible to define deterministic protocols to manage the
dynamic in distance-2 colored networks to color new nodes.
In this work, we proposed a new randomized based protocol
to allow a new node to join the network and obtain a commu-
nication slot correctly and efficiently. In the journal version,
we will lift the assumptions of Section 3 stating that when the
new node arrives its future neighbors do not broadcast any
message until the new node obtains its color. We will also
make experimental studies to evaluate the performance of our
solution. This filed of research will be followed by several
research to deal with all aspects of dynamic management in
distance-2 coloring and muti-coloring protocols to allow a
scalable communication whatever the network characteristics.
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