
HAL Id: hal-03094833
https://hal.science/hal-03094833

Submitted on 12 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid screening and detection of inter-type viral
recombinants using phylo- k -mers

Guillaume E. Scholz, Benjamin Linard, Nikolai Romashchenko, Eric Rivals,
Fabio Pardi

To cite this version:
Guillaume E. Scholz, Benjamin Linard, Nikolai Romashchenko, Eric Rivals, Fabio Pardi. Rapid
screening and detection of inter-type viral recombinants using phylo- k -mers. Bioinformatics, 2020,
pp.#btaa1020. �10.1093/bioinformatics/btaa1020�. �hal-03094833�

https://hal.science/hal-03094833
https://hal.archives-ouvertes.fr

i
i

“output” — 2020/12/1 — 12:10 — page 1 — #1 i
i

i
i

i
i

Phylogenetics

Rapid screening and detection of inter-type viral
recombinants using phylo-k-mers
Guillaume E. Scholz 1,ú, Benjamin Linard 1,2, Nikolai Romashchenko 1, Eric
Rivals 1 and Fabio Pardi 1,ú

1LIRMM, University of Montpellier, CNRS, Montpellier, France and
2SPYGEN, 17 Rue du Lac Saint-André, 73370 Le Bourget-du-Lac, France.
úTo whom correspondence should be addressed.

Abstract
Motivation: Novel recombinant viruses may have important medical and evolutionary significance, as they
sometimes display new traits not present in the parental strains. This is particularly concerning when the new
viruses combine fragments coming from phylogenetically-distinct viral types. Here, we consider the task of
screening large collections of sequences for such novel recombinants. A number of methods already exist for this
task. However, these methods rely on complex models and heavy computations that are not always practical for a
quick scan of a large number of sequences.
Results: We have developed SHERPAS, a new program to detect novel recombinants and provide a first estimate of
their parental composition. Our approach is based on the precomputation of a large database of “phylogenetically-
informed k-mers”, an idea recently introduced in the context of phylogenetic placement in metagenomics. Our
experiments show that SHERPAS is hundreds to thousands of times faster than existing software, and enables the
analysis of thousands of whole genomes, or long sequencing reads, within minutes or seconds, and with limited
loss of accuracy.
Availability and Implementation: The source code is freely available for download at
https://github.com/phylo42/sherpas
Contact: pardi@lirmm.fr, gllm.scholz@gmail.com
Supplementary information: Supplementary Materials are available online.

1 Introduction

A fundamental task in viral bioinformatics is to recognize when a
newly sequenced virus genome or genome fragment is a recombinant
—that is, it carries regions from two or more genetically distinct
parental strains. Detecting novel recombinant forms has important
biological and medical implications, as the new recombinants are
sometimes associated with drug resistance (Moutouh et al., 1996),
increased virulence (Liu et al., 2002; Suarez et al., 2004), the ability
to infect new hosts (Kuiken et al., 2006) or to evade the host’s
immune system (Streeck et al., 2008). Moreover, for many viral
species, recombination is common: for example in HIV the rate of
within-host recombination appears to be at least as high as that of
point mutations (Neher and Leitner, 2010; Batorsky et al., 2011).
Interestingly, a number of artefacts (e.g. caused by PCR amplification
or sequence assembly errors) can also result in recombinant sequences,
which however never really existed in vivo (Martin et al., 2011; Pérez-
Losada et al., 2015). Detecting such artificial recombinants is also
important prior to any further sequence analysis.

A virus species is often subdivided into phylogenetically-distinct
strains, sometimes called groups, types or subtypes (the nomenclature
varies depending on the virus), representing the diversity of the
genomes from that virus. For example, HIV-1 is divided into 4 groups
(M, N, O and P) and the M group, responsible for the HIV pandemic,

is further classified into at least 9 subtypes (A, B, C, D, F, G, H, J,
K), some of which have sub-subtypes (Foley et al., 2018). Here, we use
the word strain to designate any subset of interest for the virus under
consideration. Di�erent strains are sometimes associated to important
di�erences, for example in resistance to antiviral drugs (Wainberg and
Brenner, 2010) or in disease progression (Kiguoya et al., 2017).

In this paper, we focus on the computational task of recognizing
novel recombinants composed of genomic regions coming from di�erent
strains (for example from di�erent subtypes in the case of HIV-1).
Given a collection of query sequences, we wish to identify inter-strain
recombinants, and for each putative recombinant: (1) recognize which
strains originated it; (2) partition it into the regions coming from
di�erent strains. Fig. 1 shows an example of the type of information
that we intend to recover from a query.

A number of tools can already be used precisely for this task.
For example, jpHMM (Schultz et al., 2006, 2009) —which partitions
each query by “jumping” between profile HMMs constructed for
the di�erent strains—, SCUEAL (Kosakovsky Pond et al., 2009)
—a likelihood-based genetic algorithm— and the REGA subtyping
tool (de Oliveira et al., 2005) —which implements a sliding-window-
based phylogenetic bootstrap analysis (bootscanning) for HIV-1.
All these approaches use a reference alignment containing several
representative sequences from each strain. They either need to align
the queries to the reference alignment prior to the analysis (SCUEAL
and REGA) or they implicitly construct an alignment during their
execution (jpHMM). Sometimes the query alignment phase is followed

1

https://github.com/phylo42/sherpas

i
i

“output” — 2020/12/1 — 12:10 — page 2 — #2 i
i

i
i

i
i

2 Scholz et al.

by a phylogenetic analysis step (SCUEAL and REGA), which may
have to be repeated over many di�erent portions of the alignment.
Because of the complexity of the computations involved, the execution
of these tools may become tricky when the datasets to analyse contain
more than a few thousands queries.

Because rapidly evolving sequencing technologies enable researchers
and clinicians to routinely produce increasingly large sequence datasets
—potentially containing millions of viral reads— we have developed a
fast alignment-free method to detect inter-strain recombinants within
large collections of queries, based on the use of phylo-k-mers (Linard
et al., 2019) (see Sec. 2.2). The new tool, called SHERPAS (Screening

Historical Events of Recombination in a Phylogeny via Ancestral

Sequences) is able to process thousands of long queries (potentially
covering whole viral genomes) within minutes or seconds. It can be
used as a tool to screen large sequence datasets for novel recombinants.
If necessary, the putative recombinants found by SHERPAS can be
subsequently re-analysed with more precise methods such as REGA,
SCUEAL or jpHMM.

Beside being orders of magnitude faster than available tools for the
discovery of novel recombinants, SHERPAS presents other points of
interest. Unlike some popular web interfaces, the code of SHERPAS
is distributed freely, which may be an advantage when, for privacy
reasons, it is important to process the data in-house (e.g. in a
clinical setting). This also makes SHERPAS very flexible: users can
choose their own reference alignments, update them as new high-
quality sequences become available, and most importantly adapt
SHERPAS to any virus for which a reference alignment of su�cient
quality can be obtained. Moreover, SHERPAS appears to be relatively
robust to the high error rates that characterize Oxford Nanopore
sequencers. For these reasons we believe that SHERPAS is appropriate
for recombination detection even in the most challenging scenarios,
such as in-situ outbreak monitoring, where computational resources
and network accessibility may be limited (Quick et al., 2016).

2 Algorithm

2.1 Preprocessing and overview

At a preprocessing stage, SHERPAS needs a collection of aligned
reference sequences for the virus of interest and a phylogenetic tree
built from this alignment. Each reference sequence must be annotated
as belonging to exactly one strain, via a .csv file. In the Suppl.
Materials (Sec. 3), we discuss a number of properties that we would
ideally expect the references (alignment, tree and strains) to satisfy,
such as the monophyly of strains and the absence of widespread
recombination within the reference alignment. From the reference
alignment and tree, a database of phylo-k-mers (the pkDB) is then
constructed using the pkDB construction step currently implemented
in the RAPPAS software (Linard et al., 2019) (see next section). The
pkDB construction is a heavy computational step, but it only needs
to be executed when a new reference alignment is employed, or when
it is updated.

Once these preprocessing steps have been carried out, large
datasets of unaligned DNA sequences can be analyzed with the pkDB,
as they become available. These sequences —which we refer to as
queries— can be genomic fragments of moderate size (a few hundreds
bp at least) up to entire genomes, including error-prone long reads
generated by third-generation sequencing technologies.

The output of SHERPAS is a text file classifying continuous regions
within the queries as either unassigned (“N/A”) or as belonging to one
of the strains. The same format used by jpHMM is adopted.

D

B

K
F2

F1
J

G
A2

AE

A1

Query

SHERPAS

jpHMM

Fig. 1. Illustration of the task of inter-strain recombination detection. Top: Example of

what strains may look like in a realistic phylogeny (adapted from part of the reference tree

for the HIV-pol dataset). Bottom: Illustration of the composition of a query and of the

outputs of two programs. The query combines a small segment of a sequence annotated as

A1, and a larger segment of a sequence annotated as B. (Neither of these two sequences

were part of the reference alignment used to construct the reference tree.) SHERPAS and

jpHMM (both run with default parameters) return the partitions represented by the other

two bars. Black segments represent unassigned regions.

2.2 The phylo-k-mers

Informally, phylo-k-mers can be described as phylogenetically-
informed k-mers (subsequences of length k) that are present with
non-negligible probability in unknown/unsampled relatives of the
sequences contained in the reference alignment (Linard et al., 2019).
Importantly, phylo-k-mers are inferred from the reference data
(alignment and tree), but not necessarily observed in any of the
reference sequences. Typical values for k are currently in the range
from 8 to 10. While a detailed mathematical treatment is deferred to
the Suppl. Materials (Sec. 1), here we provide an overview.

The inference of phylo-k-mers relies on standard techniques that
can calculate the posterior probability of the nucleotide state at (i)
any site defined by a column of the reference alignment, and at (ii)
any node with a well-defined location with respect to the reference
tree. While in traditional applications, such as ancestral sequence
reconstruction, the focus is on the internal nodes of the tree, here
we are interested in the probabilities at new nodes that are added to
the reference tree. These nodes, called ghost nodes, represent sequences
that have diverged from a given branch, and lie at pre-defined distances
from their branch of origin.

Posterior probability calculations are implemented in many
programs for likelihood-based phylogenetics (e.g. Guindon and Gascuel
(2003); Kozlov et al. (2019)), one of which is executed automatically
at launch of the phylo-k-mer construction step. For each ghost node
u, this step produces a table containing the posterior distribution of
the nucleotide at u, at any site of the reference alignment.

The probability of a k-mer w, at a specific ghost node u and at a
specific set of k consecutive sites, is then obtained as the product of the
posterior probabilities of its constituent nucleotides at their respective
sites, in the table for node u. This simple calculation relies on the

i
i

“output” — 2020/12/1 — 12:10 — page 3 — #3 i
i

i
i

i
i

Recombination detection using phylo-k-mers 3

assumption of statistical independence among sites, which is standard
in phylogenetics (e.g. Felsenstein (2004); Yang (2006)).

A k-mer w is called a phylo-k-mer for branch x of the reference tree,
if there exists at least one position in the reference alignment and one
ghost node associated to x, where the probability of w exceeds a given
threshold (controlled by a parameter of the phylo-k-mer construction
process). When multiple such positions and ghost nodes exist for a
given pair (w, x), the highest probability is the probability score of k-
mer w at branch x. A k-mer’s probability score at x can be interpreted
as a measure of how likely x is to be the k-mer’s “phylogenetic origin”
—that is, the branch from which the k-mer diverged from the rest of
the reference tree.

Finally, note that a k-mer w can be a phylo-k-mer for several
branches, although with potentially very di�erent probability scores.
All such information is stored in the pkDB, which is a look-up table
allowing, for a given phylo-k-mer w, the rapid retrieval of all branches
and probability scores associated to w.

2.3 Full and reduced pkDBs

Prior to applying the algorithm for recombination detection, outlined
below, each branch of the reference tree is assigned at most one strain
from the user-specified set of strains, in the following way: Recall that
each reference sequence belongs to exactly one of these strains. If all
the sequences that descend from a branch belong to the same strain,
then this branch gets assigned a label corresponding to that strain,
otherwise the branch remains unassigned. Moreover, we call a branch
x a root branch of strain X if (1) x is assigned to X, and (2) no branch
ancestral to x is assigned to X. Note that if a strain X is monophyletic
(which we expect to be usually the case), then X has exactly one root
branch, the one lying at the root of the clade containing all sequences
in X.

From there, two distinct versions of the pkDB can be constructed.
The full pkDB is the one constructed by the phylo-k-mer inference
step currently implemented in RAPPAS, without modification. The
reduced pkDB is constructed by SHERPAS from the full pkDB, by
only keeping the information relative to the branches that are root
branches of some strain X. See the Suppl. Materials (Sec. 1.5) for
more details. We call SHERPAS-full and SHERPAS-reduced the two
variants of SHERPAS using the full pkDB (default) and the reduced
pkDB, respectively.

2.4 The sliding window approach

The recombination detection phase in SHERPAS adopts a sliding
window approach. Here, a window is defined as a contiguous
subsequence of the query of a given length. For each window, instead
of performing complex phylogenetic analyses, SHERPAS only looks for
matches between the k-mers contained in the window and the selected
pkDB (full or reduced), and dynamically updates a table of scores
associated to the branches encountered in this process. We refer to
the Suppl. Materials (Sec. 2) for a detailed description and analysis of
the algorithm, and provide the main ideas below.

For each window, the score assigned to a branch is computed
using the same weighted vote approach as in RAPPAS’s placement
algorithm (Linard et al., 2019). This score is a function of the
probability scores at that branch, of the k-mers in the window. The
scores for the first (leftmost) window are used to initialize a table of
scores. For each subsequent window, the table of scores is updated
e�ciently on the basis of the k-mers that are added to it, and those
that are removed from it. The number of k-mers that are added to the
new window does not need to coincide with the number of k-mers that
are removed from it. This is used to improve the behavior of SHERPAS
at the ends of the query: while the leftmost and the rightmost window

are relatively small (100 k-mers by default), the window gradually
grows as it gets further from the ends of the query, until it reaches its
maximum size (300 k-mers by default). By default, the coordinates of
two consecutive windows of maximum size only di�er by 1 bp.

SHERPAS is also able to process circular queries, which may
arise for viruses with circular genomes. In this case, the variable-size
approach described above is not executed. Instead, the sliding window
retains the same size everywhere. When the sliding window reaches
the end of the query, it will extend to the other end of the query, until
the sliding window is back to the leftmost window in the query.

Assuming that the signal for classification is strong enough (see
the next section for details), the midpoint in each window is classified
into the strain that is associated to the highest-scoring branch for the
window. This allows SHERPAS to partition the query into segments,
each one associated with a strain identified as its origin.

2.5 Signal evaluation and unassigned regions

SHERPAS may leave some parts of a query unassigned, whenever the
evidence for the classification into any particular strain is deemed to
be too weak. In order to evaluate this, SHERPAS converts the score of
a branch into a likelihood score (details of this conversion are provided
in the Suppl. Materials, Sec. 2.4). The way this is used depends on the
version of the pkDB (full/reduced).

In its full version, the pkDB contains all the branches of the
reference phylogeny, including some branches that are not assigned
to any strain. If the best scoring branch in a window is one of
these unassigned branches, then SHERPAS classifies the window
midpoint as unassigned (or “N/A”). If instead the best and second-
best scoring branch belong to the same strain, SHERPAS classifies the
midpoint in that strain. In all remaining cases, SHERPAS computes
the ratio ¸1/¸2, where ¸1 and ¸2 are the likelihoods for the best and
second-best branch, respectively. If that ratio is smaller than a user-
defined parameter ◊F, SHERPAS classifies the window midpoint as
unassigned, otherwise it classifies it in the strain of the best scoring
branch.

In the reduced version, all branches recorded in the pkDB belong
to some strain (usually just one branch per strain). In that case,
SHERPAS computes the ratio ¸1/

qN

i=1 ¸i, where ¸1 is the likelihood
for the best scoring branch/strain and ¸i, i = 2, . . . , N are the
likelihoods of all other branches/strains in the pkDB. Again, if that
ratio is smaller than a user-defined parameter ◊R œ [0, 1), SHERPAS
returns the window midpoint as unassigned (or “N/A”).

In both SHERPAS-full and SHERPAS-reduced, setting the control
parameter ◊F (or ◊R) to a small value is expected to result in a
liberal classification, potentially resulting in false positive breakpoints,
while setting it to a high value corresponds to a more conservative
classification, potentially missing some evidence of recombination. A
last optional step that is applied by SHERPAS is the removal of
N/A stretches between two segments classified in the same strain (by
default, these regions are classified as belonging to that strain).

An interesting observation is that, since by default two consecutive
windows only di�er by two k-mers, it is very unlikely that their
midpoints are both confidently assigned to di�erent strains. Because
of this, two genomic regions classified into di�erent strains X and Y

are usually separated by a N/A fragment, which can be interpreted
as expressing uncertainty about the precise location of the breakpoint
between X and Y . In other words, we expect the breakpoint X/Y to
lie somewhere within this N/A fragment.

i
i

“output” — 2020/12/1 — 12:10 — page 4 — #4 i
i

i
i

i
i

4 Scholz et al.

3 Materials and methods

3.1 Experimental protocol overview

Dataset construction. We evaluated the performance of SHERPAS
on four datasets of synthetic recombinants, that is, query sequences
that are constructed by concatenating fragments of real-world viral
sequences. The first three datasets were obtained following the same
general procedure: Each dataset is constructed from a di�erent pair
of alignments containing real-world sequences reliably annotated as
belonging to known strains of a virus of interest (details in Sec. 3.3
to 3.5). One of these alignments is used as the reference alignment
for SHERPAS. The sequences in the other alignment are called
pre-queries. We ensure the two alignments contain no sequence in
common. The pre-queries are used to build a large collection of
queries by (1) drawing random recombination breakpoints in the
alignment containing the pre-queries, (2) cutting the pre-queries at
those breakpoints and (3) concatenating the resulting fragments. The
fourth dataset was obtained by simulating long-read sequencing errors
over the queries of one of the other datasets (Sec. 3.6). For each of
the queries, we record the positions of the breakpoints, and the strain
of origin of the fragments that are separated by those breakpoints.
This recorded information is used as “ground truth” to evaluate the
accuracy of the tested methods (see Sec. 3.2).

Software comparison. We compare the performance (accuracy and
running times) of SHERPAS over these datasets against that of
jpHMM (Schultz et al., 2006, 2009), a natural choice because (1) it is
the only tool whose main stated goal is the same as that of SHERPAS
(detect inter-strain recombinants and partition them according to
the strain of origin). Moreover, (2) jpHMM is not specialized for
any single virus species, and is distributed with its own reference
alignments for a number of viruses, which allows us to compare it to
SHERPAS using the same reference alignments. Note that using the
same reference alignment (essentially a training set) puts two tools on
an equal ground for benchmarking purposes, allowing us to evaluate
the relative merits of the algorithms alone —and exclude the influence
of the reference data, which is potentially crucial (Pineda-Peña et al.,
2013). Also note that, when run with the -Q blat option to speed up
its execution, jpHMM appears to be at least as fast as SCUEAL and
REGA (Pineda-Peña et al., 2013), thus providing a good comparison
for running times. Those alternatives to jpHMM were excluded for
the following reasons: SCUEAL (Kosakovsky Pond et al., 2009) is
specialized for the detection of HIV-1 recombinants, including intra-

subtype recombinants, and is only distributed with a single reference
alignment (for the pol gene). The REGA tool (de Oliveira et al., 2005)
has only been developed for HIV-1, and does not give access to its code.
Since it cannot be run on a local machine, it is not possible to perform
fair running-time comparisons with it. All these exclusion criteria also
apply to COMET (Struck et al., 2014), a web-based subtyping tool
for HIV-1, whose main goal is not recombination analysis.

3.2 Measures of accuracy

To measure the accuracy of SHERPAS and of the other methods, we
used two approaches: a site-wise and a mosaic approach.

Site-wise approach. Since the composition of synthetic recombinant
queries is known, we can see such composition as a site-wise
assignment. It is then possible to compare the assignment of a site
by a recombination-detection software with the correct assignment of
that site. We use two di�erent measures of the accuracy of a software:
we compute the proportion of sites that are assigned to the correct
strain, either out of all sites —the site-wise sensitivity— or out
of all sites that are not assigned to N/A —the site-wise precision.
We note that this is a slight abuse of vocabulary, as in multi-class

classification, precision and sensitivity are class-specific measures. (See
the Suppl. Materials, Sec. 4 for a mathematical reconciliation between
these definitions.) In the absence of N/A regions, our definitions of
site-wise precision and sensitivity give the same value.

Mosaic approach. This is the same approach used by the authors of
SCUEAL (Kosakovsky Pond et al., 2009). Any partition of the query
into strains is translated into the sequence of strains that appear in
it, ignoring the position of the breakpoints and of unassigned regions,
when these are present. We call such sequence of strains a mosaic. For
example the mosaic of the query in Fig. 1 is A1, B. The mosaic of each
query is compared to the mosaic reconstructed by the software on that
query. Each of these reconstructed mosaics is then classified into one
of the following four categories, where the word subsequence is defined
in the standard way, not implying contiguity (Wikipedia contributors,
2019; Gusfield, 1997). Match: the mosaic returned by the software
coincides with the correct mosaic. Superset: the correct mosaic is
a subsequence of the mosaic returned by the software. Subset: the
mosaic returned by the software is a subsequence of the correct mosaic.
Mismatch: none of the above. For example, the second mosaic in
Figure 1 (returned by SHERPAS) is a superset compared to the correct
mosaic (note the presence of the light brown bar towards the right),
whereas the third (returned by jpHMM) is a match. For circular
queries, the definitions above are modified accordingly.

3.3 HIV-pol dataset

To evaluate the performances of SCUEAL, Kosakovsky Pond et al.

(2009) generated 10,000 synthetic recombinant queries, combining
fragments from 863 pre-queries from the HIV-1 pol gene. We used
this dataset without modification. The queries are about 1.6 kbp long.

To run SHERPAS on these queries, we built the pkDB using
the same reference alignment as SCUEAL. This alignment contains
167 HIV pol sequences distributed into 17 strains, which correspond
to groups, types, subtypes, chimpanzee SIV sequences, and the
circulating recombinant form CRF01_AE. These strains are named
A, A1, A2, A3, AE, B, C, D, F1, F2, G, H, J, K, N, O, CPZ. (The
inclusion of CPZ and AE is discussed in the Suppl. Materials, Secs. 3.3
and 3.4, respectively.)

The output of SCUEAL on these queries is distributed along
with the software, so we did not re-run SCUEAL on this dataset.
(Also because SCUEAL is a non-deterministic algorithm.) The queries
include intra-strain recombinants and SCUEAL’s output includes
the detection of intra-strain recombination. In order to make this
information comparable to the output of SHERPAS, we ignored intra-
strain recombination, and only retained inter-strain recombination
information. As a consequence, the mosaic-based accuracy measures
that we obtain for SCUEAL (Table 2) are much better than those
reported by Kosakovsky Pond et al. (2009) (e.g. 93.2% matches
vs. 46.6%). In order to interpret the results for jpHMM on this dataset,
we note that strains A and N cannot be recognized by jpHMM, which
negatively impacts its accuracy measures on this dataset. The impact,
however, is limited. (See the Suppl. Materials, Sec. 5.2 for more detail.)

3.4 HBV-genome dataset

Both SHERPAS and the latest version of jpHMM are able to analyze
data from viruses with circular genomes, such as the hepatitis B virus
(HBV) (Schultz et al., 2012). To experiment with HBV data, we used
the reference alignment that is distributed with jpHMM. It contains
339 whole-genome sequences classified into strains A, B, C, D, E, F,
G, H (known as genotypes). Prior to the construction of the pkDB for
SHERPAS, we extended this reference alignment by copying the first
9 columns of the alignment to the end of the alignment. This allows

i
i

“output” — 2020/12/1 — 12:10 — page 5 — #5 i
i

i
i

i
i

Recombination detection using phylo-k-mers 5

the construction of phylo-k-mers (with k = 10) from positions that
overlap with the artificial end of the alignment.

To build a collection of queries, we started with a collection
of pre-queries extracted from the database of aligned whole-genome
HBV sequences available at the HBVdb website (HBVdb contributors,
2019; Hayer et al., 2013). To construct a query, 2X recombination
breakpoints are chosen at random, where X Ø 1 is geometrically
distributed with parameter 0.8, while making sure that no two
breakpoints are less than 100 bp apart (as in Kosakovsky Pond et al.

(2009)). 2000 queries combine fragments from two pre-queries, and
1000 queries are based on three pre-queries. (See the Suppl. Materials,
Sec. 5.3, for full details on this procedure.) The parameters used
in this procedure were chosen so that the queries loosely reflect the
characteristics of inter-genotype HBV recombinants presented in a
recent overview (Araujo, 2015). The queries are about 3.2 kbp long.

3.5 HIV-genome dataset

This dataset consist of whole-genome sequences from HIV. Again, we
used the reference alignment of jpHMM for HIV to build the pkDB
database for SHERPAS. This alignment contains 881 whole-genome
sequences, classified in the following 14 strains: A1, A2, AE, B, C, D,
F1, F2, G, H, J, K, O, CPZ.

To construct a collection of 3000 synthetic queries, we used pre-
queries extracted from Los Alamos HIV sequence database (the
“complete Web alignment 2018”). In brief, the main di�erence with the
procedure for the HBV-genome queries is that the number of parental
pre-queries and the number of breakpoints are both drawn from
(shifted) geometric distributions. Again, the construction procedure
was designed to reflect the broad characteristics of known recombinant
forms, those listed in the Los Alamos HIV sequence database. Full
details of this procedure are described in the Suppl. Materials, Sec. 5.4.
The average length of the resulting queries is 8.9 kbp.

3.6 Simulated Nanopore reads from the HIV-genome dataset

To test the robustness of SHERPAS to high error rates typical of long
read sequencing technologies, we also built a dataset of reads generated
with NanoSim-H, a simulator of Oxford Nanopore reads (Yang et al.,
2017; Břinda et al., 2018). For each query in the HIV-genome dataset,
we generated a single simulated read using NanoSim-H with minimum
and maximum length set to 1000 and 9000, respectively, and rate
of unaligned reads set to 0. All other parameters were left to their
default values. A total of 3000 simulated reads, with average length
about 5.9 kbp, were thus obtained. The reference alignment used for
this dataset is the same as that for the HIV-genome dataset. (See the
Suppl. Materials, Sec. 5.5 for details.)

3.7 Running the experiments

For each of the datasets described in Sections 3.3 to 3.6, a reference
tree was constructed from the reference alignment with PhyML 3.3
(Guindon et al., 2010) using GTR + � + I as substitution model.
Alignment and tree were given as inputs to a customized version of
RAPPAS that built a pkDB using parameters k = 10 and threshold
parameter 1.5 (called “omega”).

We ran SHERPAS with 8 parameters combinations: SHERPAS-
reduced for ◊R œ {0.90, 0.99} and window size in {300, 500}, and
SHERPAS-full for ◊F œ {1, 100} and window size again in {300, 500}.
Using two values for each parameter allows us to gauge their impact
on the accuracy of SHERPAS. We also ran jpHMM using its default
behavior for HIV and HBV, with and without the option -Q blat

to speed-up its execution. See Sec. 3.1 for motivation regarding the
choice of jpHMM for comparisons. For the HIV-pol dataset (Sec. 3.3)
the results of running SCUEAL are distributed together with the

jpHMM SHERPAS
Mbp #br. default -Q blat F R

HIV-pol 16.2 332(23) 12964m 46s 1533m 22s 2m 40s 32s
HBV-g 9.6 676(8) - 673m 24s 2m 35s 11s
HIV-g 26.7 1760(20) 4997m 48s 2367m 36s 20m 44s 51s
HIV-LR 17.7 1760(20) 7414m 17s - 12m 29s 33s

Table 1. Running times of jpHMM and SHERPAS on the four datasets.

Column “Mbp” reports the total size of the query dataset in Mbp. Column

“#br.” reports the number of branches for which the full pkDB (reduced pkDB)

stores information. “R” and “F” distinguish between SHERPAS-reduced and

SHERPAS-full, respectively. “HBV-g” and “HIV-g” refer to the HBV-genome

and HIV-genome datasets, respectively. “HIV-LR” refers to the dataset of

simulated long reads. All times are measured in minutes (m) and seconds (s).

software (Kosakovsky Pond et al., 2009), so we included them in our
comparisons.

The commands used for all these operations and links to files used
—including the pkDBs constructed by RAPPAS— are reported for
reproducibility in the Suppl. Materials (Sec. 5). All experiments were
run on the same PC with 32GB RAM and using a single core operating
at 3.6GHz. Running times were measured using the Unix command
time (recording user CPU time).

4 Results

4.1 Running times

Table 1 shows the running times of SHERPAS-full, SHERPAS-reduced
and of two ways of executing jpHMM, that is, with and without
the -Q blat option to speed-up its execution. We do not include the
time necessary to construct the pkDBs with RAPPAS, as we assume
that the pkDB has been obtained prior to the analysis. (To this end,
SHERPAS is distributed with the 3 pkDBs used in the experiments
reported here.) Moreover, the numerical parameters of SHERPAS (the
◊ thresholds and the window size) have very little impact on its running
time. For this reason, we only report runtimes for default parameters.
The running times for jpHMM could not be obtained in two cases for
the following reasons: (1) for the HBV-genome dataset, we must run
jpHMM with the -C option for circular queries, which automatically
activates the -Q blat option; (2) for the simulated Nanopore HIV
reads, the -Q blat option resulted in the program failing to execute,
probably because of the di�culty of aligning error-rich reads.

SHERPAS is orders of magnitude faster than jpHMM. Compared to
jpHMM with the -Q blat option, SHERPAS-full is hundreds of times
faster, while SHERPAS-reduced is thousands of times faster. Datasets
that took days for jpHMM -Q blat to analyse, can be analyzed by
SHERPAS in a matter of minutes, or even seconds.

The running time of SHERPAS essentially depends on two
characteristics of the dataset. First, it scales linearly with the amount
of data to analyse (number of queries and their lengths). Second, it
is also related to the number of branches for which some information
is stored in the pkDB. In the full version, this number is proportional
to the size of the reference tree, while in the reduced version it is
equal to the number of root branches. These numbers are reported in
the first two columns of Table 1. See the Suppl. Materials (Sec. 2.6)
for a detailed complexity analysis of the algorithms implemented in
SHERPAS.

Consistent with the expectations above, the speed-up obtained
with SHERPAS-reduced relative to SHERPAS-full is related to the
strength of the reduction in the number of branches in the pkDB: the
speed-up is moderate for HIV-pol (from 332 to 23 branches), but much

i
i

“output” — 2020/12/1 — 12:10 — page 6 — #6 i
i

i
i

i
i

6 Scholz et al.

site-wise mosaic
Method thr w N/A sens prec m sup sub mm

SCUEAL - - 0.0 98.5 98.5 93.2 3.0 1.9 1.9
jpHMM - - 0.0 97.4 97.4 90.0 0.0 7.0 2.9

jpHMM-Qb - - 0.0 97.4 97.5 90.2 0 7.0 2.8
SHERPAS R 0.9 500 7.5 89.8 97.1 83.6 8.5 6.3 1.6
SHERPAS R 0.9 300 8.8 89.4 98.0 81.9 12.6 4.0 1.5
SHERPAS R 0.99 500 17.0 81.2 97.9 82.6 3.0 13.1 1.3
SHERPAS R 0.99 300 21.0 78.2 98.8 82.3 3.6 12.9 1.2
SHERPAS F 1 500 4.4 93.5 97.8 81.9 12.0 5.3 0.8
SHERPAS F 1 300 3.0 95.3 98.2 78.2 19.0 2.2 0.7
SHERPAS F 100 500 7.0 91.6 98.6 89.0 3.3 7.3 0.3
SHERPAS F 100 300 5.3 93.7 98.9 88.4 7.4 3.7 0.5

Table 2. Accuracies observed on the HIV-pol dataset. jpHMM-Qb stands

for jpHMM with the -Q blat (fast) option. “R” and “F” distinguish between

SHERPAS-reduced and SHERPAS-full, respectively. Columns “thr” and “w”

report the threshold and window-size used by SHERPAS. Column “N/A”

reports the percentage of sites that are not assigned to any strain. Columns

“sens” and “prec” report site-wise sensitivity and precision (in percentage),

respectively. Columns “m”, “sup”, “sub” and “mm” report the percentages of

mosaic matches, supersets, subsets and mismatches, respectively. (See Sec. 3.2

for definitions.)

more pronounced for HBV-genome (from 676 to 8 branches), and for
the two whole-genome HIV datasets (from 1760 to 20 branches). As
for the di�erences across di�erent datasets, it is not surprising that
the dataset that results in the longest running time for SHERPAS is
HIV-genome: its set of queries has the largest aggregate size, and the
number of branches in the full pkDB is by far the largest. Running
times for HIV-LR (the simulated Nanopore reads dataset) are lower
than those for HIV-genome because the simulated reads are in general
shorter than the whole genome.

4.2 HIV-pol dataset

Table 2 compares the accuracy of inter-strain recombination detection
methods (see Sec. 3.7) on the HIV-pol dataset. SCUEAL and jpHMM
achieve high accuracies overall on this dataset. Here, SCUEAL and
jpHMM use di�erent reference alignments, and two strains (A and
N) present in some of the queries cannot be recognized by jpHMM
(see Sec. 3.3). We also observed that many of the pre-queries that
Kosakovsky Pond et al. (2009) used to construct the queries in this
dataset are in fact part of the reference alignment for HIV used by
jpHMM. For these reasons, it is not a good idea to draw conclusions
about the relative performance of SCUEAL and jpHMM here.

Overall, the accuracies displayed by SHERPAS on this dataset are
not as good as those of the other methods, especially in terms of site-
wise sensitivity and mosaic measures. The low sensitivity is due to the
high incidence of unassigned regions, which is particularly pronounced
for SHERPAS-reduced and high values of the thresholds. On the other
hand, for SHERPAS-full, a high value of the threshold (◊F = 100)
results in a better site-wise precision than SCUEAL and jpHMM, and
in mosaic measures that are almost as good as those of SCUEAL and
jpHMM (frequency of mosaic matches: 88.4%-89% vs. 90%-93.2%).

We also observe that on this dataset SHERPAS-full is generally
more accurate than SHERPAS-reduced. This is not surprising, as
SHERPAS-reduced uses far less pre-computed information (a much
smaller pkDB) than SHERPAS-full. As for the e�ect of window size,
smaller windows consistently result in higher site-wise precision, and
lower frequencies of mosaic matches. This appears to be due to the fact
that a smaller window “switches” more easily between di�erent strains
and therefore has a tendency to produce finer classifications, but more
fragmented mosaics. This is corroborated by the observation that the

site-wise mosaic
Method thr w N/A sens prec m sup sub mm
jpHMM - - 0.0 98.5 98.5 91.4 0.4 6.8 1.4

SHERPAS R 0.9 500 1.6 93.7 95.3 80.2 5.1 14.0 0.7
SHERPAS R 0.9 300 2.5 94.6 97.0 81.4 11 6.6 1.0
SHERPAS R 0.99 500 3.5 92.6 96.0 81.2 2.2 16.5 0.1
SHERPAS R 0.99 300 5.0 92.9 97.8 86.6 3.7 9.4 0.3
SHERPAS F 1 500 2.1 93.5 95.5 76.0 8.7 14.4 0.8
SHERPAS F 1 300 1.5 95.3 96.8 74.7 19.3 5.0 1.0
SHERPAS F 100 500 4.8 92.0 96.6 80.2 1.3 18.3 0.2
SHERPAS F 100 300 3.8 94.1 97.8 84.4 7.5 7.4 0.8

Table 3. Accuracies observed on the HBV-genome dataset. jpHMM stands

for jpHMM launched with the -C option for circular queries. Note that

this option automatically activates the -Q blat (fast) option. All other

abbreviations are as in Table 2.

frequency of superset mosaics is consistently higher for windows of size
300 than for windows of size 500.

4.3 HBV-genome dataset

The results in Table 3 show that, again, jpHMM has a very high
overall accuracy, which is rarely matched by SHERPAS. Some of
the observations made for HIV-pol can be re-iterated here: again,
the site-wise sensitivity of SHERPAS is markedly lower than that of
jpHMM, and again, as expected, increasing the thresholds deteriorates
sensitivity, and improves mosaic accuracy.

Interestingly, on this dataset there does not seem to be any
consistent di�erence between the accuracies of SHERPAS-full and
SHERPAS-reduced. This may have something to do with the nature
of the reference tree for HBV, where the 8 strains are monophyletic
and well-delimited by relatively long root branches. (Which is not
the case for all the strains in HIV-1.) This may imply that for HBV,
the phylo-k-mers inferred for the root branches represent well their
respective strains. It is also interesting to note that on this dataset,
setting the window size to 300 usually leads to better results than 500,
an observation that is not generally true for the other datasets.

4.4 HIV-genome dataset

The results for the HIV-genome dataset, shown in Table 4, show a
slightly di�erent pattern from the other datasets. On the one hand,
jpHMM and SHERPAS-full have similar site-wise accuracy measures.
Unlike in the previous datasets, the sensitivity of SHERPAS-full is
higher than that of jpHMM in 3 cases out of 4. On the other hand,
the frequency of mosaic matches for SHERPAS is now substantially
lower than that of jpHMM.

These seemingly contradictory observations can be explained by
inspecting the outputs of SHERPAS and jpHMM on the queries in
this dataset. The Suppl. Materials (Annex C) contain an illustration
of the outputs of SHERPAS-full and jpHMM on the first 100 queries
out of the 3000 in this dataset. An important observation is that
the partition produced by SHERPAS often includes short erroneous
fragments (that is, that were not present in the correct partition of
the query). For example, among the first 10 queries shown in the
Suppl. Materials, 5 queries present such short erroneous fragments
(queries 2, 3, 4, 6, 9; in some cases the erroneous fragment is so
short that it is di�cult to observe without zooming). The output of
SHERPAS in Fig. 1 (corresponding to query 56) is also an example of
this phenomenon: note the short erroneous fragment from strain D.

A consequence of this behavior of SHERPAS is that, although
its output is usually close to the correct partition, the mosaics it

i
i

“output” — 2020/12/1 — 12:10 — page 7 — #7 i
i

i
i

i
i

Recombination detection using phylo-k-mers 7

site-wise mosaic
Method thr w N/A sens prec m sup sub mm
jpHMM - - 3.6 95.6 99.2 77.8 4.2 16.6 1.4

jpHMM-Qb - - 4.0 95.4 99.3 78.2 4.0 17.0 0.8
SHERPAS R 0.9 500 3.4 94.5 97.9 48.2 37.3 6.1 8.4
SHERPAS R 0.9 300 5.5 92.5 97.9 27.4 63.0 1.9 7.7
SHERPAS R 0.99 500 6.0 92.7 98.6 65.8 15.3 13.4 5.5
SHERPAS R 0.99 300 8.6 90.5 99.0 56.7 27.0 9.8 6.5
SHERPAS F 1 500 2.1 96.1 98.2 46.3 43.6 4.3 5.8
SHERPAS F 1 300 1.6 96.6 98.2 24.2 71.5 0.7 3.6
SHERPAS F 100 500 3.5 95.3 98.8 67.8 19.2 9.5 3.5
SHERPAS F 100 300 2.7 96.4 99.1 54.3 39.6 2.9 3.2

Table 4. Accuracies observed on the HIV-genome dataset. All abbreviations

are as in Table 2.

produces are often supersets of the correct mosaics. This phenomenon
was also present in the other datasets, as can be seen in the
frequencies of supersets, which are always higher than in the other
methods (see again Tables 2 and 3). However, here this becomes more
visible because the queries are about 3 to 5 times longer than in
the other datasets, meaning that the probability of observing such
erroneous short fragments in one query increases significantly. As we
discuss in Sec. 5.1, when using SHERPAS to screen for recombinants,
supersets should be regarded as far less serious errors than subsets or
mismatches. From Table 4, it is easy to check that here the aggregate
frequency of subsets and mismatches is higher for jpHMM (about 18%)
than in all 4 runs of SHERPAS-full.

The lower sensitivity of jpHMM relatively to the other datasets is
due to its behavior at the two ends of queries spanning a whole HIV
genome. As can be seen in the Suppl. Materials (Annex C), jpHMM
often leaves the ends of a HIV-genome query as unassigned (N/A).
This is likely due to the di�culty of alignment and of profile-based
modeling in those peripheral regions.

Like in the HIV-pol dataset, we note that SHERPAS-full tends to
be slightly more accurate than SHERPAS-reduced, in terms of site-
wise measures. Using a window of size 300 instead of 500, strongly
reduces the frequency of mosaic matches, which is again due to a
higher frequency of short erroneous fragments. However, it consistently
reduces the aggregate frequency of subsets and mismatches (not
shown) which may be important for screening purposes (Sec. 5.1).

4.5 Simulated Nanopore reads from the HIV-genome dataset

The results in Table 5 show that the simulated Nanopore reads pose a
significant challenge to jpHMM and SHERPAS. This is not surprising,
given the high error rates that characterize these reads. We refer to
Yang et al. (2017) and its Suppl. Materials for an in-depth analysis of
these error rates.

Strikingly, however, jpHMM is much more negatively a�ected by
the simulated Nanopore sequencing errors than SHERPAS. Note that
if a classifier was to choose randomly one of the 14 strains at every
site, its sensitivity and precision would be 1/14 = 7.1%, but if it was to
classify every query as a non-recombinant sequence belonging to the
most frequent strain (B) its sensitivity and precision would be 41.9%
(this is the proportion of sites from strain B in the queries). Thus,
jpHMM’s site-wise accuracy measures are only partially better than
those of random classifiers. On the other hand the site-wise precision
of SHERPAS, especially in the full version, is only marginally a�ected
(cf. Table 4). The site-wise sensitivity is lowered, which is due to
the fact that error-rich regions are often unassigned. SHERPAS is
also more accurate than jpHMM in terms of mosaic measures (cf. the
frequencies of matches and mismatches).

site-wise mosaic
Method thr w N/A sens prec m sup sub mm
jpHMM - - 15.0 38.7 45.5 0.7 49.8 0.4 49.1

SHERPAS R 0.9 500 16.7 65.2 78.4 2.7 71.2 0.6 25.5
SHERPAS R 0.9 300 25.2 56.3 75.2 1.1 75.1 0.2 23.6
SHERPAS R 0.99 500 28.7 59.8 83.9 9.4 55.0 2.7 32.9
SHERPAS R 0.99 300 38.3 49.3 79.9 5.0 56.0 1.6 37.4
SHERPAS F 1 500 21.8 71.8 91.9 12.3 58.4 3.9 25.4
SHERPAS F 1 300 21.8 69.3 88.7 3.2 75.9 0.4 20.5
SHERPAS F 100 500 25.7 70.3 94.6 34.1 30.2 16.8 18.9
SHERPAS F 100 300 21.8 73.8 94.4 22.3 51.3 6.3 20.0

Table 5. Accuracies observed on the dataset of simulated Nanopore HIV

reads. For jpHMM only the results of launching it with its default options

for HIV are reported, as the use of the -Q blat (fast) option resulted in the

program failing to execute. All abbreviations are as in Table 2.

Finally, once again SHERPAS-full is consistently more accurate
than SHERPAS-reduced. Interestingly, on this dataset, using a smaller
window generally results in a deterioration of accuracy. However, this
is not true if the goal is to minimize the aggregate frequency of subsets
and mismatches (see Sec. 5.1).

5 Discussion

5.1 Uses of SHERPAS

SHERPAS is a tool for the detection and analysis of inter-strain
recombinants in a large collection of query sequences. It relies on
the availability of a reference multiple sequence alignment, which
is used to “learn” to recognize sequences from the di�erent strains.
It accomplishes a bioinformatics task considerably di�erent from
that of detecting the presence of recombinant sequences within a
multiple sequence alignment — a task that can be tackled with other
methods, such as those implemented in the RDP software (Martin
et al., 2015, 2017). An important di�erence between the two tasks
is that here we make a clear distinction between reference sequences
(known in advance and well-characterized) and the novel sequences
to analyse, the queries. The latter do not need to be aligned, which
opens the possibility of treating a much larger amount of sequence
data. SHERPAS can be used for any dataset of viral sequences
for which a reference alignment of su�cient quality and size can
be obtained. In fact SHERPAS, like SCUEAL, could also be used
to detect recombinant bacterial sequences (Kosakovsky Pond et al.,
2009), although we have not experimented with such data.

By default, SHERPAS uses the full pkDB, with ◊F = 100 and
window size 300. If the user chooses to run SHERPAS-reduced, the
default parameters are ◊R = 0.99 and again window size 300. These
default settings were chosen while trying to achieve a good balance
among all accuracy measures, and assuming a volume of data that is
not prohibitively large. However, users should be aware that the choice
of settings will depend on the nature of the data and the goal of the
analysis.

For example, SHERPAS may be used as a first screen to detect
potential recombinants in a large set of sequences. The putative
recombinants can then be analysed further with more accurate but
slower software, such as REGA (de Oliveira et al., 2005; Pineda-
Peña et al., 2013), SCUEAL (Kosakovsky Pond et al., 2009) or
jpHMM (Schultz et al., 2006, 2009). In this case, the primary goal
is not high accuracy, but rather to lower the odds of missing evidence
of recombination in a query. In terms of inferred mosaics, this means
lowering the frequencies of subsets and mismatches. In Tables 2 – 5,
the parameter combinations that minimize the occurrence of subsets

i
i

“output” — 2020/12/1 — 12:10 — page 8 — #8 i
i

i
i

i
i

8 Scholz et al.

Fig. 2. Trade-o� between recall and specificity for the binary classification of HIV-pol

queries. Recall and specificity are plotted for SCUEAL (circle), jpHMM (diamond) and

SHERPAS (colored lines). The four colored lines correspond to the di�erent combinations

of a pkDB version (full/reduced) and window size (500,300) for SHERPAS. Each point in

a colored line corresponds to a di�erent value of the threshold, with the lowest values of

the threshold (1 for SHERPAS-full and 0 for SHERPAS-reduced) resulting in the leftmost

points. See the Suppl. Materials (Sec. 5.6) for full details. Note that all rates fall in the

interval [0.72, 1], which is why the curves are not depicted in the full [0, 1] range.

and mismatches for SHERPAS-full and SHERPAS-reduced are the
ones with the lowest tested thresholds and window size 300. Note that
these combinations consistently produce fewer aggregate subsets and
mismatches than jpHMM.

To provide further insight into the ability of detecting evidence
of recombination, we re-analyzed the queries in the HIV-pol dataset,
which include a substantial number of sequences that are not inter-
strain recombinants. We then considered SHERPAS as a binary
classifier for inter-strain recombination, classifying a sequence as a
“positive” if at least one breakpoint is detected, and a “negative”
otherwise. This allows us to observe how changing settings in
SHERPAS (full vs. reduced database, threshold and window size)
a�ects its ability of recovering true positives (known as the recall of the
classifier), and how much specificity has to be traded to improve this
ability. The results of this experiment, shown in Fig. 2, confirm that
SHERPAS can indeed achieve high recall with the use of low thresholds
(not the default one), and small windows, although users must be
aware that this entails a loss of specificity. A full description and
discussion about this experiment can be found in the Suppl. Materials
(Sec. 5.6).

5.2 Scaling-up

Another important factor influencing how SHERPAS should be run
is the amount of data to analyse. The query datasets that we used
here were of relatively manageable sizes, to facilitate comparisons
with slower software. Should the data to analyse be substantially more
abundant (e.g. millions of reads), running SHERPAS in reduced mode
may become more appealing, or even necessary in some cases. This is
especially true if the reference tree is large, as in this case the speedup
for SHERPAS-reduced is more pronounced (see Sec. 4.1). Moreover,
for some datasets or applications, the accuracy of SHERPAS-reduced
may be comparable to that of SHERPAS-full (see, e.g., Sec. 4.3 and
Fig. 2).

Because the running times of SHERPAS scale linearly with the
amount of data to analyse, running SHERPAS on few millions

queries is feasible in a matter of days (using SHERPAS-full) or in
a matter of hours (using SHERPAS-reduced; see Table 1). To the
best of our knowledge, none of the recombination detection tools
currently available are scalable to datasets of that size. Although
our experiments focused on comparing SHERPAS to jpHMM —for
the reasons detailed in Sec. 3.1— previous comparisons of running
times between jpHMM and phylogeny-based tools for recombination
detection (namely REGA and SCUEAL) showed that jpHMM was at
least as fast as those tools (see Pineda-Peña et al. (2013), Table 4),
when run with the fast -Q blat option, meaning that the running time
advantage of SHERPAS likely extends to the other available tools.

5.3 Accuracy

Consistent with previous literature (Schultz et al., 2006;
Kosakovsky Pond et al., 2009; Schultz et al., 2009), we evaluated
the predictive accuracy of SHERPAS using large datasets of semi-
artificial recombinant sequences, which combine fragments of real
HIV and HBV sequences (the pre-queries) via artificially-introduced
breakpoints. In the absence of large datasets of real sequences for
which the true recombinant structure is known with certainty, this is
a good way to evaluate a new method for recombination detection.
(Note that we ensure that none of the pre-queries belongs to the
reference alignment for the tested methods.) Using sequences that are
fully simulated using a fixed evolutionary model (Kosakovsky Pond
et al., 2009) is also a viable option, but the choice of the simulation
parameters can have an important impact on the results, and the
advantage over using semi-artificial sequences is unclear.

The experiments were designed to assess accuracy loss in SHERPAS
compared to jpHMM (Schultz et al., 2006, 2009). The choice of jpHMM
is motivated in Sec. 3.1. The other goal of our experiments was to
explore the influence of the parameters of SHERPAS, including the
use of full/reduced pkDB. Using two possible values for all parameters
allows us to gauge their impact. The two window sizes (300 and 500
bp) were chosen on the basis of common practices of sliding window
approaches (e.g. the REGA tool employs a window of 400 bp).

Possibly the most interesting result here is the inferior performance
of jpHMM compared to SHERPAS on the simulated Nanopore reads
dataset. We suspect that the reason for this is that profile HMMs
may be strongly a�ected by large indels (which are common in these
reads) and by errors that do not correspond well to their emission
probabilities (which were estimated on error-free datasets by Schultz
et al. (2006)). SHERPAS, on the other hand, appears to be able
to exploit the information coming from the error-free stretches of
sequences that lie between errors in the reads. Further work, beyond
the scope of the present paper, would be needed to investigate these
hypotheses.

5.4 Future work and limitations

SHERPAS-full implicitly computes the most probable branch of origin
of any window within a query. This means that it can be used for
precise phylogenetic placement of the segments composing the query
(Matsen et al., 2010; Berger et al., 2011; Barbera et al., 2019; Linard
et al., 2019), or even to detect intra-strain recombinants. We plan to
add these functionalities in future versions of SHERPAS.

Second, the use of a sliding window has a few well-known
disadvantages (Kosakovsky Pond et al., 2009). Specifically, it makes it
hard to precisely locate breakpoints (Schultz et al., 2006), and choosing
its size involves a trade-o� between resolution and informativeness. In
the future, we plan to implement algorithms that are not window-
based in SHERPAS (using, e.g., dynamic programming). However,
this will potentially entail a cost in terms of computational e�ciency.

i
i

“output” — 2020/12/1 — 12:10 — page 9 — #9 i
i

i
i

i
i

Recombination detection using phylo-k-mers 9

Third, here we focused on the problem of recognizing cases of
homologous recombination, which occurs when the new sequence
combines parental fragments with di�erent origins, but joined at
homologous sites. Non-homologous or illegitimate recombination is
also known to occur in viruses, and results in genomes displaying
structural changes (e.g. with large insertions, deletions, duplications
etc.) (Crawford-Miksza and Schnurr, 1996; Scheel et al., 2013; Galli
and Bukh, 2014). Some preliminary experiments (not shown) suggest
that SHERPAS is also able to recognize and correctly partition non-
homologous recombinants. Note that phylogeny-based tools such as
SCUEAL and REGA align the query to the reference sequences prior
to the analysis, a problematic step when the query contains, for
example, genomic duplications or translocations. In the future, we plan
to conduct an in-depth study of this novel functionality of SHERPAS.

Fourth, SHERPAS was developed to detect novel recombinants,
but not to recognize widespread and well-known recombinants —
known as circulating recombinant forms (CRFs). If some of the query
sequences are CRFs, SHERPAS should detect that they are inter-
strain recombinants, and partition them accordingly. Although we
have done so for one CRF (CRF01_AE) in HIV-1, including CRFs
in the reference alignment and defining one strain per CRF is risky,
as the reference tree will not be an accurate description of the true
history. This point is discussed in depth in the Suppl. Materials
(Sections 3.2 and 3.3), where we also explain how users may solve
this problem by modifying the reference alignment following an idea
already exploited for example, by Kosakovsky Pond et al. (2009) and
D. Martin (personal communication). Automatic treatment of CRFs
is a possible extension that we plan to add to SHERPAS.

Finally, every step involved in SHERPAS’s analyses can be in
principle parallelized, including the construction of the phylo-k-mer
database. This would further improve the scalability of our approach.

5.5 Conclusion

SHERPAS achieves a reasonable accuracy compared to state-of-the-
art inter-strain recombination detection tools for viruses, but is orders
of magnitude more e�cient. This advantage derives from the fact that
SHERPAS does not need to align the query sequences, and from the
relative simplicity of its classification algorithm. To the best of our
knowledge, it is the first software that can estimate the recombinant
structure of thousands of long sequences (up to whole genomes) within
minutes or even seconds. It also appears to be relatively robust to high
error rates typical of long read sequencing technologies. SHERPAS
paves the way to systematic screening of recombinants in large datasets
of long reads or assembled genome sequences.

Acknowledgements

We thank Philippe Roumagnac for useful discussions and guidance,
and the VIROGENESIS consortium (http://www.virogenesis.eu/)
for stimulating this work — in particular Pieter Libin, Kristof Theys
and Anne-Mieke Vandamme.

Funding and conflicts of interest

This work was publicly funded through ANR (The French National
Research Agency) under the Investissements d’avenir programme
with the reference ANR-16-IDEX-0006. B.L. is employed by Spygen, a
company specialising in aquatic and terrestrial biodiversity monitoring
using environmental DNA. N.R. is supported by a doctoral fellowship
from the French Ministère de l’Enseignement supérieur, de la

Recherche et de l’Innovation. We also received support from Institut

Français de Bioinformatique (ANR-11-INBS-0013).

References
Araujo, N. M. (2015). Hepatitis B virus intergenotypic recombinants

worldwide: an overview. Infection, Genetics and Evolution, 36,
500–510.

Barbera, P. et al. (2019). EPA-ng: massively parallel evolutionary
placement of genetic sequences. Systematic Biology, 68(2), 365–369.

Batorsky, R. et al. (2011). Estimate of e�ective recombination rate and
average selection coe�cient for HIV in chronic infection. Proceedings

of the National Academy of Sciences, 108(14), 5661–5666.
Berger, S. A. et al. (2011). Performance, accuracy, and web server

for evolutionary placement of short sequence reads under maximum
likelihood. Systematic Biology, 60(3), 291–302.

Břinda, K. et al. (2018). Karel-brinda/nanosim-h: Nanosim-h 1.1.0.4.
Zenodo.

Crawford-Miksza, L. K. and Schnurr, D. P. (1996). Adenovirus
serotype evolution is driven by illegitimate recombination in the
hypervariable regions of the hexon protein. Virology, 224(2),
357–367.

de Oliveira, T. et al. (2005). An automated genotyping system for
analysis of HIV-1 and other microbial sequences. Bioinformatics,
21(19).

Felsenstein, J. (2004). Inferring Phylogenies, volume 2. Sinauer
associates Sunderland, MA.

Foley, B. et al. (2018). HIV Sequence Compendium 2018 . Theoretical
Biology and Biophysics Group, Los Alamos National Laboratory,
NM, LA-UR 18-25673.

Galli, A. and Bukh, J. (2014). Comparative analysis of the molecular
mechanisms of recombination in hepatitis C virus. Trends in

Microbiology, 22(6), 354–364.
Guindon, S. and Gascuel, O. (2003). A simple, fast and accurate

algorithm to estimate large phylogenies by maximum likelihood.
Systematic Biology, 52, 696–704.

Guindon, S. et al. (2010). New algorithms and methods to estimate
maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. Systematic Biology, 59(3), 307–321.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences.
Cambridge University Press.

Hayer, J. et al. (2013). HBVdb: a knowledge database for hepatitis B
virus. Nucleic Acids Research, 41(D1), D566–D570.

HBVdb contributors (2019). Dataset for nucleotide sequence genomes
of genotype all. https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?

view=/data/nucleic/alignments/all_Genomes.clu&seqtype=0.
Accessed: December 2019.

Kiguoya, M. W. et al. (2017). Subtype-specific di�erences in gag-
protease-driven replication capacity are consistent with intersubtype
di�erences in HIV-1 disease progression. Journal of Virology, 91(13),
e00253–17.

Kosakovsky Pond, S. L. et al. (2009). An evolutionary model-based
algorithm for accurate phylogenetic breakpoint mapping and subtype
prediction in HIV-1. PLoS Computational Biology, 5(11), e1000581.

Kozlov, A. M. et al. (2019). RAxML-NG: a fast, scalable and
user-friendly tool for maximum likelihood phylogenetic inference.
Bioinformatics, 35(21), 4453–4455.

Kuiken, T. et al. (2006). Host species barriers to influenza virus
infections. Science, 312(5772), 394–397.

Linard, B. et al. (2019). Rapid alignment-free phylogenetic
identification of metagenomic sequences. Bioinformatics, 35(18),
3303–3312.

Liu, S.-L. et al. (2002). Selection for human immunodeficiency virus
type 1 recombinants in a patient with rapid progression to AIDS.
Journal of Virology, 76(21), 10674–10684.

Martin, D. P. et al. (2011). Analysing recombination in nucleotide
sequences. Molecular Ecology Resources, 11(6), 943–955.

http://www.virogenesis.eu/
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?view=/data/nucleic/alignments/all_Genomes.clu&seqtype=0
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?view=/data/nucleic/alignments/all_Genomes.clu&seqtype=0

i
i

“output” — 2020/12/1 — 12:10 — page 10 — #10 i
i

i
i

i
i

10 Scholz et al.

Martin, D. P. et al. (2015). RDP4: Detection and analysis of
recombination patterns in virus genomes. Virus Evolution, 1(1).

Martin, D. P. et al. (2017). Detecting and analyzing genetic
recombination using rdp4. Bioinformatics, pages 433–460.

Matsen, F. A. et al. (2010). pplacer: linear time maximum-likelihood
and bayesian phylogenetic placement of sequences onto a fixed
reference tree. BMC Bioinformatics, 11(1), 538.

Moutouh, L. et al. (1996). Recombination leads to the rapid
emergence of HIV-1 dually resistant mutants under selective drug
pressure. Proceedings of the National Academy of Sciences, 93(12),
6106–6111.

Neher, R. A. and Leitner, T. (2010). Recombination rate and selection
strength in HIV intra-patient evolution. PLoS Computational

Biology, 6(1).
Pérez-Losada, M. et al. (2015). Recombination in viruses: mechanisms,

methods of study, and evolutionary consequences. Infection,

Genetics and Evolution, 30, 296–307.
Pineda-Peña, A.-C. et al. (2013). Automated subtyping of HIV-1

genetic sequences for clinical and surveillance purposes: performance
evaluation of the new rega version 3 and seven other tools. Infection,

Genetics and Evolution, 19, 337–348.
Quick, J. et al. (2016). Real-time, portable genome sequencing for

Ebola surveillance. Nature, 530(7589), 228–232.
Scheel, T. K. et al. (2013). Productive homologous and non-

homologous recombination of hepatitis C virus in cell culture. PLoS

Pathogens, 9(3).
Schultz, A.-K. et al. (2006). A jumping profile hidden markov model

and applications to recombination sites in HIV and HCV genomes.

BMC Bioinformatics, 7(1), 265.
Schultz, A.-K. et al. (2009). jpHMM: improving the reliability

of recombination prediction in HIV-1. Nucleic Acids Research,
37(suppl_2), W647–W651.

Schultz, A.-K. et al. (2012). jpHMM: recombination analysis in viruses
with circular genomes such as the hepatitis B virus. Nucleic Acids

Research, 40(W1), W193–W198.
Streeck, H. et al. (2008). Immune-driven recombination and loss

of control after HIV superinfection. The Journal of Experimental

Medicine, 205(8), 1789–1796.
Struck, D. et al. (2014). COMET: adaptive context-based modeling

for ultrafast HIV-1 subtype identification. Nucleic Acids Research,
42(18).

Suarez, D. L. et al. (2004). Recombination resulting in virulence shift
in avian influenza outbreak, Chile. Emerging Infectious Diseases,
10(4), 693.

Wainberg, M. A. and Brenner, B. G. (2010). Role of HIV subtype
diversity in the development of resistance to antiviral drugs. Viruses,
2(11), 2493–2508.

Wikipedia contributors (2019). Subsequence — Wikipedia, the free
encyclopedia. [Online; accessed 5-March-2020].

Yang, C. et al. (2017). NanoSim: nanopore sequence read simulator
based on statistical characterization. GigaScience, 6(4).

Yang, Z. (2006). Computational Molecular Evolution. Oxford
University Press.

Supplementary Materials to
Rapid screening and detection of inter-type viral

recombinants using phylo-k-mers

Contents

1 Phylo-k-mers, formalized 3

1.1 The reference data and their preprocessing . 3

1.2 Probability of a k-mer at a position in the reference tree and alignment 4

1.3 Phylo-k-mers and their probability score . 5

1.4 The full pkDB . 6

1.5 The reduced pkDB . 7

2 The algorithm, formalized 7

2.1 The algorithm at a glance . 7

2.2 The main procedure . 8

2.3 Heap property and update . 9

2.4 Converting scores into likelihoods . 10

2.5 Producing the output . 11

2.6 Complexity analysis . 11

3 Assumptions on the reference data 14

3.1 Accuracy of the reference tree . 14

3.2 Absence of recombination . 14

3.3 Dealing with circulating recombinant forms . 15

3.4 Monophyly of the strains . 16

4 Site-wise measures of accuracy 17

1

Supplementary Materials 2

5 Dataset construction, data availability, and reproducibility 19

5.1 Preprocessing . 19

5.2 HIV-pol . 19

5.3 HBV-genome . 20

5.4 HIV-genome . 21

5.5 HIV Nanopore reads dataset . 23

5.6 Experiment on the specificity/recall trade-o� 23

References 25

A Annex: Marginal posterior distributions of ancestral states 27

B Annex: Approximate relationship between branch scores and likelihoods 28

C Annex: Some illustrated outputs 30

Supplementary Materials 3

1 Phylo-k-mers, formalized

For completeness, here we describe in detail what phylo-k-mers are, and the main ideas
behind their construction. The material presented in Section 1 not novel, as it was introduced
informally in the original publication about RAPPAS [11]. The treatment here is somewhat
more formal, which should help readers interested in the details of the technique, or as a first
step towards understanding its theoretical foundations.

1.1 The reference data and their preprocessing

The input data for the construction of phylo-k-mers are a reference alignment A0, a nucleotide
substitution model (e.g. GTR+�), and a rooted reference tree T0 describing the evolutionary
process that led to the sequences in A0 (i.e. there is a one-to-one correspondence between the
leaves of T0 and the sequences aligned in A0). By default, the branch lengths of T0 and the
parameters ◊ of the substitution model are re-estimated using A0 at launch of the phylo-k-mer
building process.

Both references (alignment and tree) are then preprocessed for the construction of phylo-k-
mers. Improved ways to do this are the subject of ongoing research. Here we describe the
way this is performed currently by default. We denote the set of nodes, leaves and branches
(edges) of any tree T by V (T), L(T) and E(T), respectively. Note that L(T) µ V (T).

First, we remove from A0 all columns that contain more than a certain fraction of gaps “–”
(0.99 by default). The rationale for this step is that ancestral reconstruction techniques do
not account for gaps, and highly gappy columns have been observed to be deleterious for
phylo-k-mer construction. We call the resulting alignment the reduced reference alignment,
and denote it by A.

FEELx I

ux

vx

2 2

2

2 7
3

3
3

2

Figure 1: Injection of two ghost nodes on a branch of the reference tree. Depicted
in black is the reference tree T0. Branches are labelled by their lengths. Branches without
labels have length 1. In gray, two ghost nodes ux, vx injected over branch x: ux is placed on
the midpoint of x, giving rise to two new branches of length 2; vx is a new leaf, connected to
ux via the new branch (ux, vx). Since the lengths of the paths from ux to its 6 descendants
in T0 are 7, 8, 6, 7, 7, 7, the length of the new branch is set to their average, i.e. 7. To get
the extended reference tree, this process is repeated for each x œ E(T0).

Supplementary Materials 4

As for the reference tree, a number of nodes and branches are added to T0, leading to what
we call the extended reference tree T . For each branch x in T0, two new nodes ux and vx are
introduced, as shown in Figure 1: node ux is placed at the midpoint of branch x, and a new
branch (ux, vx) leading to a new leaf vx is also added. The length of this new branch is set to
the average length among all paths from ux to the leaves in L(T0) that descend from ux. This
length is the only aspect that depends on the position of the root of T0 in the phylo-k-mer
building process. Note that V (T0) µ V (T). Nodes that are in V (T) but not V (T0) are called
ghost nodes.

1.2 Probability of a k-mer at a position in the reference tree and alignment

We consider the reduced reference alignment as a matrix A = (au,i), where au,i œ {A, C, G, T, ≠}
is the nucleotide or gap in the sequence at leaf u œ L(T0) aligned to site i œ {1, . . . , m}, where
m is the number of columns in A. Note that gaps are usually interpreted and treated as
missing data in phylogenetics. Aside from gaps, the contents of A represent all sequence data
that have been actually observed from the reference tree.
Here, we wish to model nucleotides at the nodes in V (T)\L(T0), i.e. the nodes in the extended
reference tree from which no data has been observed. In order to represent these unobserved
nucleotides, we define, for every u œ V (T) and every site i, the random variable

A
Õ
u,i = nucleotide at site i of the sequence at node u.

Note that the only possible realizations of this random variable are in {A, C, G, T} and that
whenever u œ L(T0) and au,i ”= ≠, we must have A

Õ
u,i = au,i. Thus, the A

Õ variables specify a
random “extension” of alignment A. For the calculations that follow, the only relevant A

Õ
u,i

variables are those where u is a ghost node.
The observed data in A and the substitution model specified by ◊ determine the marginal
posterior distribution of A

Õ
u,i, i.e. the probabilities, for every a œ {A, C, G, T}

P[AÕ
u,i = a | A, ◊]. (1)

Calculating these probabilities can be performed with standard techniques of ancestral state
reconstruction, which for completeness we briefly summarize in Annex A.
Because the probabilities above depend on the particular nucleotide substitution model that
the user wishes to adopt, and because substitution models are a subject of active research,
their calculation is best performed by well-maintained and up-to-date software packages for
likelihood-based phylogenetic calculations, such as RAxML-NG [9] and PhyML [6]. The choice
of the software to use as well as the nucleotide substitution model and its parameters ◊, can be
controlled with suitable options of the phylo-k-mer construction software (currently a module
within RAPPAS). The result of this step is a large collection of tables containing all the
marginal posterior probabilities of A

Õ
u,i that are relevant for the calculations that follow. See

Figure 2 for an example of such a table, and its use.
Now let Su,i be the random sequence A

Õ
u,iA

Õ
u,i+1 . . . A

Õ
u,i+k≠1, that is the k-mer at sites i, i +

1, . . . , i + k ≠ 1 in the sequence at node u. Using the assumption of independent evolution at
di�erent sites, we calculate the probability distribution of Su,i as follows:

P[Su,i = a1a2 . . . ak | A, ◊] =
kŸ

j=1
P[AÕ

u,i+j≠1 = aj | A, ◊]. (2)

Supplementary Materials 5

The assumption of independence between sites, although unrealistic, is standard practice in
phylogenetics, and is also needed for computing the probabilities in (1).

A

C

G

T

i i + 1 i + k ≠ 1

Figure 2: Computing the probability of a k-mer at k consecutive sites in A. Software
for likelihood-based phylogenetics can be used to produce, for any given ghost node u, a
table of marginal posterior probabilities of the four nucleotides at u and at all sites in A,
i.e. the probabilities in (1). The table for a specific node u is depicted here with nucleotides
corresponding to rows and sites corresponding to columns. Given this table, the probability of
any k-mer at u and any k consecutive sites in A can be computed using (2). For example, the
probability of 5-mer AACAT (resp. TGTGC) at u and sites i to i + 4 is obtained by multiplying
the table entries highlighted in green (resp. blue).

1.3 Phylo-k-mers and their probability score

In the previous section, we have explained the simple ideas behind calculating the probability
P[Su,i = w | A, ◊] for any k-mer w, any node u œ V (T), and any site i œ {1, . . . , m ≠ k + 1}.
Also recall that each branch x œ E(T0) is associated to a subset of ghost nodes in V (T) (by
default {ux, vx}, see Section 1.1). Let Gx denote this subset.

For any k-mer w and any branch of the original reference tree x œ E(T0), we then define the
probability score of w at x as

ÂP[w|x] = max
uœGx

max
iœ{1,...,m≠k+1}

P[Su,i = w | A, ◊]. (3)

In other words, ÂP[w|x] is probability of w at the best placement for w within A and among
the nodes in Gx. The ÂP[w|x] scores play a central role to determine the phylogenetic origin of
a sequence in both SHERPAS and RAPPAS [11]. Because of this, it is helpful to pause here
and o�er a few informal interpretations of what they mean.

1. The simplest way to interpret ÂP[w|x] is as an approximation of the probability of k-mer
w being present in a sequence that has diverged from the reference tree T0 at branch
x. Note, however, that if we were to compute such probability, it would make more
sense to take a weighted average over u œ Gx instead of the first maximum, and to take
P[there exists i such that Su,i = w | A, ◊] instead of the second maximum.

Supplementary Materials 6

2. We can also view ÂP[w|x] as a quantity proportional to the maximum likelihood score
of the phylogenetic tree that is obtained from T0 by inserting w at the end of a new
branch attached to x (as in Figure 1). Taking the maximum over i œ {1, . . . , m ≠ k + 1}
corresponds to finding a maximum likelihood alignment of k-mer w to A, constrained to
having no indel breaking up the k-mer. Taking the maximum over u œ Gx corresponds to
finding a maximum likelihood configuration within a small set of possible configurations
for the branch lengths surrounding the attachment point of w to x. (E.g. when Gx =
{ux, vx}, as in Figure 1, placing w at ux corresponds to setting the new pendant branch
length to 0, while placing it at vx corresponds to setting it to 7.)

In short, all that matters for SHERPAS and other algorithms using the ÂP[w|x] scores is that
they represent a probabilistic measure of how likely x is to be the phylogenetic origin of k-mer
w. Note that this implies that scores coming from di�erent k-mers must be combined using
products, or equivalently by using sums of their logarithms.

A phylo-k-mer is defined as a k-mer w for which there exists at least one branch x œ E(T0)
with ÂP[w|x] larger than a given threshold, currently set to (Ê/4)k, where Ê is a user-set
parameter (1.5 by default).

The phylo-k-mer database construction step relies on algorithms that generate all such phylo-
k-mers, and stores them together with a list of (1) all the branches in E(T0) for which ÂP[w|x]
is larger than the threshold, and (2) their respective probability scores ÂP[w|x] (see next section
for more details). A number of alternative algorithms for this step have been the subject of
recent research which will be described in an upcoming publication (N. Romashchenko et al.,
pers. comm.).

1.4 The full pkDB

The full phylo-k-mer database (pkDB) is a data structure containing all phylo-k-mers and
their associated information. It is a look-up table B that, given a phylo-k-mer w, returns the
list of pairs

B(w) =
Ë
(x1, s1), (x2, s2), . . . , (x|B(w)|, s|B(w)|)

È

where the xi are branches of the reference tree (hence the use of the letter B) and

si = log ÂP[w|xi].

Unless otherwise stated, all logarithms are base 10.

The pkDB also contains all the relevant information regarding the parameters that were used
to generate the phylo-k-mers, most notably the threshold on their scores. In the following we
call ThrB the threshold for log-probability scores, meaning that all si in a B(w) list are such
that si > ThrB.

The value of the threshold is taken into account in the calculations performed by SHERPAS:
anytime a branch x does not appear in B(w), SHERPAS assumes log ÂP[w|x] = ThrB.

Supplementary Materials 7

1.5 The reduced pkDB

The root branches of the reference tree are those that lie at the root of a maximal subtree
whose leaves all belong to the same strain. (See the main text for an equivalent definition.)
The reduced pkDB B

Õ is obtained from the full pkDB B by removing all pairs (xi, si) where
xi is not a root branch. That is, if B(w) =

Ë
(x1, s1), (x2, s2), . . . , (x|B(w)|, s|B(w)|)

È
and

xi1 , xi2 , . . . , xil are the root branches among x1, x2, . . . , x|B(w)|, then

B
Õ(w) = [(xi1 , si1), (xi2 , si2), . . . , (xil , sil)] .

In the following, for simplicity we denote by B the pkDB used, regardless of whether the full
or reduced version is used.

2 The algorithm, formalized

2.1 The algorithm at a glance

Below, we provide a detailed description of the algorithm underlying SHERPAS, complement-
ing the high-level description in the main text. In order to understand the pseudocode that
follows, here we introduce the main important ideas, namely the mathematical scores that
SHERPAS computes.
At any point during the execution of SHERPAS, only a subset of the branches of the reference
tree are “active”. These are the branches that are associated by the pkDB to at least one
k-mer in the current window. We will denote this subset of branches by L, for consistency
with the algorithm used by RAPPAS for placement [11].
As the sliding window moves along, SHERPAS updates L, and for every branch x currently
in L, it also keeps a score S[x] equal to the sum of all the log-probabilities associated to x by
the k-mers in the current window. To express this mathematically, let W denote the sequence
of k-mers in the current window. That is, W = (w1, w2, . . . , w|W |), where each wi is a k-mer
that overlaps by k ≠ 1 characters with wi≠1 and wi+1, for i œ {2, . . . , |W | ≠ 1}. Then,

S[x] =
|W |ÿ

i=1
log ÂP[wi|x] (4)

Supplementary Materials 8

Recall that if x does not appear in any pair in B(wi), SHERPAS assumes log ÂP[wi|x] = ThrB

where ThrB is the threshold for log-probability scores, used for the construction of the pkDB
(see Section 1.4).

To determine the recombinant structure of the query sequence, for every window SHERPAS
inspects the branch or branches in L that have the highest score S[x]. In order to find these
branches e�ciently, L is implemented as a binary max-heap [2], a data structure that partially
orders the branches it contains on the basis of their scores S[x], and that is e�cient to update.
Every time a branch changes score or is added or removed from L, the max-heap is updated
using a well-known procedure that for completeness we report in Sec. 2.3.

2.2 The main procedure

Let W0, W1, . . . , WN denote the windows considered by SHERPAS during its execution. We
set W0 = ÿ for mathematical convenience. The way the other windows are defined depends
on whether the query is circular or not. If the sequence is not circular, the first window W1
contains the first 100 k-mers of the sequence. Then two k-mers are added from one window
to the next, until the size of a window coincides with the standard size (300 by default). As
that size is attained, at each step the first k-mer of the current window Wi is removed, and
the k-mer following the last k-mer in Wi is added, to get the next window Wi+1. Finally,
when the end of the query is reached, the first two k-mers of the current window are removed
at each step, until we get a final window WN of size 100.

If the query sequence represents a full circular genome, the size of all the windows are the same,
and each window is obtained from the previous one by removing the first k-mer and adding
the next one. However, a pre-processing step modifies the query, to reflect its circularity, as
follows: The last (|W | + k ≠ 1)/2 base pairs of the sequence are added to its beginning, and
the first (|W | + k ≠ 1)/2 base pairs are added to its end. Note that |W | + k ≠ 1 equals the
length of the sliding window in base pairs.

The pseudocode below describes the algorithm employed by SHERPAS to treat one query.
The following notation and terminology is adopted:

• The set of candidate branches E is the set of all branches for which some information is
stored in the pkDB. For SHERPAS-full, E = E(T0), i.e. E is the set of all branches in
the reference tree, whereas for SHERPAS-reduced, E is the set of root branches.

• += denotes increment of its left-hand side by its right-hand side.

• Wi \Wi≠1 denotes the sequence of k-mers that are newly added to Wi. Note that, unless
i = 1, there are at most two k-mers in Wi \ Wi≠1, but usually (when |Wi| = |Wi≠1|)
there is exactly one k-mer here.

• Wi≠1 \ Wi denotes the sequence of k-mers that are removed when transitioning from
Wi≠1 to Wi. Again there are at most two k-mers here (usually exactly one).

•
v

B(w), w œ W denotes the concatenation of the lists B(w), for all k-mers w in W .

• L is the data structure containing the branches that are currently active, that is, asso-
ciated by the pkDB to at least one k-mer in the current window.

Supplementary Materials 9

• C[] is a table of counts, where C[x] contains the number of k-mers in the current window
that are associated by the pkDB to branch x.

Algorithm 1: SHERPAS, main algorithm (treatment of one query)
Input: A query with (ordered) windows W1, . . . , WN , a pkDB B, a set of candidate

branches E, a threshold ◊

Output: For each window Wi, a strain Pi associated to Wi

set C[x] = 0 for all branches x œ E

set L = ÿ, W0 = ÿ
for i = 1 to N do

set Ba =
v

B(wa), wa œ Wi \ Wi≠1 // Ba = branches added
set Br =

v
B(wr), wr œ Wi≠1 \ Wi // Br = branches removed

for all pairs (x, s) in Ba do
if C[x] = 0 then

add x at the end of L

set S[x] = |Wi≠1| · ThrB // Set S[x] to its minimum possible value

C[x] += 1
S[x] += s ≠ ThrB

Update(L, x)

for all pairs (x, s) in Br do
C[x] += (≠1)
S[x] += ThrB ≠ s

if C[x] = 0 then
set S[x] = ≠Œ // This causes the removal of x from L

Update(L, x)

if |Wi| ”= |Wi≠1| then
for all branches x œ L do

S[x] += ThrB · (|Wi| ≠ |Wi≠1|) // Minimum possible value correction

set Pi = Get_strain(L, ◊)
return P1, . . . , PN

Sub-procedures Update and Get_strain are described in subsections 2.3 and 2.5, respec-
tively.

2.3 Heap property and update

As mentioned in Sec. 2.1, L is a binary max-heap. We adopt here the standard practice to
implement L as an array whose first element is L[1] and whose last element is L[|L|] [2]. Each
of its elements L[j] is a branch in E, and we ensure that L satisfies the heap property, that
is, for all j œ {2, . . . , |L|}, we have S[L[Âj/2Ê]] Ø S[L[j]]. We use this structure because it is
computationally fast to update it when the score of an element of L changes (Algorithm 2),
and because it ensures that at any time the following two properties are satisfied:

Supplementary Materials 10

(i) The best-scoring branch is L[1].

(ii) The second best-scoring branch is either L[2] or L[3], whichever has the greatest score.

In terms of computational complexity, each update is carried out in O(log |L|) time, and
finding the two best scoring branches (which is what SHERPAS-full does) takes O(1) time.

Algorithm 2: Update(L, x) (subprocess of Algorithm 1)
Input: An array L satisfying the heap property for a score vector S. An element x of L

whose score S[x] was modified.
Output: The list L that satisfies the heap property for the new value of S[x].
set j as the position of x in L

if S[x] = ≠Œ then
set L[j] = L[|L|]
remove the last element of L from L

set hp = 0
while hp = 0 do

set p = Âj/2Ê
set l = 2j, r = 2j + 1
if S[L[j]] > S[L[p]] then

swap the contents of L[j] and L[p]
set j = p

else if (l Æ |L| and S[L[l]] > S[L[j]]) or (r Æ |L| and S[L[r]] > S[L[j]]) then
if l = |L| or S[L[l]] Ø S[L[r]] then

set b = l

else
set b = r

swap the contents of L[j] and L[b]
set j = b

else
set hp = 1

return L

2.4 Converting scores into likelihoods

To compare the scores of di�erent branches, these scores must first be converted into numbers
that can be interpreted as likelihoods or probabilities. Recall the definition of S[x]:

S[x] =
|W |ÿ

i=1
log ÂP[wi|x]

Because ÂP[wi|x] is defined as the product of the probabilities of the nucleotides in wi at a given
placement, the log-probability of each nucleotide in the sum above is usually counted k times
(the only exception being the nucleotides near the ends of the window). Thus it makes sense

Supplementary Materials 11

to: (i) divide S[x] by k, and then (ii) convert the resulting log-probability into a probability.
This leads to the following definition:

¸x = b
S[x]/k

, (5)

where b is the base of the logarithm (10 in current databases). We interpret ¸x as an approx-
imation of the likelihood of x being the phylogenetic origin of the sequence in W .

A more detailed justification for definition (5) is developed in Annex B, where the assumptions
behind the argument above are made explicit.

2.5 Producing the output

For any given window, procedure Get_strain(L, ◊) associates a classification (either a strain
or N/A, which stands for not assigned) to that window on the basis of the contents of L. This
involves converting the scores of the two best-scoring branches (SHERPAS-full) or all branches
(SHERPAS-reduced) in L into likelihoods ¸x, in the way described in Sec. 2.4.

Algorithm 3: Get_strain(L, ◊) (subprocess of Algorithm 1)
Input: A max-heap L of branches for window Wi and a threshold ◊

Output: A classification for window Wi

if full pkDB in use then
set x1 and x2 to the best-scoring and the second best-scoring branch in L, resp.
if x1 and x2 are assigned to the same strain or ¸x1/¸x2 Ø ◊ then

return the strain assigned to x1
else

return N/A
else // reduced pkDB in use

set r = ¸L[1]/
q|L|

i=1 ¸L[i]
if r Ø ◊ then return the strain assigned to L[1]
else return N/A

Given the output P1, . . . , PN of Algorithm 1, SHERPAS infers the breakpoints as follows. If
for some 1 Æ i Æ N ≠ 1, we have Pi ”= Pi+1, a breakpoint between a segment of origin Pi

and a segment of origin Pi+1 is placed between the middle point of the window Wi and the
middle point of window Wi+1. Note that by construction of the windows, these two positions
are always consecutive.

By default, if an unassigned (N/A) segment is inferred between two segments associated to
the same strain X, the segment is then reassigned to strain X, and the breakpoints at its ends
are removed. Note that this option can be deactivated by the user (see SHERPAS GitHub
page).

2.6 Complexity analysis

We start by analyzing the computational complexity of processing a single query.

Supplementary Materials 12

Each k-mer in the query is processed at most twice: once when it is added for the first time
to the sliding window, and once when it is removed from it. Processing a k-mer means first
retrieving B(w) from the pkDB, and then, for each pair (x, s) in B(w), updating S[x], C[x]
and L (see again Algorithm 1 for notation). Assuming that k is a constant, the retrieval and
inspection of each element in B(w) takes O(|B(w)|) time. The same holds for the update of
S[·] and C[·], as each element of B(w) involves O(1) operations of update. As for the update
of L following the change of one S[x], very often this will involve no change, as the change
in S[x] is usually very small and thus it does not require any swap within the max-heap.
However, the worst-case time complexity of updating L is O(log |L|). Since this needs to be
repeated for many branches appearing in B(w), the worst-case time complexity of processing
a single k-mer w is O(|B(w)| log |L|). Now note that L can only contain candidate branches
taken from E, and therefore |L| Æ |E|. The worst-case time complexity of processing a single
k-mer w is therefore

O(|B(w)| log |E|)

The above analysis covers the time spent executing most of the code within the for i = 1 to
N loop in Algorithm 1, but it does not cover the part of the code within if |Wi| ”= |Wi≠1|, nor
the time spent executing Get_strain. Whenever |Wi| ”= |Wi≠1| is true, SHERPAS updates
the score of O(|L|) = O(|E|) branches. But |Wi| ”= |Wi≠1| is only true for a constant number
of windows (about 200 with default parameters), which means that the overall contribution
to the running time of SHERPAS of this if clause is O(|E|).

Finally, Get_strain runs in O(1) time for SHERPAS-full and O(|E|) time for SHERPAS-
reduced, because the calculation of the likelihood ratio requires reading the scores of 3 branches
and |L| branches for SHERPAS-full and SHERPAS-reduced, respectively. Now note that
Get_strain is called once for each window and that the number of windows is O(|Q|),
where |Q| is the number of k-mers in the query Q. Therefore, the total contribution of
Get_strain to the running time of SHERPAS is O(|Q|) and O(|Q||E|) for SHERPAS-full
and SHERPAS-reduced, respectively.

If we let w1, w2, . . . , w|Q| be the sequence of k-mers that make up Q, then we can put together
the observations of the last three paragraphs, and obtain an overall time complexity of

O(|E|+
|Q|ÿ

i=1
|B(wi)| log |E|) for SHERPAS-full

O(|Q||E|+
|Q|ÿ

i=1
|B(wi)| log |E|) for SHERPAS-reduced

These expressions can be simplified: let B̄Q denote the average size of B(w) across all k-
mers in Q. In other words, we have |Q|B̄Q =

q|Q|
i=1 |B(wi)|. This allows us to rewrite the

complexities above:

O(|E|+|Q|B̄Q log |E|) for SHERPAS-full
O(|Q||E|+|Q|B̄Q log |E|) for SHERPAS-reduced

Now note that while B̄Q is usually very close to |E| in SHERPAS-reduced (they are both
small numbers), the same cannot be said in general for SHERPAS-full, where depending on

Supplementary Materials 13

the pkDB (and to a lesser extent on the query Q), we may have B̄Q π |E| (in which case
we say that the pkDB is sparse) or B̄Q ¥ |E| (the pkDB is dense). Moreover, the number
of candidate branches |E| is very di�erent for SHERPAS-full and SHERPAS-reduced. For
SHERPAS-full, |E| = O(|T0|), where |T0| is any measure of the size of the reference tree
(e.g. |T0| = |E(T0)|). For SHERPAS-reduced, |E| = |R0|, where R0 denotes the set of root
branches in T0. Because of these observations, we conclude the following worst-case time
complexities for a single query Q:

O(|T0|+|Q|B̄Q log |T0|) for SHERPAS-full and a sparse pkDB
O(|Q||T0| log |T0|) for SHERPAS-full and a dense pkDB
O(|Q||R0| log |R0|) for SHERPAS-reduced, with |R0| π |T0|.

As for memory complexity, SHERPAS uses O(|E|) space to store all the information on
candidate branches, including S[·], C[·] and L. In practice, most of the memory employed
by SHERPAS is used to store the pkDB, which is proportional to

q
w |B(w)| and therefore

also O(|E|), with a very large multiplicative constant proportional to the number of phylo-
k-mers. Although in theory O(|Q|) space is used to store the query and the partial results
P1, . . . , PN , in practice this is dominated by the O(|E|) term. Therefore the space complexity
for SHERPAS is O(|E|).

To extend the analyses above for multiple queries, for running times it su�ces to add together
the complexities for the single queries. Memory complexity remains O(|E|).

Supplementary Materials 14

3 Assumptions on the reference data

Below we discuss a number of assumptions that, ideally, the reference data should satisfy. As
we will illustrate in the subsections below, many of these assumptions were violated to some
extent in the experiments we report in the paper. This means that some negative e�ects that
these violations may have on the accuracy of SHERPAS may already be accounted by the
results that we reported. This makes us optimistic about the robustness of SHERPAS to such
violations.

3.1 Accuracy of the reference tree

Like any other method based on a phylogenetic model, SHERPAS was developed assuming
that the input phylogenetic tree is an accurate reflection of the evolutionary history of the
sequences in the reference alignment. Violations of this assumption will result in phylo-k-mers
having scores that do not reflect optimally their phylogenetic origin.
Although we have not investigated it extensively, we believe that SHERPAS should exhibit
some robustness to the use of a reference tree containing a few errors. In fact, we believe
that the trees that we used in our experiments are likely to contain a few di�erences with
the reality, most notably because some ancestors of the reference sequences have probably
undergone recombination. In this case no reference tree is an accurate description of the
reality. We discuss the issue of hidden recombination in the next section.
The position of the root in the reference tree also has an influence on the pkDB construction
step and on the scores of the phylo-k-mers. We refer the reader to the Supplementary Materials
of the RAPPAS paper [11], where this point was discussed at length. For the purpose of
recombination detection, the user should make sure that the root is placed outside the clades
that are monophyletic with respect to the strains (see Sec. 3.4). Aside from that, it is definitely
a good idea to place the root of the reference tree in a realistic position, but we do not think
this will have a major influence on the accuracy of SHERPAS. In our experiments for HIV,
we placed the root of the reference tree on the branch directly ancestral to strain O, which is
probably not the correct position of the root for the reference tree.

3.2 Absence of recombination

A standard assumption of phylogeny-based methods for recombination detection is that the
reference alignment is recombination-free, that is, none of the sequences in the alignment,
nor their ancestors, have undergone recombination events. See for example the discussion on
this point in the paper about SCUEAL [8]. However, other tools are inherently robust to
the inclusion of some types of recombinants, as their models do not depend on a particular
phylogenetic tree. For example this is the case for jpHMM. Being phylogeny-based, SHERPAS
is closer to SCUEAL in this respect. However, we can expect that minor violations to the
assumption that the alignment is recombination-free can be tolerated. We discuss the possible
e�ect of a number of possible violations below.
First, it is likely that even in the reference alignments used by many phylogeny-based methods,
sequences that are “pure” for one strain are in fact intra-strain recombinants. These recom-
binants —which are di�cult to detect, as they involve recombination events between similar

Supplementary Materials 15

sequences— are believed to be relatively frequent, for example in HIV [7] and HBV [12]. In-
cluding intra-strain recombinants in the reference alignment is probably not only inevitable,
but also relatively innocuous for SHERPAS. This is because the errors it causes in the refer-
ence phylogeny will presumably only involve branches that are internal to one strain. These
errors are likely to have a limited e�ect on the scores of some phylo-k-mers, and they should
not cause the misclassification of a window in an incorrect strain. Note that most of our ex-
periments with SHERPAS were done using the same reference alignments as jpHMM, which
to the best of our knowledge were not screened to exclude intra-subtype recombinants.

Second, sometimes entire strains may be composed of recombinant sequences. This occurs
when a recombination event was ancestral to a common ancestor of all the sequences in
the strain. This is believed to be the case for circulating recombinant forms (CRFs), which
are recombinant forms that have been observed in several unrelated individuals. A naïve
approach to include sequences of a particular CRF in a reference alignment is to define a
strain coinciding with that CRF. This is what we have done in the two HIV datasets for
CRF01_AE, which is believed to be a recombinant between subtype A and a now extinct (or
unsampled) subtype E. Setting a strain to a CRF allows users to recognize novel recombinants
between that CRF and other strains.

However, the naïve approach above comes at a risk: the true evolutionary history of the
reference sequences involves at least one reticulation ancestral to the CRF, meaning that
the reference tree —whatever it is— will definitely not be correct in the part ancestral to
that CRF. We do not know how strong the e�ect of using such an incorrect tree is, but it
is probably more important than the e�ect of including intra-strain recombinants. For this
reason, with the exception of CRF01_AE, we have avoided the inclusion of CRFs in the
reference alignment, and we advise users to do the same. In the HIV-genome dataset we have
noticed that SHERPAS appears to have some di�culties distinguishing CRF01_AE from
strain A1 (this can be observed for example in queries 18, 51, 65 in Section C below), which
is related to the fact that the relative position of CRF01_AE and the A strains within the
reference tree is probably erroneous for at least part of the reference alignment. In the next
subsection we discuss how an advanced user may include CRFs in the reference alignment in
a clever way, which addresses in a satisfactory way the problems above.

Third, some sequences may be erroneously annotated as belonging to one strain, but in fact
they are inter-strain recombinants. Compared to the other cases discussed above, these are
definitely the recombinants that may cause the most serious disruption to the accuracy of
SHERPAS —and of other methods too, including jpHMM and SCUEAL. Users should
always make sure that the reference alignment only contains sequences that are
“pure” with respect to the input strains. In our experiments, we have always used the
reference alignments that were distributed with either jpHMM or SCUEAL.

3.3 Dealing with circulating recombinant forms

Including CRFs in the reference alignment and assigning them to strains labelled by the CRF
identifier is attractive from a practical point of view because it may allow users of SHERPAS
to (1) recognize if a sequence is a CRF and (2) detect novel recombinants between a CRF
and another strain. However, as explained above, the naïve way of doing so is probably not
a good idea, as the reference tree will contain some large-scale di�erences with the reality.

Supplementary Materials 16

If tasks (1) and (2) are important to a user, there is a relatively simple way of solving this
problem, which we explain below.

This idea was already explained, among others, by Sergei Kosakovsky Pond and coauthors [8]
and Darren Martin (personal communication). It exploits the fact that, because CRFs have
been the object of several analyses, their recombinant structure is well-known, including the
(sometimes approximate) position of breakpoints. This means that any CRF sequence can be
decomposed into subsequences that are “pure” with respect to their strains. For example in
HIV-1, the sequences tagged as CRF03_AB have mosaic structure ABA with the central B
segment starting at site 2688 and ending at site 8649 [10]. In this case, every sequence x from
CRF03_AB should be decomposed into the following two sequences prior to their inclusion
in the reference alignment: xA, which is identical to x, except for positions 2688-8649 which
are replaced by a long stretch of gaps; and xB, a sequence that has gaps up to position 2687,
then coincides with x from position 2688 to 8649, and finally has gaps up to the last position
of x. These two sequences can then be assigned to strain CRF03_AB. Note that xA and xB

have di�erent phylogenetic origins within the reference tree, with xA likely to be found near
subtype A and xB likely to be found near subtype B. In fact all the sequences obtained as
xA from some sequence x from CRF03_AB should form a clade, and the same holds for all
sequences obtained as xB.

In general, if we subdivide each reference sequence from a CRF into its non-recombinant
components, then it is not a problem anymore to represent the evolution of the reference
sequences with a phylogenetic tree. The strain corresponding to a CRF will be partitioned in
as many sub-strains as there are parental sequences for that CRF, and generally each of these
sub-strains will form a separate clade in the reference tree. Since SHERPAS is able to deal
with strains that are polyphyletic (see next section), it can be used on the pkDB constructed
above without modification.

3.4 Monophyly of the strains

Since strains are usually defined either using phylogenetic criteria or by adopting appropriate
thresholds for intra-strain similarity, we expect them to be usually monophyletic, meaning that
each strain should correspond to a separate clade in the reference tree. In fact it is always
a good idea for users of SHERPAS to check that most strains are monophyletic after they
reconstructed, or downloaded, the reference tree. A few exceptions to this rule are acceptable,
for example when (1) an “artificial” strain is designed to contain all reference sequences that
are not in a strain of interest, or (2) the user knows that the strain is not monophyletic, yet it
makes sense to define it as a single strain. As an example of (2), in our experiments on HIV,
we used a strain named CPZ to include all SIV (simian immunodeficiency virus) sequences
from chimpanzees, which are expected to be polyphyletic. For another example of why (2)
may be useful, see Sec. 3.3 above.

Because of the possible exceptions to monophyly, SHERPAS was designed to tolerate the
inclusion of polyphyletic strains. However, this will have some subtle e�ects on the behavior
of SHERPAS, which may di�er depending on the version (full/reduced) of the pkDB used.
Specifically, the presence of polyphyletic strains increases the number of branches that are
unassigned (not assigned to any strain) in SHERPAS-full and increases the number of root
branches in SHERPAS-reduced. Although our experiments did include a few polyphyletic

Supplementary Materials 17

strains (3 in HIV-pol and 2 in HIV-genome, including CPZ), we do not have enough perspec-
tive to describe their e�ect on the analysis. Because of this, we believe that they should be
used with caution.

4 Site-wise measures of accuracy

Here we show some simple mathematical relationships between the site-wise sensitivity and
precision defined in the Materials and Methods of the paper, and strain-specific definitions of
sensitivity and precision, which are standard in multi-class classification literature.
Let n be the number of strains. For ease of notation, we associate each strain to one integer
from 1 to n, whereas we associate integer n + 1 to the “unassigned” status.
We define the confusion matrix as an n ◊ (n + 1) matrix M = (mij), where mij is the number
of sites whose correct strain is i and that were classified as j.
The following two definitions are standard in multi-class classification.

• The sensitivity for strain i (1 Æ i Æ n) is the proportion of sites that are classified as i,
out of all sites whose correct strain is i. That is, in terms of the confusion matrix:

sensitivityi = miiqn+1
j=1 mij

.

• The precision for strain i (1 Æ i Æ n) is the proportion of sites whose correct strain is
i, out of all sites that are classified as i. That is, in terms of the confusion matrix:

precisioni = miiqn
j=1 mji

.

The following two definitions are the ones that we gave in the paper.

• The site-wise sensitivity is the proportion of sites that are classified in their correct
strain, out of all sites. That is, in terms of the confusion matrix:

site-wise sensitivity =
qn

i=1 miiqn
i=1

qn+1
j=1 mij

.

• The site-wise precision is the proportion of sites that are classified in their correct strain,
out of all sites that are classified in some strain other than n + 1. That is, in terms of
the confusion matrix:

site-wise precision =
qn

i=1 miiqn
i=1

qn
j=1 mij

.

The two pairs of definitions above are linked in an intuitive way by the following two propo-
sitions.

Proposition 1. The site-wise sensitivity is the weighted average of the strain-specific sen-
sitivities, where the weight for strain i is proportional to the number of sites whose correct
strain is i.

Supplementary Materials 18

Proof. The weight wi for class i is proportional to
qn+1

j=1 mij . Since the sum of weights in a
weighted average is 1, we have:

wi = 1
S

n+1ÿ

j=1
mij ,

where

S =
nÿ

i=1

n+1ÿ

j=1
mij .

Then, the weighted average in the statement is given by:

nÿ

i=1
wi · sensitivityi =

nÿ

i=1

Q

a 1
S

n+1ÿ

j=1
mij

R

b · miiqn+1
j=1 mij

= 1
S

nÿ

i=1
mii

= site-wise sensitivity.

Proposition 2. The site-wise precision is the weighted average of the strain-specific preci-
sions, where the weight for strain i is proportional to the number of sites that are classified as
i.

Proof. The weight w
Õ
i for class i is proportional to

qn
j=1 mji. Since the sum of weights in a

weighted average is 1, we have:

w
Õ
i = 1

SÕ

nÿ

j=1
mji,

where
S

Õ =
nÿ

i=1

nÿ

j=1
mji.

Then, the weighted average in the statement is given by:

nÿ

i=1
w

Õ
i · precisioni =

nÿ

i=1

Q

a 1
SÕ

nÿ

j=1
mji

R

b miiqn
j=1 mji

= 1
SÕ

nÿ

i=1
mii

= site-wise precision.

Supplementary Materials 19

5 Dataset construction, data availability, and reproducibility

Here we describe a number of details about the construction of the datasets behind the
experiments presented in the main text. We also provide the information necessary for their
reproducibility. All relevant files that do not belong to a third party can either be downloaded
from the SHERPAS GitHub repository at https://github.com/phylo42/sherpas or from
the Dryad dataset distributed with this paper (link provided on the GitHub README page).

5.1 Preprocessing

The operations necessary prior to the execution of SHERPAS —i.e. the construction of the
reference tree, of the phylo-k-mer database, and of the sequences-to-strains mapping— were
the same for all the datasets. We briefly describe them here.

Reference trees were constructed from the reference alignments (dataset-specific, see below)
using PhyML 3.3.20180214 [5] using GTR+�+I as nucleotide substitution model. A discrete
� distribution with 4 rate categories (the default in PhyML) was used to model rate variation
across sites. The proportion of invariant sites was estimated from the alignment, as well as
the shape parameter – (the latter is done by default by PhyML). The resulting reference trees
are included in the Dryad dataset. PhyML was run with the following command:

phyml -i <reference_alignment> -m GTR -v e

The pkDBs were constructed using RAPPAS2 v0.1.3a, using parameter k = 10 (which is not
the default value) and threshold parameter Ê = 1.5 (the default). (See also Sec. 1.3 above
for the meaning of the Ê parameter.) The resulting pkDBs are included in the Dryad dataset
(.rps files). RAPPAS2 was run with the following command:

python3 rappas2.py build -s nucl -b <path_to_phyml> -w <output_directory>

-r <reference_alignment> -t <reference_tree> -m GTR -k 10

Finally, the .csv files mapping reference sequences to strains were constructed manually,
using the information contained in the name of each sequence, to infer the strain it belongs
to. These files are also included in the Dryad dataset.

5.2 HIV-pol

References. The reference alignment that we used for SHERPAS is the one provided with
SCUEAL (167 sequences), and is available at https://github.com/spond/SCUEAL/blob/

master/data/pol2009.nex. (Accessed October 2019.)

Queries. The 10,000 synthetic queries and the output of SCUEAL for these queries are
accessible here: http://www.hyphy.org/pubs/SCUEAL/SCUEAL%20Files_files/Shuffled.

zip. (Accessed October 2019.) Note that none of the queries contains fragments from strains
A3, AE, O, CPZ, although these strains are present in the reference alignment. All other
strains in the reference alignment are present in some queries.

https://github.com/phylo42/sherpas
https://github.com/spond/SCUEAL/blob/master/data/pol2009.nex
https://github.com/spond/SCUEAL/blob/master/data/pol2009.nex
http://www.hyphy.org/pubs/SCUEAL/SCUEAL%20Files_files/Shuffled.zip
http://www.hyphy.org/pubs/SCUEAL/SCUEAL%20Files_files/Shuffled.zip

Supplementary Materials 20

Running SHERPAS. The reference tree reconstructed from the reference alignment, the
.csv file recording the classification of the sequences in the reference alignment, and the .rps
file encoding the pkDB for this dataset are available in the pkDB-HIV-pol directory within
the Dryad dataset.

SHERPAS was executed with the following command:

SHERPAS -o out/ -d pkDB-HIV-pol/DB_k10_o1.5.rps

-q HIV_pol/queries.fasta -g pkDB-HIV-pol/ref-groups.csv

Running jpHMM. jpHMM was executed with default parameters for HIV sequences, with
the following command:

./jpHMM -s HIV_pol/queries.fasta -v HIV

It was also executed with the -Q blat option for speed-up. Out of the several files pro-
duced by jpHMM, the output file that was used to read the predictions made by jpHMM is
recombination.txt.

Note that on this dataset the reference alignment used by jpHMM does not coincide with
that used by the other methods. Moreover, as discussed in the main text, strains A and N
cannot be recognized by jpHMM, which has a slightly negative impact on jpHMM’s accuracy
measures on this dataset.

In order to understand how strong this impact is, we also analyzed the results of jpHMM
under the assumptions that returning A1 or A2 is correct when A is the true strain, and that
CPZ is correct when N is the true strain. In this case, jpHMM returns 92.9% matches, 0%
supersets and 6.9% subsets, and its sensitivity and precision equal 99.3%.

5.3 HBV-genome

References. We used the reference alignment that is distributed with jpHMM. It
can be downloaded at http://jphmm.gobics.de/download.html, and is located at
jpHMM/input/HBV_alignment.fas. (Accessed December 2019.) This alignment contains 339
whole-genome sequences classified into strains A, B, C, D, E, F, G, H. Prior to the construc-
tion of the pkDB for SHERPAS, we extended this reference alignment by copying the first
k ≠ 1 = 9 columns of the alignment to the end of the alignment. This allows the construc-
tion of phylo-k-mers (with k = 10) from positions that overlap with the artificial end of the
alignment.

Queries. We downloaded the dataset for nucleotide sequence genomes of “genotype all”
from the HBVdb website at https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?view=/data/

nucleic/alignments/all_Genomes.clu&seqtype=0. (Accessed December 2019.) This align-
ment contained 7273 sequences, from which we removed 794 sequences marked as recombinant
and 273 sequences that belonged to the jpHMM reference alignment. We also removed 1664
sequences that were estimated to be recombinant by both jpHMM and SHERPAS (in fact
some of these turn out to be known recombinants [12]).

http://jphmm.gobics.de/download.html
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?view=/data/nucleic/alignments/all_Genomes.clu&seqtype=0
https://hbvdb.ibcp.fr/HBVdb/HBVdbDataset?view=/data/nucleic/alignments/all_Genomes.clu&seqtype=0

Supplementary Materials 21

The remaining 4542 sequences are the pre-queries that were used as a basis to build 3000
recombinant queries. Out of these 3000 queries, 2000 combine fragments from two pre-queries,
and 1000 are based on three pre-queries. To generate each query, we proceeded as follows.
First, the 2 or 3 pre-queries are chosen at random from the 4542, making sure that they belong
to di�erent strains. Second, we picked 2X random coordinates within the alignment of pre-
queries, where X Ø 1 is chosen following a geometric distribution with parameter p = 0.8.
The coordinates are chosen uniformly at random, making sure that no two coordinates are
less that 100 positions apart (circularity-wise). This is the same minimal distance that was
applied to build the dataset of queries for HIV-pol [8]. Third, each query is built by combining
segments extracted from the selected pre-queries and delimited by the random coordinates.

The parameters that we used in the construction procedure above were chosen so as to
loosely reflect the characteristics of inter-genotype HBV recombinants presented in a recent
overview [1]. For example, about 80% of the recombinants involving 2 genotypes in Fig. 2 of
that review only have 2 breakpoints, hence the choice of p = 0.8.

The queries are available here: https://github.com/phylo42/sherpas/blob/master/

examples/HBV_all/queries-3000.fasta.

Running SHERPAS. The reference tree reconstructed from the reference alignment, the
.csv file recording the classification of the sequences in the reference alignment, and the .rps
file encoding the pkDB for this dataset are available in the pkDB-HBV-full directory within
the Dryad dataset (link above).

SHERPAS was executed using the option -c (for circular queries) with the following command:

SHERPAS -o out/ -d pkDB-HBV-full/DB_k10_o1.5.rps

-q HBV_all/queries-3000.fasta -g pkDB-HBV-full/ref-groups.csv -c

Running jpHMM. jpHMM was executed using the option -C (for circular queries):

./jpHMM -s HBV_all/queries-3000.fasta -v HBV -C

Note that the -C option automatically activates the -Q blat option. Out of the several files
produced by jpHMM, the output file that was used to read the predictions made by jpHMM
is recombination.txt.

5.4 HIV-genome

References. The reference alignment was obtained as part of the jpHMM package which
can be downloaded here: http://jphmm.gobics.de/download.html, and is located at
jpHMM/input/HIV_alignment.fas. (Accessed December 2019.) This alignment contains 881
whole-genome sequences, classified in the following 14 strains: A1, A2, AE, B, C, D, F1, F2,
G, H, J, K, O, CPZ.

https://github.com/phylo42/sherpas/blob/master/examples/HBV_all/queries-3000.fasta
https://github.com/phylo42/sherpas/blob/master/examples/HBV_all/queries-3000.fasta
http://jphmm.gobics.de/download.html

Supplementary Materials 22

Queries. We downloaded the Los Alamos Web alignment 2018 available at https://www.

hiv.lanl.gov/content/sequence/NEWALIGN/align.html (accessed January 2020), using the
following parameters. Alignment type: Web alignment (all complete sequences). Year : 2018.
Organism: HIV-1/SIVcpz. DNA/Protein: DNA. Region: genome. Subtype: ALL. Format:
FASTA. Alignment ID: 118AG1. This alignment consisted of 4004 sequences, from which
we removed 1328 sequences that do not belong to any of the 14 strains above (CRFs other
than CRF01_AE, see Sec. 3.3 above), and also removed 803 sequences that are present in
the jpHMM reference alignment. Finally, we removed 27 sequences that were identified as
recombinant by both jpHMM and SHERPAS.

We constructed 3000 synthetic recombinant sequences from the remaining 1846 pre-queries.
For each of the 3000 sequences, we started by drawing X Ø 1 and Y Ø 1 from geometric
distributions with parameters 0.2 and 0.8 respectively, discarding any pair with X < Y . X

and Y + 1 represent the number of breakpoints in the query and the number of pre-queries
involved, respectively. We picked X coordinates within the alignment of pre-queries using a
uniform distribution, making sure that no two coordinates are less that 100 sites apart and
no coordinate is less than 100 sites away from one end of the query. We also drew Y + 1 pre-
queries at random, making sure that at least two of these pre-queries are from di�erent strains.
Finally, we built a query sequence by inserting, between each pair of consecutive coordinates,
the corresponding segment in one of the selected pre-queries, making sure that the pre-queries
chosen for any two consecutive intervals are di�erent. The length of the resulting queries is
on average 8.9 kbp, and it ranges from 5.5 kbp to 9.9 kbp. The longest queries are obtained
from pre-queries whose length is close to 1 Mbp (which are common e.g. in group O or when
sampled from chimpanzees).

The queries are available at https://github.com/phylo42/sherpas/blob/master/examples/

HIV_all/queries-C.fasta.

Running SHERPAS. The reference tree reconstructed from the reference alignment, the
.csv file recording the classification of the sequences in the reference alignment, and the .rps
file encoding the pkDB for this dataset are available in the pkDB-HIV-full directory within
the Dryad dataset (link above).

SHERPAS was executed with the following command:

SHERPAS -o out/ -d pkDB-HIV-full/DB_k10_o1.5.rps

-q HIV_all/queries-C.fasta -g pkDB-HIV-full/ref-groups.csv

Running jpHMM. jpHMM was executed with default parameters for HIV sequences:

./jpHMM -s HIV_all/queries-C.fasta -v HIV

It was also executed with the -Q blat option for speed-up. Out of the several files pro-
duced by jpHMM, the output file that was used to read the predictions made by jpHMM is
recombination.txt.

https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html
https://github.com/phylo42/sherpas/blob/master/examples/HIV_all/queries-C.fasta
https://github.com/phylo42/sherpas/blob/master/examples/HIV_all/queries-C.fasta

Supplementary Materials 23

5.5 HIV Nanopore reads dataset

References. The reference alignment, the reference tree and the pkDB are the same as in
the HIV-genome dataset.

Queries. We ran NanoSim-H (v1.1.0.4) on the queries from the HIV-genome dataset using
the following command:

nanosim-h HIV_all/queries-C.fasta -n 100000 -o reads-C.fasta -u 0.0 --max-

len 9000 --min-len 1000

This generates 100,000 reads, each one from a random query of the HIV-genome dataset.
For each one of these sequences, we picked the first (in order of appearance) read in the
forward strand that comes from that sequence. The resulting queries are available at https:

//github.com/phylo42/sherpas/blob/master/examples/HIV_all/reads-C.fasta.

Running SHERPAS and jpHMM. The same commands as for the HIV-genome dataset
were used here (replace the name of the file containing the queries). The execution of jpHMM
with the -Q blat option aborted.

5.6 Experiment on the specificity/recall trade-o�

Measures of accuracy. Given a binary classifier C for the detection of inter-strain recom-
binant sequences, and a collection of query sequences, we define:

TP (true positives): the number of queries that are both inter-strain recombinants and clas-
sified as such by C.

FP (false positives): the number of queries that are erroneously classified by C as inter-strain
recombinants.

FN (false negatives): the number of queries that are inter-strain recombinants, but not clas-
sified as such by C.

TN (true negatives): the number of queries that are neither inter-strain recombinants, nor
classified as such by C.

Recall (also known as true positive rate or sensitivity): out of all inter-strain recombinant
queries, the proportion that are recognized as such by C. That is, Recall = TP

TP+FN .

Specificity (also known as true negative rate): out of all queries that are not inter-strain
recombinants, the proportion that are not classified as inter-strain recombinants. That
is, Specificity = TN

TN+FP .

https://github.com/phylo42/sherpas/blob/master/examples/HIV_all/reads-C.fasta
https://github.com/phylo42/sherpas/blob/master/examples/HIV_all/reads-C.fasta

Supplementary Materials 24

Dataset. Among the 10,000 queries in the HIV-pol dataset, there are 2374 queries that are
not inter-strain recombinants. Thus this dataset provides a way to compute not only the
recall of a classifier, but also its specificity. Moreover, on this dataset, the results of running
SCUEAL were made available by the authors [8], which allows us to compare the results
of SHERPAS to those of jpHMM and SCUEAL. Since jpHMM is not designed to recognize
sequence fragments labelled as A or N, for this experiment we removed all queries from the
initial 10,000 that were obtained from sequences from these two strains. This ensures that
all classifiers compete on an equal ground, and leaves us with 7652 queries, of which 5317 are
inter-strain recombinants.

Classifiers. For all tested programs, a query is classified as an inter-strain recombinant
if and only if the partition produced by the program contains regions from 2 or more dif-
ferent strains. jpHMM was run with and without the -Q blat option, but the results
were virtually indiscernible. SHERPAS-full was run for all combinations of window size in
{300, 500} and threshold parameter ◊F œ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. SHERPAS-
reduced was run for all combinations of window size in {300, 500} and threshold parameter
◊R œ {0, 0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.995, 0.9975, 0.999}.

Discussion of the results. Results of this experiment are reported in Fig. 2 of the main
text. A number of observations can be made here. First, while SCUEAL and jpHMM result
in good (Pareto-optimal) combinations of specificity and recall, it is interesting to note that
on this dataset jpHMM has better (100%) specificity, while SCUEAL has better recall. Pre-
viously reported results on other datasets do not appear to confirm this observation [13], but
this is not surprising because those results were on a di�erent but related classification prob-
lem, namely typing whole sequences, i.e. assigning them to their strain of origin. Moreover
SCUEAL implements a non-deterministic optimization heuristic, with better results expected
if SCUEAL is left to run for longer times.
As for SHERPAS, window size has a clear e�ect, with small windows favoring recall, and
larger windows favoring specificity. This is consistent with the results in Tables 2 – 5 in the
main text, where smaller window sizes are generally associated with more fragmented mosaics.
Interestingly the threshold ◊R has a very strong control over the trade-o� between recall and
specificity in SHERPAS-reduced, with small values of ◊R causing very high recall, and large
◊R causing very high specificity. This is not the case for SHERPAS-full, where ◊F only has a
limited e�ect on specificity and recall.
This di�erence in the behaviors of SHERPAS-reduced and SHERPAS-full can be understood
by considering again the way these algorithms use their respective thresholds (see Sec. 2.5
above, and Algorithm 3). Consider the case where a region of the query has weak evidence
for belonging to strain X. While ◊R entirely controls whether X is present in the partition
produced by SHERPAS-reduced, ◊F only plays a role in determining the output of SHERPAS-
full if the two best-scoring branches are from di�erent strains. If the two best-scoring branches
in SHERPAS-full are both from X, then X will be present in the output partition, irrespective
of the value of the threshold. This is why the specificity for SHERPAS-full cannot be increased
up to 100% by increasing its threshold.
Coming back to the question that motivated this experiment —namely the use of SHERPAS
as a first screening tool for inter-strain recombinants— finally note that very high recall can be

Supplementary Materials 25

achieved with both SHERPAS-reduced and SHERPAS-full by using small window sizes and
low thresholds. On this dataset, these parameter settings result in recall that is substantially
higher than jpHMM, and at least as good as SCUEAL (up to 99.0% for SHERPAS-full, and
up to 99.4% for SHERPAS-reduced, vs. 98.8% for SCUEAL), for a fraction of their running
times.

References

[1] Natalia M Araujo. Hepatitis B virus intergenotypic recombinants worldwide: an overview.
Infection, Genetics and Evolution, 36:500–510, 2015.

[2] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Cli�ord Stein. Introduc-
tion to Algorithms. MIT press, 2009.

[3] Joseph Felsenstein. Maximum likelihood and minimum-steps methods for estimating
evolutionary trees from data on discrete characters. Systematic Biology, 22(3):240–249,
1973.

[4] Joseph Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood
approach. Journal of Molecular Evolution, 17(6):368–376, 1981.

[5] Stéphane Guindon, Jean-François Dufayard, Vincent Lefort, Maria Anisimova, Wim
Hordijk, and Olivier Gascuel. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology,
59(3):307–321, 2010.

[6] Stéphane Guindon and Olivier Gascuel. A simple, fast and accurate algorithm to estimate
large phylogenies by maximum likelihood. Systematic Biology, 52:696–704, 2003.

[7] Ireen E Kiwelu, Vladimir Novitsky, Lauren Margolin, Jeannie Baca, Rachel Manongi,
Noel Sam, John Shao, Mary F McLane, Saidi H Kapiga, and M Essex. Frequent intra-
subtype recombination among HIV-1 circulating in Tanzania. PLoS One, 8(8), 2013.

[8] S. L. Kosakovsky Pond, D. Posada, E. Stawiski, C. Chappey, A. F. Poon, G. Hughes,
E. Fearnhill, M. B. Gravenor, A. J. Leigh Brown, and Frost S. D. An evolutionary model-
based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction
in HIV-1. PLoS Computational Biology, 5(11):e1000581, 2009.

[9] Alexey M Kozlov, Diego Darriba, Tomáö Flouri, Benoit Morel, and Alexandros Sta-
matakis. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood
phylogenetic inference. Bioinformatics, 35(21):4453–4455, 2019.

[10] Kirsi Liitsola, Kirsi Holm, Aleksei Bobkov, Vadim Pokrovsky, Tatjana Smolskaya, Pauli
Leinikki, Saladin Osmanov, and Mika Salminen. An AB recombinant and its parental
HIV type 1 strains in the area of the former soviet union: low requirements for sequence
identity in recombination. AIDS Research and Human Retroviruses, 16(11):1047–1053,
2000.

[11] Benjamin Linard, Krister Swenson, and Fabio Pardi. Rapid alignment-free phylogenetic
identification of metagenomic sequences. Bioinformatics, 35(18):3303–3312, 2019.

Supplementary Materials 26

[12] Anna L McNaughton, Peter A Revill, Margaret Littlejohn, Philippa C Matthews, and
M Azim Ansari. Analysis of genomic-length HBV sequences to determine genotype and
subgenotype reference sequences. Journal of General Virology, 101(3):271–283, 2020.

[13] Andrea-Clemencia Pineda-Peña, Nuno Rodrigues Faria, Stijn Imbrechts, Pieter Libin,
Ana Barroso Abecasis, Koen Deforche, Arley Gómez-López, Ricardo J Camacho, Tulio
de Oliveira, and Anne-Mieke Vandamme. Automated subtyping of HIV-1 genetic se-
quences for clinical and surveillance purposes: performance evaluation of the new rega
version 3 and seven other tools. Infection, Genetics and Evolution, 19:337–348, 2013.

[14] Ziheng Yang. Computational Molecular Evolution. Oxford University Press, 2006.

Supplementary Materials 27

A Annex: Marginal posterior distributions of ancestral states

Ancestral state reconstruction is a wide subject in phylogenetics. As explained in Section 1.2,
constructing phylo-k-mers and calculating their probability scores relies on a specific technique
for ancestral reconstruction: the calculation of the marginal posterior distribution of A

Õ
u,i.

(Recall that A
Õ
u,i represents the random nucleotide at node u in the extended reference tree,

homologous to site i in alignment A.)

Here, we describe how this calculation is performed by standard software for phylogenetic
inference (e.g. PhyML [6]) using the notation introduced in Section 1.2. More information
can be found in many phylogenetics textbooks (e.g. [14, Chapter 4.4]).

Let Aú,i denote the ith column of A. Because of the assumption of independent evolution
at di�erent sites, the probability that we seek to calculate only depends on the data in Aú,i.
That is,

P[AÕ
u,i = a | A, ◊] = P[AÕ

u,i = a | Aú,i, ◊]. (6)

The first ingredient to derive the probability above is the probability of the data in Aú,i, given
A

Õ
u,i = a, that is

P[Aú,i | A
Õ
u,i = a, ◊]. (7)

This is sometimes referred to as a partial likelihood and can be obtained for every a œ
{A, C, G, T} by using Felsenstein’s pruning algorithm [3, 4] on the extended reference tree T

rooted in u.

The other ingredient is the prior distribution of A
Õ
u,i, which is simply given by

P[AÕ
u,i = a | ◊] = fia (8)

where (fiA, fiC, fiG, fiT) is the stationary distribution implied by the substitution model. (E.g. for
the Jukes-Cantor model all fia = 1/4, while for many other models the fia are parameters
included in ◊.)

Given the probabilities in (7) and (8), the probability in (6) can be obtained as

P[AÕ
u,i = a | Aú,i, ◊] =

P[AÕ
u,i = a, Aú,i | ◊]
P[Aú,i | ◊] =

P[AÕ
u,i = a | ◊] · P[Aú,i | A

Õ
u,i = a, ◊]

q
aÕœ{A,C,G,T} P[AÕ

u,i = aÕ | ◊] · P[Aú,i | AÕ
u,i = aÕ, ◊] .

Supplementary Materials 28

B Annex: Approximate relationship between branch scores

and likelihoods

Here we show that, under many simplifying assumptions, the quantity

¸x = b
S[x]/k (9)

is approximately proportional to the likelihood of x being the phylogenetic origin of the
sequence in the current window W . Since the assumptions are very strong, we only expect
this relationship to hold in the limit, as the assumptions get closer and closer to being verified.
Even if the assumptions are never verified in practice, this result provides a justification for
the way SHERPAS converts scores into likelihoods. The text below shows the details of the
reasoning behind (9) and its assumptions.
Let a1a2 . . . amW be the nucleotide sequence in the current window W , where mW = |W |+k≠1.
We use here the notation introduced in Section 2.1, where the ith k-mer in W is wi =
aiai+1 . . . ai+k≠1.
Our first assumption is that a1a2 . . . amW unequivocally aligns to a stretch of contiguous sites,
going from site sW + 1 to site sW + mW . In fact we also assume that k is long enough for
every k-mer wi to align unequivocally to the k sites starting from sW + i.
Now recall that x œ E(T0) denotes a branch of the reference tree and define tree Tx as the
tree that is obtained from T0 by attaching a ghost branch to the midpoint of x, where vx is
the new ghost leaf (see Figure 1). Finally, we place sequence a1a2 . . . amW at leaf vx.
We can then define the likelihood of x being the phylogenetic origin of W as the likelihood
of tree Tx, which we can then develop following standard phylogenetic calculations based on
rooting Tx at leaf vx. Using the notation introduced in Section 1.2 and Annex A, we get:

Lik(Tx) =
mWŸ

j=1
P[Aú,sW +j | A

Õ
vx,sW +j = aj , ◊] · fiaj

=
mWŸ

j=1
P[A

Õ
vx,sW +j = aj | Aú,sW +j , ◊] · P[Aú,sW +j | ◊]

= const ·
mWŸ

j=1
P[AÕ

vx,sW +j = aj | Aú,sW +j , ◊]

where const is a constant that does not depend on x. The result above simply states that, as
we vary x, the likelihood of Tx is directly proportional to the posterior probability of having
a1a2 . . . amW at leaf vx and at sites sW + 1 to sW + mW .
Now define pj(x) as the posterior probability of having aj at leaf vx and site sW +j, i.e. pj(x) =
P[AÕ

vx,sW +j = aj | Aú,sW +j , ◊]. This allows us to express Lik(Tx) compactly:

Lik(Tx) = const ·
mWŸ

j=1
pj(x) (10)

Now consider ÂP[wi|x], defined in (3) as ÂP[wi|x] = maxuœGx maxj P[Su,j = wi | A, ◊]. Since
wi aligns to the k sites starting from sW + i, and assuming that the probabilities associated

Supplementary Materials 29

to di�erent nodes u œ Gx are approximately equal, we have that

ÂP[wi|x] ¥ P[Svx,sW +i = wi | A, ◊] =
k≠1Ÿ

h=0
P[AÕ

vx,sW +i+h = ai+h | A, ◊].

Recall that, because sites are assumed to be independent, the posterior probabilities at a site
only depend on the data at that same site. This implies

ÂP[wi|x] ¥
k≠1Ÿ

h=0
P[AÕ

vx,sW +i+h = ai+h | Aú,sW +i+h, ◊] =
k≠1Ÿ

h=0
pi+h(x).

Now combine the equation above to the definition of SHERPAS’s scores (Eqn. (4), page 7):

S[x] = log
|W |Ÿ

i=1

ÂP[wi|x] ¥ log
|W |Ÿ

i=1

k≠1Ÿ

h=0
pi+h(x)

= log
1
p1(x)1 · p2(x)2 · · · pk(x)k · pk+1(x)k · · · p|W |(x)k · p|W |+1(x)k≠1 · · · p|W |+k≠2(x)2 · p|W |+k≠1(x)1

2

By changing the first and last k≠1 terms in the product above, so that all terms have exponent
k or 0, we obtain the following bounds:

log
mWŸ

j=1
pj(x) . S[x]

k
. log

|W |Ÿ

j=k

pj(x) (11)

Compare this result to (10) and note that both the lower and the upper bound in (11) can be
interpreted as log-likelihoods (albeit for slightly di�erent sequences). By exponentiating we
get the following approximate relationship:

b
S[x]

k ¥ constÕ · Lik(Tx),

which is what we set out to show.

Supplementary Materials 30

C Annex: Some illustrated outputs

To provide readers with a feeling of how similar the results of SHERPAS and jpHMM are,
here we show an illustration of the outputs of SHERPAS-full (with default parameters) and
jpHMM on the first 100 queries out of the 3000 in the HIV-genome dataset.

For each query, three bars show respectively: (top) the true composition of the query, with
di�erent strains represented by di�erent colors; (mid) the output of SHERPAS-full, (bottom)
the output of jpHMM. Black regions are those that are left unassigned (N/A) by the recom-
bination detection tool. Each colored fragment is drawn to scale. Below the three bars, we
also report the color coding for the strains present in at least one of the three bars.

It is helpful to look at these results together with those reported in Table 4 in the main text.

query 1

SHERPAS

jpHMM

C B

query 2

SHERPAS

jpHMM

B A1 D

query 3

SHERPAS

jpHMM

B G J

Supplementary Materials 31

query 4

SHERPAS

jpHMM

B AE D

query 5

SHERPAS

jpHMM

B AE

query 6

SHERPAS

jpHMM

B G D

query 7

SHERPAS

jpHMM

C B

Supplementary Materials 32

query 8

SHERPAS

jpHMM

AE B

query 9

SHERPAS

jpHMM

AE C G A1

query 10

SHERPAS

jpHMM

B AE

query 11

SHERPAS

jpHMM

C B D

Supplementary Materials 33

query 12

SHERPAS

jpHMM

B A1

query 13

SHERPAS

jpHMM

B A1 G

query 14

SHERPAS

jpHMM

C B

query 15

SHERPAS

jpHMM

B C D

Supplementary Materials 34

query 16

SHERPAS

jpHMM

B C

query 17

SHERPAS

jpHMM

G B

query 18

SHERPAS

jpHMM

B AE D A1

query 19

SHERPAS

jpHMM

B AE

Supplementary Materials 35

query 20

SHERPAS

jpHMM

B C

query 21

SHERPAS

jpHMM

B H D

query 22

SHERPAS

jpHMM

B O F1

query 23

SHERPAS

jpHMM

C A1 K

Supplementary Materials 36

query 24

SHERPAS

jpHMM

B AE

query 25

SHERPAS

jpHMM

AE B A1

query 26

SHERPAS

jpHMM

B A1

query 27

SHERPAS

jpHMM

B C

Supplementary Materials 37

query 28

SHERPAS

jpHMM

B C D

query 29

SHERPAS

jpHMM

B AE D

query 30

SHERPAS

jpHMM

B AE

query 31

SHERPAS

jpHMM

AE C A1

Supplementary Materials 38

query 32

SHERPAS

jpHMM

C B

query 33

SHERPAS

jpHMM

B AE

query 34

SHERPAS

jpHMM

A1 C O

query 35

SHERPAS

jpHMM

C D

Supplementary Materials 39

query 36

SHERPAS

jpHMM

C B AE

query 37

SHERPAS

jpHMM

F1 B F2

query 38

SHERPAS

jpHMM

J B K D C

query 39

SHERPAS

jpHMM

B C D

Supplementary Materials 40

query 40

SHERPAS

jpHMM

B AE

query 41

SHERPAS

jpHMM

B C D

query 42

SHERPAS

jpHMM

O AE B A1

query 43

SHERPAS

jpHMM

B C

Supplementary Materials 41

query 44

SHERPAS

jpHMM

B AE A1 D

query 45

SHERPAS

jpHMM

C B K

query 46

SHERPAS

jpHMM

F2 B

query 47

SHERPAS

jpHMM

C CPZ D

Supplementary Materials 42

query 48

SHERPAS

jpHMM

C B

query 49

SHERPAS

jpHMM

C A1 G

query 50

SHERPAS

jpHMM

C B CPZ

query 51

SHERPAS

jpHMM

B AE A1

Supplementary Materials 43

query 52

SHERPAS

jpHMM

B AE

query 53

SHERPAS

jpHMM

AE B

query 54

SHERPAS

jpHMM

G B AE

query 55

SHERPAS

jpHMM

C F1

Supplementary Materials 44

query 56

SHERPAS

jpHMM

A1 B D

query 57

SHERPAS

jpHMM

B C A1

query 58

SHERPAS

jpHMM

AE C

query 59

SHERPAS

jpHMM

B G

Supplementary Materials 45

query 60

SHERPAS

jpHMM

C A1 F2

query 61

SHERPAS

jpHMM

C B K

query 62

SHERPAS

jpHMM

B AE D G

query 63

SHERPAS

jpHMM

B A1

Supplementary Materials 46

query 64

SHERPAS

jpHMM

B A1 D AE

query 65

SHERPAS

jpHMM

AE B A1 A2

query 66

SHERPAS

jpHMM

B C

query 67

SHERPAS

jpHMM

B AE A1

Supplementary Materials 47

query 68

SHERPAS

jpHMM

A1 B

query 69

SHERPAS

jpHMM

B F1

query 70

SHERPAS

jpHMM

F1 B D

query 71

SHERPAS

jpHMM

B AE

Supplementary Materials 48

query 72

SHERPAS

jpHMM

C B

query 73

SHERPAS

jpHMM

B AE

query 74

SHERPAS

jpHMM

B A1 D

query 75

SHERPAS

jpHMM

B C

Supplementary Materials 49

query 76

SHERPAS

jpHMM

C A1

query 77

SHERPAS

jpHMM

C B

query 78

SHERPAS

jpHMM

B C D

query 79

SHERPAS

jpHMM

A1 AE

Supplementary Materials 50

query 80

SHERPAS

jpHMM

C B

query 81

SHERPAS

jpHMM

AE B D

query 82

SHERPAS

jpHMM

B A1

query 83

SHERPAS

jpHMM

B A1

Supplementary Materials 51

query 84

SHERPAS

jpHMM

AE B D

query 85

SHERPAS

jpHMM

J D K F1 C

query 86

SHERPAS

jpHMM

B C

query 87

SHERPAS

jpHMM

AE B G A1 F1

Supplementary Materials 52

query 88

SHERPAS

jpHMM

B C

query 89

SHERPAS

jpHMM

AE B

query 90

SHERPAS

jpHMM

AE B C K

query 91

SHERPAS

jpHMM

C B

Supplementary Materials 53

query 92

SHERPAS

jpHMM

C B AE J

query 93

SHERPAS

jpHMM

B C H

query 94

SHERPAS

jpHMM

F1 C B D

query 95

SHERPAS

jpHMM

B A1

Supplementary Materials 54

query 96

SHERPAS

jpHMM

B AE A1

query 97

SHERPAS

jpHMM

B AE

query 98

SHERPAS

jpHMM

B C D

query 99

SHERPAS

jpHMM

AE B A1

Supplementary Materials 55

query 100

SHERPAS

jpHMM

C B D K

	Introduction
	Algorithm
	Preprocessing and overview
	The phylo-k-mers
	Full and reduced pkDBs
	The sliding window approach
	Signal evaluation and unassigned regions

	Materials and methods
	Experimental protocol overview
	Dataset construction.
	Software comparison.

	Measures of accuracy
	Site-wise approach.
	Mosaic approach.

	HIV-pol dataset
	HBV-genome dataset
	HIV-genome dataset
	Simulated Nanopore reads from the HIV-genome dataset
	Running the experiments

	Results
	Running times
	HIV-pol dataset
	HBV-genome dataset
	HIV-genome dataset
	Simulated Nanopore reads from the HIV-genome dataset

	Discussion
	Uses of SHERPAS
	Scaling-up
	Accuracy
	Future work and limitations
	Conclusion

