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Abstract

Osteosarcoma is the most common bone cancer in adolescents and young adults, but it is a rare cancer with no improvement in 
patient survival in the last four decades. The main problem of this bone tumor is its evolution toward lung metastatic disease, 
despite the current treatment strategy (chemotherapy and surgery). To further improve survival, there is a strong need for new 
therapies that control osteosarcoma cells with metastatic potential and their favoring tumor microenvironment (ME) from the 
diagnosis. However, the complexity and heterogeneity of those tumor cell genomic/epigenetic and biology, the diversity of tumor 
ME where it develops, the sparsity of appropriate preclinical models, and the heterogeneity of therapeutic trials have rendered 
the task difficult. No tumor- or ME-targeted drugs are routinely available in front-line treatment. This article presents up-to-date 
information from preclinical and clinical studies that were recently published or presented in recent meetings which we hope 
might help change the osteosarcoma treatment landscape and patient survival in the near future.
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Introduction
Osteosarcoma is the most common bone cancer in adolescents 
and young adults (80% of the patients are younger than 25 years  
old) but is a rare cancer (estimated incidence of 0.2 to 3 new 
cases/million per year in Europe)1. Survival of these patients 
has not improved in the last four decades. The main problem of 
this bone tumor is its evolution toward lung metastatic disease.  
Patient survival decreases when lung metastasis are present at  
diagnosis regardless of the chemotherapy regimen used2–5 or  
when lung metastasis appeared during the disease evolution  
(3-year progression-free survival [PFS] is around 20%)6–8.

Primary tumor surgery is an important part of the treatment, as 
unresectable osteosarcoma has poorer survival. Osteosarcoma  
chemosensitivity was demonstrated in the 1970s to 1980s  
with response rates of 19 to 40% to methotrexate, cis-platinum, 
adriamycin, ifosfamide, and etoposide9. Since then, first-line  
standard treatment has not been modified and includes neoad-
juvant and post-operative multi-drug chemotherapy associated 
with surgical resection of the primary tumor and all remaining  
metastatic localizations if present10. In addition to the presence 
of initial metastases, histological response of the primary tumor 
to neoadjuvant chemotherapy is a strong prognostic factor of  
relapse4. Intensification of chemotherapy at diagnosis or relapse 
has not modified patient outcome3,11. Extensive efforts to iden-
tify more effective or less toxic regimens, both at diagnosis and  
relapse, have been disappointing up to now6.

This emphasizes the strong unmet need for new therapies to 
improve survival for these patients6. The main objective would  
be to control osteosarcoma cells with metastatic potential and  
their favoring tumor microenvironment (ME) from the diagno-
sis. However, the complexity and heterogeneity of those tumor 
cell genomic/epigenetic and biology12 as well as the diversity of  
tumor ME where it develops (bone primary tumor and lung  
metastatic niche) have rendered the task difficult. No phase II  
trial in relapse osteosarcoma has yet been transposed to consen-
sual successful first-line phase III trials6. No tumor- or ME-targeted 
drugs are routinely available in front-line treatment. This article 
presents up-to-date information that was published or presented 
in recent meetings and that we hope might help change the  
osteosarcoma treatment landscape and survival in the near  
future.

The complexity of osteosarcoma biology: what are 
next-generation sequencing tools bringing? What 
remains to be solved?
In recent years, the scientific community has started to unscram-
ble osteosarcoma complex genomic13,14 with next-generation  
sequencing (NGS), mainly at the DNA level (whole exome 
sequencing [WES] and whole genome sequencing [WGS]).  
They first characterized the considerable levels of phenotypic  
heterogeneity, aneuploidy, and the high rate of complex  
chromosomic aberrations (copy number alterations, kataegis, 
and chromothripsis) across the whole genome12,13,15,16 in oste-
osarcoma. Gene-centric studies have all converged to describe 
TP53 deficiency as the major early oncogenic event probably  

underestimated until the discovery of intronic TP53 mutations17. 
Few other recurrent mutations have been observed in DNA repair 
and cell cycle genes at the somatic (for example, RB1, ATRX, 
and PTEN/PI3K)15 and constitutional (osteosarcoma predispos-
ing syndromes include alterations of TP53, RB1, and RECQL4)18  
level. DNA repair and cell cycle pathways are also recurrently 
altered at a genomic level (for example, recurrent deletions 
TP53, RB1, CDKN2A/B genes, or recurrent amplifications, 
COPS3, CCNE1, MDM2/CDK4, MYC genes, and 6p12.3 ampli-
fications) in addition to several receptor tyrosine kinases and  
downstream pathways (for example, recurrent amplifications in 
WNT, insulin-like growth factor 1 receptor [IGF1R], PI3K, and 
MAPK pathways)14–16. Besides genetic alterations, accumulating 
evidence highlights the important role of epigenetic modulation 
in osteosarcoma oncogenesis12,14,19, although this role is not  
fully understood.

In parallel to the emergence of new questions, the advances in  
osteosarcoma molecular description, achieved with NGS tech-
nology, also participated to the complexity of the general picture  
such as some previous unsolved problems might seem even 
more obfuscated now. We still have to identify the initial  
osteosarcoma oncogenic events with, as a subsidiary enigma, the  
exceptional resilience of osteosarcoma cell population to survive 
and expand while having such a chaotic genome. Complexity 
which also estranged the definition, trivial in other pathologies,  
of key oncogenic drivers paving disease emergence or progres-
sion to metastasis, delaying the implementation of routinely 
usable prognostic biomarkers or robust molecular/biological  
stratification able to drive future therapeutic development.

Other investigations such as transcriptomic analysis—RNA 
expression level and RNA sequencing (RNA-seq)—could be a  
better/upper read-out of what is occurring in tumor cells, tumor 
ME, and their interplay20. Indeed, the osteosarcoma transcrip-
tomic landscape and its diversity might better sum up, as the first  
phenotype, the multiple chromosomal rearrangements, the epi-
genetic events13,15, but also the various tumor ME (bone primary  
tumor, circulating cells, and lung metastatic site) and their  
heterogeneity (for example, osteoforming and osteolytic areas in 
bone primary but also lung metastasis21 and hypoxic area). The  
interplay between tumor cells and ME cells and the identity of  
cells that influence osteosarcoma fate remain unclear.

To fully reveal the global osteosarcoma molecular picture,  
including its ME, large-scale approaches should couple inte-
grative analyses at both the DNA/RNA level and upper levels 
(for example, the proteome level). Owing to the rarity of these 
patient samples, the collection of the optimal dataset requires an 
effort to merge existing genomic/biological datasets with optimal  
clinical annotation to ease researchers’ work in the field. Very 
few osteosarcoma genomic datasets are available worldwide,  
usually with no detailed and sparse clinical annotation, and issued 
from samples mainly at diagnosis (for example, the TARGET  
dataset and others20,22,23). Relapse samples, which might give 
access to clonal evolution and metastatic phenotype, are even 
rarer, but the situation is improving. Several molecular profiling  
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programs have been set up at relapse24,25, and data should be  
available soon for the research community.

Multi-regional WES/WGS in primary and metastatic matched 
samples from patients with osteosarcoma has started to reveal 
the dynamic evolutionary process and temporo-spatial tumor  
heterogeneity of osteosarcoma lung metastases26. Thus, metas-
tases exhibit a higher mutational burden, genomic instability, 
improved immunogenicity, and a more significant inter-tumoral 
rather than intra-tumoral heterogeneity26. The pro-metastatic role 
of tumor-associated exosomes, micro-RNA, long non-coding 
RNA, circular RNA, and metabolism is just starting to be  
explored27. The combination of identification and quantification  
of somatic alterations in plasma-derived ctDNA (circulating  
tumor DNA) is gaining traction as a non-invasive and  
cost-effective method of disease monitoring in patients with 
osteosarcoma, particularly to evaluate the response to treatment 
and monitor for disease recurrence28. However, prospective  
validations in larger cohorts are needed.

Understanding the clonal dynamics during osteosarcoma disease  
evolution from primary tumor to metastatic sites might be a  
clue for future therapeutics. Several new technologies are start-
ing to create wider opportunities to achieve this goal. The next 
revolution will come from NGS moving from bulk to single-cell  
tumor analysis. Single-cell NGS is clearly the next step that 
might help us understand the osteosarcoma cell of origin, initial  
oncogenic event(s), and the clonal and ME dynamics along the 
disease progression from primary tumor, through circulating 
cells, toward the lung metastatic site. A near single-cell tracking  
system in a de novo–induced murine osteosarcoma model sug-
gests that osteosarcomagenesis could follow a neutral evolution 
model, in which different cancer clones coexist and propagate  
simultaneously29. In the near future, single-cell whole-genome 
and transcriptomic analyses offer great promise in deciphering 
the local and global interactions driving the tumor–host dynamic  
within the primary tumor and the metastatic niche30. However, 
the bone ME might be challenging for single-cell isolation in 
human disease. In addition, single-cell resolution comes at the 
cost of losing the spatial organization of the tumor ME. Other  
technologies such as spatial transcriptomic might provide 
excellent integration of nearly single-cell transcriptomic with  
histopathological analysis. Such technology will produce 
detailed maps of the tumor and ME cells in each tumor sam-
ple, unravelling spatial arrangement and which types of cross-
talk may occur between tumor and ME cells according to the  
context (bone/lung localization). This should allow a deeper  
understanding of the important targets in osteosarcoma.

Targeting the tumor cells: moving toward a 
personalized medicine?
Although the decoding of the osteosarcoma genome greatly 
advanced the understanding of the genomic osteosarcoma  
landscape from early oncogenesis to metastatic spread prop-
erties, immediately actionable therapeutic targets are not yet  
obvious. So far, preclinical data have not translated to a  
successful targeted therapy phase II relapse trial6.

Up to now, only few targeted agents have been tested in a phase 
II trial for refractory/recurrent osteosarcomas, the setup of such  
trials started late compared with that of other cancer trials  
(>2007), and their efficacy results were disappointing6. The  
biological rationale leading to these phase II trials was usually 
light. When described, it relied mainly on the general mechanism 
of drugs/combination activity in cancers rather than on specific  
osteosarcoma targets (for example, mammalian target of rapamy-
cin [mTOR] inhibitors) or on the relative expression level of  
osteosarcoma cell surface protein with little knowledge about 
its mechanistic role (for example, anti-GD2, anti-HER2). 
This clearly reflects the lack of strong preclinical studies in  
osteosarcoma at that time. More specific therapeutic develop-
ment based on osteosarcoma biology is being attempted. For  
example, the BRCAness phenotype of osteosarcoma22 is being 
exploited as a therapeutic target for poly ADP ribose polymer-
ase (PARP) inhibition31. In vitro results seem less impressive 
than what was observed in BRCA-deficient breast cancer32. Clini-
cal relevance in patients is being evaluated in ongoing trials (for  
example,  e-smart trial PARP inhibitor arm, NCT02813135). In 
addition to needing better knowledge of osteosarcoma biology, 
we need appropriate and available preclinical models to prop-
erly perform preclinical drug evaluation and to define the level 
of preclinical evidence required to study a new drug in patients. 
Efforts have been made in the last few years to improve preclinical  
testing  of drugs by developing patient-derived xenograft (PDX) 
models from primary tumor at diagnosis or metastatic relapse, 
including in the bone orthotopic setting (ITCC-P4, www.itccp4.eu;  
NCI PPTC, www.ncipptc.org), but no minimum preclinical 
requirement to bring a drug to the clinic has been defined for  
osteosarcoma.

Targeting the initial oncogenic event or those responsible for 
the metastatic phenotype (or both) would be a great help in  
osteosarcoma. The mechanism facilitator of lung metastasis 
remains to be identified from tumor cells, primary bone tumor 
ME, or lung metastatic ME; they may represent clinically relevant 
targets. Preclinical proof of concept of personalized medicine  
targeting osteosarcoma abnormalities was shown in PDX  
models. Orthotopic osseous osteosarcoma PDX models issued 
from primary tumor at diagnosis or metastatic relapse retain  
the tumor characteristics of the patient sample they are issued 
of, with the best clonal preservation across different pediatric 
tumors, as well as cellular features of the patient tumor and the 
epigenetic landscape of their developmental origins33. Via such  
PDX models and an integrated approach (WGS and matched  
RNA-seq) to identify somatic copy number alterations with 
the most highly amplified genes, a limited set of copy number 
patterns can group osteosarcoma tumors into subtypes that 
may predict response to certain targeted agents (for example, 
genome-informed targeting of MYC/CDK9, Cyclin E/CDK2,  
CDK4/6, PI3K/AKT/PTEN/mTOR, AURKB, and VEGF path-
ways)34. These data can be used to inform new agent prioritiza-
tion decisions for drug development in osteosarcoma and open 
the field of cell cycle inhibitors as anti-osteosarcoma drugs along 
with other publications. However, these altered patterns explain 
only a small number of events, and the degree of cell-to-cell  
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heterogeneity within a tumor remains unknown. Furthermore, 
translation to humans remains to be proven. Several molecu-
lar-driven therapeutic programs are ongoing (for example,  
e-SMART, NCT02813135; INFORM2, NCT03838042; and the 
MATCH Screening Trial, NCT03155620), including with drugs 
of potential interest in osteosarcoma (e-SMART, NCT02813135,  
CDK4/6 inhibitor arms), and results are eagerly awaited. These 
programs are based mostly on WES abnormalities while gene 
expression by RNA-seq is usually not taken into account.  
This might be thought out differently in the future.

Targeting the microenvironment: hope or despair? 
Moving toward a combined or an adapted ME 
strategy?
The genomic complexity and tumor heterogeneity of osteosar-
coma as well as the importance of ME (osseous, angiogenic, and  
immune ME) in osteosarcoma metastatic phenotype and outcome 
have orientated drug development toward ME-directed drugs  
at a different level for the last two decades. Some efficacy of 
these strategies has been observed in phase II trials at relapse. 
Fewer attempts to introduce such drugs then in first-line treatment  
have not yet been successful, but some are still ongoing. Again, 
the reliability of the preclinical models that do not recapitulate 
the whole human ME is questionable. Humanized models or  
syngenic models, including spontaneous osteosarcoma in dogs,  
are being explored.

Osteosarcoma immune microenvironment
Osteosarcoma is a macrophage-dependent tumor with few 
lymphocytes present in its hostile hypoxic tumor ME. Tumor 
immunity plays an important role in osteosarcoma meta-
static behavior. Localized tumors at diagnosis present high  
tumor-infiltrating macrophages (TAMs) of M1 polarisation asso-
ciated with a low rate of tumor-infiltrating lymphocytes (TILs) 
and a balance in favor of CD8 effectors35,36. In contrast, primary 
tumors issued from metastatic patients present M2-polarised  
TAMs with immunosuppressive, tissue remodeling, and  
pro-angiogenic properties37 and also exhausted/anergic CD8+  
TILs38 and a balance favoring the immunosuppressive FOXP3+  
T regulator (Treg)36. This pro-tumor immune contexture appears 
to be enhanced in lung metastasis samples35,39. Rather than a clear 
dichotomic situation, a continuum between both states due to ME 
heterogeneity might better mimic the reality of osteosarcoma 
immune ME, explaining some apparent conflicting results40.  
The relative role of the tumor immune profile or the patient 
immune profile is not yet understood. Owing to this osteosarcoma  
immune ME, immune therapy has been considered an excellent 
choice for targeting osteosarcoma metastatic phenotype.

Therefore, targeting the intra-tumor macrophage environ-
ment by liposomal mifamurtide (L-MTP-PE, MEPACT®) as an 
immune modulator able to activate monocytes/macrophages was  
promising in phase II41. The controversial results on mifamur-
tide efficacy associated with post-operative chemotherapy, issued 
from the Intergroup INT-0133 phase III study, in localized  
osteosarcoma42,43 and the insufficient power of the analysis  
performed separately in metastatic patients44, have not led to a  

homogenized international use of this drug. The US Food and 
Drug Administration did not approve the drug, whereas the  
European Medicines Agency approved the drug for local-
ized osteosarcoma, but mifamurtide is still not reimbursed in all  
European countries. The current first-line French sarcoma 
13/OS2016 (NCT03643133) randomized phase II trial in  
high-risk osteosarcoma (distant/skip metastatic disease at  
diagnosis and localized disease with poor histological response) 
might help to resolve this question45. Interferon alfa failed to 
show efficacy and was considered toxic in a first-line phase III  
EURAMOS trial2. Lymphocyte-targeted immune therapies 
with check-point inhibitors (anti-PD1/PDL1) were disappoint-
ing in refractory/relapsed osteosarcoma phase I/II trials with the  
majority of the patients experiencing progressive disease when 
anti-PD1/PDL1 was given either as single agent46,47 or combined 
with metronomic cyclophosphamide48. However, recent data  
comparing the metastatic and primary tumor niches30 suggested 
that relapse disease might not be the best population to test such 
drugs, and anti-PDL1 is now being tested as maintenance after  
adjuvant first-line chemotherapy (NCT03676985).

Osteosarcoma vascular microenvironment
Angiogenic pathways—for example, vascular endothelial growth 
factor receptor (VEGFR) and platelet-derived growth factor 
(PDGF)—have been implicated in osteosarcoma tumor evolu-
tion and linked with their metastatic behavior and poor prognosis.  
Targeting the tumor vascular environment with multi-tyrosine 
kinase inhibitor harboring anti-angiogenic activity (targeting 
VEGFR, PDGF receptor, and fibroblast growth factor recep-
tor) is the most promising therapeutic option at the moment in 
relapsed/refractory osteosarcoma but with no known biomarker  
of efficacy. Whether the anti-osteosarcoma activity is due only 
to their angiogenic properties or to an additional role on tumor  
cells is still unknown. Several multi-tyrosine kinase inhibi-
tors have been tested as a single agent in both adult/pediatric  
populations (regorafenib randomized phase II against  
placebo49,50; single-arm phase II trials of sorafenib51, apatinib52,  
cabozantinib53, and lenvatinib54) with a class effect efficacy  
(median PFS ranged between 3 and 6 months, whereas median 
PFS for placebo was 4 weeks). The main side effects (for  
example, hypothyroidy, hypertension, and proteinuria) are usually 
manageable by dose reduction and symptomatic measures. The 
relation between efficacy and observed side effects is not clear.  
No unanimous biomarker of efficacy exists. Pneumothorax is 
observed in 6 to 17% of patients with lung metastases. This seems 
to be a class effect, specific to osteosarcoma, as it is extremely  
infrequent in other tumor types (incidence <1%). Currently, the 
regorafenib single agent is being introduced in first-line treat-
ment as maintenance treatment after the end of the conventional 
chemotherapy for patients in complete remission (REGOSTA, 
NCT04055220). Unfortunately, although data on efficacy/toxicity  
in children/adolescents are available, the REGOSTA trial  
includes only patients who are 16 years old and above. Combin-
ing this drug with others might be challenging. The combina-
tion sorafenib/mTOR inhibitor was poorly tolerated and did not 
exhibit increased efficacy55. The combination lenvatinib+VP16/
ifosfamide was feasible with acceptable toxicity, mainly  
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chemotherapy-related54. A randomized phase II trial VP16/ 
ifosfamide with or without lenvatinib in relapsed osteosarcoma  
has just opened (OLIE, NCT04154189).

Osteosarcoma bone microenvironment
Osteosarcomas are characterized by the direct formation of 
osteoid matrix by tumor cells56, associated with osteolytic  
lesions. The invasion of bone tissue by tumor cells, through 
their ability to deregulate bone remodeling, affects the balance  
between bone resorption (osteoclasts) and bone formation 
(osteoblasts). A vicious cycle between tumor and bone cells is 
described during osteosarcoma development. Cancer cells produce  
soluble factors, such as cytokines—for example, interleukin-6  
(IL-6), IL-11, tumor necrosis factor alpha (TNF-α), and recep-
tor activator of nuclear factor kappa-Β ligand (RANKL)—that  
activate osteoclastogenesis, leading to bone degradation. Follow-
ing bone resorption, growth factors trapped in the bone matrix, 
such as IGF-1 or transforming growth factor beta (TGF-β), are  
released in the bone ME and stimulate tumor growth57. Target-
ing the osteoclastic activity was thought to be an interesting  
target in osteosarcoma.

Despite preclinical marked evidence in mouse/rat models58,59, 
zoledronate, a biphosphonate with anti-osteoclastic activity, 
failed to show added efficacy to chemotherapy in the French 
first-line OS2006 phase III trial60, confirmed by a Chinese trial61.  
One hypothesis for the lack of efficacy in patients with oste-
osarcoma is a potential deleterious effect of zoledronate on the  
immune system40 and/or the heterogeneity of tumor ME, not  
properly captured in animal models21. In a phase II trial 
(NCT02470091) in the US, the RANKL inhibitor denosumab 
(Prolia®) also had insufficient activity in refractory/recurrent  
osteosarcoma for further development62.

Osteosarcoma lung microenvironment
The bone ME seems to be reproduced in osteosarcoma lung  
metastatic foci, and differences compared with primary tumor 
are observed, especially in the immune ME, which seems more  
immunosuppressive in metastasis30,35. In addition, very little is 
known about the biology that drives lung colonization and the  
specificity of the lung niche leading to osteosarcoma prolif-
eration or dormancy63. More should be understood to use it as a  
therapeutic target.

How to move forward with osteosarcoma tumor 
microenvironment
In the future, simultaneously targeting several aspects of the  
osteosarcoma ME might be more efficient than targeting only one 
aspect. Preclinical evidence suggests increased anti-osteosarcoma 
efficacy when zoledronate and L-MTP-PE are associated64.  
A French clinical phase II trial in sarcoma including osteosar-
coma, combining both an anti-PD1 and a multi-tyrosine kinase  
inhibitor with angiogenic activity, should open soon. Another 
option would be to tailor ME modulation therapies to the ME  
heterogeneity of each individual tumor. This last strategy will 
require reliable markers of the tumor ME characteristics and  
is a field of further development.

Drug development in osteosarcoma: how to improve 
trial design
In this review, we have discussed several key elements to  
speed up drug development in osteosarcoma: a better biological  
understanding of tumor cells, tumor ME, and metastatic proc-
esses; more reliable preclinical models reflecting tumor cell  
heterogeneity and tumor ME; and the need to identify  
prerequisites to bring a drug for preclinical testing to patients.

Another important question is how to optimize trial design 
to rapidly evaluate the efficacy of a given drug/combination  
and to improve patient survival.

Up to now, phase II trials have been developed in refractory/
relapsed osteosarcoma, with an inconsistent go or no-go decision  
to bring the drug in a first-line phase III trial, as no historical 
data were reliable. The increased number of new targeted and  
immune therapies have led to an increased number of trials  
testing these drugs, while the place of standard chemotherapy 
in relapse treatment is not properly defined. Most of the time, 
the choice of drugs to be introduced in refractory/relapsed  
osteosarcoma phase II trials had no specific osteosarcoma  
rationale6, and when present, the rationale is based on primary 
tumor biology rather than metastatic biology. The increased 
availability in PDX models issued from relapsed metastatic  
disease might help to inform molecular-driven therapies, find 
biomarkers of efficacy, and possibly understand mechanisms  
underlying lack of efficacy but these immunodeficient mod-
els might not be as useful for immunotherapies. The number of  
models to be tested is a matter of debate. In addition, differ-
ent relapse presentation might not benefit a therapy in the same 
way (for example, bulk disease versus minimal residual disease  
and lung versus bone metastasis).

Ideally, randomized phase II trials against placebo or standard  
treatment would help determine drug efficacy49,50, as the  
heterogeneity of the population can be taken into account by 
stratification. However, these randomized trials require more  
patients and thus are longer than single-arm trials. Bayesian trial 
designs might be of value in rapidly evaluating multiple treat-
ments for rare tumors as done in Ewing sarcoma (rEECur trial)65 
and to integrate previous historical data (sarcoma 13 trial)45,66,  
tying to minimize the number of patients required.

An analysis of negative phase II trials was suggested to be  
used as historical control to rapidly evaluate future clinical tri-
als in refractory/relapse osteosarcomas67. Using this approach,  
trials could be conducted in less than 3 years68. However, this  
analysis was based on refractory/relapsed osteosarcomas with 
either measurable disease according to RECIST (soft tissue  
component lesion greater than 1 cm) or disease in complete  
remission after surgery. Patients with only evaluable disease were  
left out of this approach.

The use of biomarkers to classify individuals into smaller,  
biologically related groups would dramatically affect our 
approach to conducting clinical trials but might help to get better  
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signal of efficacy. A basket trial based on molecular tumor  
characteristics across cancer types might be a useful approach  
to get efficacy signal.

In addition, the extrapolation of efficacy response in patients 
with refractory/relapsed osteosarcoma to patients with newly  
diagnosed disease is not established. Depending on the 
mechanism of the drug, the appropriate population to test a 
given drug might not be a population with relapsed disease.  
Thus, discussions on how to design trials and in which  
population the drug should be tested are critical for drug  

development in osteosarcoma, as well as preclinical evidence 
to bring a drug in the clinic, with more than one way of  
doing it.

Closing summary
To conclude, increasing osteosarcoma survival in the future 
will require broad expertise from key stakeholders from  
biology/bio-informatics to clinic and statistics and a joint effort 
to collect/connect all the available information on biology and  
clinical efficacy and build up new innovative strategies to test  
new drug efficacy in patients.
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