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Abstract. In mixed criticality systems, functionalities with different
criticalities share the same execution platform. The goal of a mixed crit-
icality scheduling algorithm is to ensure a safe execution of the highest
criticality tasks while using efficiently the execution platform. Classical
real-time scheduling algorithms for mixed criticality systems propose to
stop the execution of low criticality tasks to ensure that the highest
criticality tasks meet their deadlines. In this work, we propose the Ac-
curate Fault Mode (AFM) strategy for the scheduling problem of mixed
criticality real-time systems. The advantages of this strategy are that
firstly it can reduce the number of stopped low criticality tasks and sec-
ondly, that it allows the designer to define the low criticality tasks to be
stopped depending on the criticality configuration of the system. Using
model checking for timed game automata, we propose an exact feasibility
test and exact schedulability tests for fixed priority and earliest deadline
first scheduling algorithms for AFM strategy.

Keywords: Mixed criticality, Real-time scheduling, Timed Game Automata

1 Introduction

A mixed criticality system is a system that incorporates the functionalities of
different criticalities on the same platform. The highest criticality functionali-
ties are usually related to safety critical applications and need to fulfill strict
certification requirements, while lower criticality functionalities are non-safety
critical functionalities with less stringent certification requirements. To avoid in-
terference between applications of different criticalities, traditional methods use
temporal or spatial isolation between applications of different criticalities [17],
however, this isolation may lead to an inefficient use of the execution platform.

With the increasing complexity of embedded systems in the industry of crit-
ical systems, standards in automotive and avionic, are now mentioning that
”mixed criticality” must be supported on their platform [10].

The first work dealing with real-time scheduling for mixed criticality systems
is that of Vestal [19]. In Vestal’s model, a real-time task has several worst-case
execution time (WCET) estimates, one per possible ”mode of execution” of the
system, called the criticality mode of the system. For example, a WCET in the
case of a ”regular mode” and a WCET in the case of a ”fault mode” where the
”fault mode” is more critical than a ”regular mode” and the higher the criticality
mode, the larger the WCET estimate. The intuition is that larger execution time
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values are less likely to occur, but if they occur, they may be indicative of an
erroneous event and the system moves in this case to a high criticality mode.

A system designed to be executed in a high criticality mode is safe but
does not use the platform efficiently as high criticality WCETs are pessimistic,
however, considering lowest criticality WCETs is unsafe even if the probability
of occurrence of high criticality WCETs is small. The challenging issue is to
ensure that the system is safe while using the execution platform efficiently.

Since Vestal’s model, a standard approach for the scheduling problem of
mixed criticality real-time systems has emerged. In this approach, the system
starts its execution in the lowest criticality mode and moves to the highest criti-
cality mode if the execution time of a job exceeds the WCET of the low criticality
mode. In the lowest mode, all the tasks have to respect their timing constraints
and when the criticality mode of the system increases, lowest criticality tasks
are no more activated so that higher criticality tasks fulfill their requirements.

As stated in the frequently updated review paper [10], criticisms of the stan-
dard approach are addressed concerning the following hypothesis:

1. The criticality mode of the system can only increase: it should be possible
for the system to recover and move from a high to a low criticality mode.

2. When the system is in a high criticality mode, the execution time of all
the high tasks is supposed to be equal to the WCET of the high criticality
mode: this hypothesis is too abusive, a high criticality mode, could be the
consequence of the occurrence of an error in only one critical task.

3. When the criticality mode of the system increases, less critical tasks are
definitely no more activated: even if lower criticality functionalities are non-
safety critical functionalities they are relevant for the good functioning of
the system [9]. Abandoning all low criticality tasks may have an impact on
the execution of the system and degrade the quality of service.

In this paper, we present a dual criticality model where:

1. The criticality mode of the system increases if an erroneous behavior occurs
(a job exceeds its low criticality WCET estimates), however, if the erroneous
behavior disappears the criticality of the system decreases.

2. We introduce a more accurate measure of the criticality mode of the system
called the criticality configuration of the system. The criticality configuration
gives the set of tasks that are exhibiting an erroneous behavior.

3. The designer can specify the subset of lowest criticality tasks to stop when
the system is in high criticality mode depending on the subset of high criti-
cality tasks exceeding their low criticality WCET.

For this model, we propose an exact feasibility test and exact schedulability
tests for fixed priority and earliest deadline first scheduling algorithms. These
tests are derived from CTL model checking for timed game automata.

Section 2 reviews related research. Section 3 introduces the model and the
mixed criticality scheduling problem. Section 4 presents the Accurate Fault Mode
(AFM) strategy. Section 5 presents the feasibility and schedulability tests for
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the AFM strategy. Section 6 is dedicated to an example used to illustrate the
advantages of our approach. We conclude and give future research directions in
Section 7.

2 Related work

For a complete review of mixed criticality real-time scheduling see [10]. We focus
in this section on uniprocessor scheduling addressing one of the three criticisms
cited in the introduction. Since Vestal’s model, many scheduling policies have
been proposed to handle the problem of stopping all low criticality tasks when
the criticality of the system is high. In [12], the AMC Weakly Hard (AMC-
WH) policy is proposed, in this policy, only a number of consecutive jobs of low
critically tasks is allowed to be stopped when the system is in high criticality
mode, the authors proposed a sufficient schedulability test for this policy. In [11],
the authors introduce the notion of importance. When the system is in high
criticality mode, low criticality tasks are stopped in the inverse order of their
importance. In these two works, the set of tasks that are no more activated do
not depend on the configuration of the system as proposed in our work.

In [13], the authors introduce the notion of interference constraint graph,
where the designer can specify the subset of tasks to be stopped when a particular
high criticality task exceeds a certain budget of time. This approach has some
similarities with our work, however, in this approach, when a task is stopped,
it is no more activated, and the strategy is defined for a task and not for a
particular configuration.

Concerning the possibility of a system to recover and move from a high to
a low criticality mode, a simple protocol presented in [18] is to switch to a low
criticality mode at the first instant where no job is active. A more complex
protocol, called the bailout protocol, is presented in [6,7]. In this protocol, when
a high criticality task exceeds its WCET at low criticality level, it is assigned a
bailout fund, this bailout is funded by the execution times of low tasks or by the
execution times of tasks that terminate before their estimated WCET.

None of the mentioned work proposes a model to handle the three criti-
cisms cited in Section 1 at the same time and does provide exact feasibility and
schedulability tests.

3 The problem statement

We model the mixed criticality real-time system as a set of n sporadic real-time
tasks Γ = {τi : i = 1 . . . n} scheduled on a single processor. We restrict this work
to dual criticality systems, i.e. systems with only two possible criticalities LO
and HI, LO is the lowest criticality and HI is the highest criticality. Every task
is assigned a criticality level defined by the system designer, nLO is the number
of LO criticality tasks, and nHI is the number of HI criticality tasks. Without
loss of generality, we suppose that the set Γ is sorted in a decreasing order of
criticality. We denote ΓLO the set of low criticality tasks, and ΓHI the set of HI
criticality tasks. Each task τi ∈ Γ generates an infinite number of jobs τi,k.

A task τi ∈ Γ is defined as a tuple (Li, pri, Ti, Di, Ci) where:
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– Li ∈ {LO,HI} is the criticality of the task.

– pri ∈ {1 . . . n} is the priority of the task with 1 as the highest priority and n
the lowest priority. We use lp(i) to be the indexes of tasks of lower priority
than τi.

– Ti is the minimum time separation between jobs releases. Two tasks can
have the same priority.

– Di ≤ Ti is its relative deadline, i.e. the maximal time length between the
arrival time and the completion time of a job.

– Ci is a tuple (Ci(LO), Ci(HI)), where Ci(l) ∈ N is the WCET budget of
task τi at criticality level l ∈ {LO,HI} s.t. if Li = LO, Ci(HI) = Ci(LO)
and if Li = HI, Ci(LO) ≤ Ci(HI).

For every task τi, the Ci(l) WCET budget is a constant interval of time allo-
cated to the execution of every job of the task when the criticality of the system
is l ∈ {LO,HI}. We use the notion of run-time monitoring of execution times
introduced in [5]. If a job of a task does not signal its completion after the execu-
tion of its allocated budget at its own criticality it is stopped, as a consequence,
a LO criticality task cannot exceed its LO WCET budget.

A job is active at instant t if it is triggered by a task at time t′ ≤ t and the
job has not yet notified its completion at instant t. We note St the set of active
jobs at time t. The response time Ri,k of a job τi,k is the duration between the
activation date of the job and its completion date. The current response time
of an active job is the duration between the activation date of the job and the
current time. A job τi,k respects its deadline if and only if Ri,k ≤ Di and a task
τi respects its deadline if and only if all the jobs activated by the task respect
their deadlines.

An active job of a task τi is critical, if and only if τi is a high criticality
task and the job does not notify its completion after the execution of Ci(LO)
time unit. An execution scenario of a task set in an interval of time [t1, t2], gives
for every instant t, t1 ≤ t ≤ t2 Exec(t) the sets of active jobs, preempted and
executed jobs at time t and for every active task its current response time and the
duration since its activation. We note E the set of possible execution scenarios.

The notion of criticality mode of the system is used to characterize a partic-
ular execution scenario of a task set. The criticality mode of the system is HI at
instant t if there exists an active critical job, otherwise the criticality mode of
the system is LO. A formal definition is given in Definition 1.

Definition 1 Criticality mode at time t. The criticality mode of the system at
time t is a function Cr(t) : R+ → {LO,HI} with

Cr(t) =

{
LO if for all τi,k ∈ St, τi,k is not a critical job
HI if there exists τi,k ∈ St a critical job at time t

Given a task set, a scheduling algorithm gives at each instant the job to be
executed among the set of active jobs for every execution scenario.
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Definition 2 Scheduling algorithm. A scheduling algorithm is a function Sched :
(E,R+)→ {τi,k | i = 1 . . . n, k = 1 . . .∞}

⋃
{⊥} with

- if Sched(Exec(t), t) = τi,k then execute the active job τi,k ∈ Stat time t
- if Sched(Exec(t), t) =⊥ then the processor is idle at time t.

A scheduling algorithm is preemptive, if the execution of a job of a task can
be preempted by a job of an other task. A scheduling algorithm is a job level
fixed priority algorithm if a fixed priority is assigned to every active job of a task
and at each time the job with the highest priority among the set of active jobs
is executed. A scheduling algorithm is a fixed priority algorithm if priorities are
assigned to tasks, i.e. all the jobs of a task have the same priority.

In definition 3, we define the mixed criticality scheduling problem. In this
problem, when the criticality of the system is LO, no job is allowed to miss its
deadline, but when the criticality of the system is HI, only jobs of HI criticality
must respect their deadlines. The idea is to relax the timing constraints of low
criticality functionalities of the system to focus on the good functioning of the
high criticality functionalities.

Definition 3 Mixed Criticality Schedulability. A task set Γ is mixed criticality
schedulable according to a scheduling algorithm iff (1) all the tasks respect their
deadlines when the criticality mode of the system is LO and (2) all the HI crit-
icality tasks respect their deadlines when the criticality mode of the system is
HI.

A task set Γ is mixed criticality feasible if and only if there exists a scheduling
algorithm such that Γ is schedulable according to this scheduling algorithm.

Note that the schedulability problem of Definition 3 is equivalent to the stan-
dard scheduling problem of mixed criticality real-time systems. The difference
is in the way that we compute the criticality mode of the system, see Definition
1, as we take into account the fact that a system can recover and the critical-
ity mode of the system can return to low if no job exceeds its WCET at LO
criticality.

4 Accurate Fault Mode Strategy

Classical scheduling strategies for mixed criticality scheduling propose to stop
the activation of low criticality tasks when the criticality mode of the system is
HI as low criticality tasks are not constraint to respect their deadlines in a high
criticality mode, see Definition 3. As we mentioned in the introduction, stopping
the activation of all low criticality tasks has been criticized.

In this section, we introduce the ”Accurate Fault Mode” (AFM) strategy.
In this strategy, the designer can specify, by setting up a ”fault mode policy”,
the set of LO criticality tasks that are no more activated when the system is
in HI criticality mode. The idea is that even if they are not critical, some LO
criticality tasks may have an impact on the quality of service of the system
or have to be executed during the HI criticality period to ensure the degraded
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mode. This subset of LO criticality tasks can change depending on the execution
configuration of the task set. For example, if only one job is critical, the designer
may decide to ensure a certain quality of service, otherwise, if more jobs are
critical the quality of service is only ensured at its minimum.

To evaluate the criticality mode of the system in a more accurate way, we
introduce the notion of criticality configuration. If the criticality mode of the sys-
tem is HI, the criticality configuration returns the set of tasks that are exhibiting
an erroneous behavior.

Definition 4 Criticality configuration. The criticality configuration of the sys-

tem
−→
HI = (HI(1), . . . ,HI(nHI)) at time t is a boolean vector of size nHI with

HI(i) =

{
1 if there exits τi,k an active critical job of τi at t
0 if there is no active critical job of τi at t

We note H the set of possible criticality configurations.

To define the policy for dealing with LO criticality tasks, the designer gives
for every criticality configuration, the set of LO criticality tasks for which the
activation can be stopped. The fault mode policy is formalized in Definition 5.

Definition 5 Fault mode policy. Given a task set Γ , a fault mode policy of a

criticality configuration
−→
HI ∈ H is a function policy

−→
HI from ΓLO to {0, 1} with,

policy
−→
HI(τi) =


1 denotes that jobs of τi are not activated when

the criticality configuration is
−→
HI

0 denotes that jobs of τi are activated when the

criticality configuration is
−→
HI

A fault mode policy policyi is defined by policyi =
⋃
−→
HI∈H

policy
−→
HI .

In Definition 6, we define the Accurate Fault Mode (AFM) strategy for mixed
criticality scheduling.

Definition 6 Accurate Fault Mode (AFM) strategy (w.r.t. a fault mode policy).
Given a task set Γ and a fault mode policy policyi, a scheduling algorithm Sched
respects an Accurate Fault Mode (AFM) strategy if and only if when the criticality
of the system is HI the schedule computed using Sched respects the fault mode
policy policyi.

In Definition 7, we define the AFM schedulability problem for mixed criti-
cality scheduling. In this problem, a subset of LO criticality tasks may have to
respect their deadlines even in a HI criticality mode of the system. This subset
of tasks is defined using the fault mode policy given by the system designer.

Definition 7 AFM Schedulability. A task set Γ is AFM schedulable according
to the scheduling algorithm Sched if and only if (1) all the tasks respect their
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deadlines when the criticality mode of the system is LO and (2) all the active
jobs respect their deadlines when the criticality mode of the system is HI and the
fault mode policy of the AFM strategy is applied.

A task set Γ is AFM feasible if and only if there exists an AFM strategy and
a scheduling algorithm such that Γ is AFM schedulable.

5 Feasibility and schedulability analysis

In this section, we present exact feasibility and schedulability tests for the AFM
strategy. These tests are based on CTL model checking for timed game automata.

5.1 A timed game model

prsi := new, prtprsi := i
exec?

di = Di

di ≤ Di

ci ≤ wi

di ≤ Di

ci := 0
new := i
proc := 1

exec!

startprti !

exeLOi starti?
wi := wi + wprsi

prsi := 0, proc := 1

releasei?

di := 0

di = Di

preLOi

wi := Ci(LO)

di ≤ Di

inii

stopi
acti

proc := 0
ci = wi

di = Di, ci ≤ wi

pi := 0, releasei!

policy
−→
HI(τi) = 0

pi := 0

policy
−→
HI(τi) = 1

pi := 0

pi = Ti

pi ≤ Ti

policy
−→
HI(τi) = 1

pi := 0, releasei!
policy

−→
HI(τi) = 0

pi ≥ Ti

Fig. 1. TaskLOi and PeriodLOi of a LO criticality task τi

We model a task set Γ as a network of timed game automata TΓ as presented
in this section. A complete model using the tool Uppaal-Tiga [8] is available in [1].
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A Timed automaton (TA) [3] is a model extending the automaton model
with a set of real variables, called clocks, evolving synchronously with time.
Transitions of a time automaton can be labelled by a clock constraint, clocks
can be reset in transitions and states can be constrained by a staying condition.

A network of timed automata is the parallel composition of a set of timed
automata, the parallel composition uses an interleaving semantic. Synchronous
communication between timed automata is done using input actions denoted a?
and output actions denoted a!, this notation is used in the tool Uppaal [15].
A configuration of a network of n timed automata Ti is a pair (q,v) where
q = (q1, . . . , qn) is a vector of states, with qi is a state of Ti, and v a vector of
clock valuations.

A Timed game automaton (TGA) [16] is an extension of the time automaton
model where the set of transitions is split into controllable (∆c) and uncontrol-
lable (∆u) transitions. In Figures 1 and 2, dashed lines represent uncontrollable
transitions. This model defines the rules of a game between a controller (con-
trollable transitions) and the environment (uncontrollable transitions).

Given a timed game automaton T and a logic formula φ, if T satisfies φ then
there exists a strategy f , defining for every possible configuration, the control-
lable transition to execute, s.t. T supervised by f always satisfies φ whatever are
the uncontrollable transitions chosen by the environment. A strategy is formally
a partial mapping from the set of runs of the TGA to the set ∆c ∪ {λ} s.t. for
a finite run ξ:

– if f(ξ) = e ∈ ∆c then execute transition e from the last configuration of ξ,
– if f(ξ) = λ then wait in the last configuration of ξ.

We model a LO criticality task τi ∈ ΓLO using a timed game automaton
TaskLOi with a set Q = {inii, acti, exeLOi, preLOi, stopi} of states and two
clocks ci and di. This automaton is synchronized with a timed game automaton
PeriodLOi using the action releasei. If the fault mode policy defined by the
designer states that the activation of task τi is not stopped for the current

criticality configuration (policy
−→
HI(τi) = 0), the action releasei is launched by

the automaton PeriodLOi. In this case, the automaton TaskLOi is synchronized
with the uncontrollable transition of automaton PeriodLOi. This transition is
an uncontrollable transition as the task set Γ is sporadic i.e. a job is triggered
at the earliest every Ti time unit, but we don’t control the time by which the
job is triggered. Otherwise, if the fault mode policy states that jobs of task τi

are no more activated (policy
−→
HI(τi) = 1), the action releasei is not launched.

The automaton TaskLOi starts its execution at state inii, when an action
releasei is captured, the automaton moves to state acti and the clock di is reset
to zero, when the clock di reaches the deadline Di the automaton moves to state
stopi.When the task starts its execution, the automaton moves to state exeLOi,
the global variable proc is reset to one indicating that the processor is not idle
and the clock ci is reset to zero. The clock ci is used to measure wi the response
time of task τi. The response time wi of a task is set initially to Ci(LO).

To be able to handle preemption using timed automata, we restrict ourselves
to job level fixed priority scheduling algorithms. In a job level fixed priority
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scheduling algorithm, the priority does not change during time between two
jobs τi,k and τj,r of two different tasks.This restriction does not limit much the
generality of our work as most of the commonly known scheduling algorithms, as
fixed priority (FP) and earliest deadline first (EDF), respect this restriction. As a
consequence, in our model, a task can be preempted only if a new job is executed,
this is done by using a global action exec? synchronizing every preemption with
the execution of a new job. When a task is preempted, the automaton moves to
state preLOi, the variable prsi records the identifier of the preempting task and
prti the identifier of the task preempted by τi. When the preempting task τprsi
completes, the response time wi of the task τi is augmented by the response
time of the preempting task τprsi . This method has been used in [2] to model
preemptions.

exec?
prsi := new, prtprsi := i

di = Di

di ≤ Di

ci := 0
new := i
proc := 1

exec!

startprti !

releasei?

di := 0

di = Di

wi := Ci(LO)

inii

acti

di ≤ Di

ci ≤ wi

exeLOi starti?
wi := wi + wprsi

prsi := 0, proc := 1

preLOi

di ≤ Di

di = Di, ci ≤ wi

proc := 0
ci = wi

ci = wi

wi := wi + Ci(HI) − Ci(LO)
H[i] := 1

stopi

preHIi

prsi := new, prtprsi := i
exec?

starti?
wi := wi + wprsi

prsi := 0, proc := 1 di ≤ Di

exeHIi

ci ≤ wi

di ≤ Di

pi ≥ Tipi ≤ Ti

pi := 0
releasei!

releasei!
pi := 0

di = Di

ci = wi, H[i] := 0, proc := 0, startprti !

Fig. 2. TaskHIi and PeriodHIi of a HI criticality task τi

We model a HI criticality task τi ∈ ΓHI using a timed game automa-
ton TaskHIi, this automaton is synchronized with a timed game automaton
PeriodHIi. In addition to states of automaton TaskLOi, automaton TaskHIi
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has two specifics states exeHIi and preHIi used to model the behavior of a
critical job. The transitions from exeLOi to inii and from exeLOi to exeHIi
are uncontrollable as we don’t know in advance if the job will terminate after
the execution of Ci(LO) time unit or exhibits an erroneous behavior.

If the job is critical, the variable wi is augmented by Ci(HI) − Ci(LO). In

the transition from exeLOi to exeHi, the criticality configuration
−→
HI is updated

by adding the task τi to the set of tasks with a critical job (HI[i] = 1). When
the critical job terminates its execution, transition from exeHIi to inii, the

criticality configuration
−→
HI is updated by removing the task τi from the set of

tasks with a critical job (HI[i] = 0).
Given a task set Γ , the network of TGA TΓ is the parallel composition of

TaskLO1, . . . , TaskLOnLO and TaskHI1, . . . , TaskHInHI and PeriodLOi . . .
P eriodLOnLO and PeriodHIi . . . P eriodLOnHI . The TGA TΓ is augmented
with a clock t, this clock is never reset and is used to measure the total elapsed
time.

We say that a configuration (q,v, t) is equivalent to an execution scenario
Exec(t) iff if a task is active, or preempted, or executed in q then it is also
active or preempted, or executed in Exec(t) and the current response times and
duration since the activation of every active task are identical in Exec(t) and
(q,v, t).

5.2 Exact Feasibility and schedulability tests

We use CTL [14] model checking for time game automata to build feasibility
and schedulability tests for the AFM strategy. The task set Γ is modeled using
a network of timed game automata as presented in Section 5.1.

Theorem 1 (Exact AFM Feasibility test) The task set Γ is AFM feasible
(w.r.t. a fault mode policy) according to a job level fixed priority algorithm iff
the network of timed game automata TΓ modeling Γ satisfies the CTL Formula
1.

AG¬(
∨
τi∈Γ

stopi) (1)

Proof. An automaton T satisfies the formula AGφ iff there exists a wining strat-
egy s.t. whatever the execution of uncontrollable transitions, there exists an
execution where all the states satisfy φ.

Suppose that Formula 1 is satisfied, then, whatever is the execution of uncon-
trollable transitions in TΓ , there exists an execution where stopi is not reached,
meaning that no active job misses its deadline. This execution respects an AFM
strategy as in every possible criticality configuration, a LO criticality job is ac-

tive, iff policy
−→
HI(τi) = 0, i.e. iff the fault mode policy states that the activation

of jobs of task τi are not stopped for the current criticality configuration. A
scheduling algorithm where no active job misses its deadline and respecting an
AFM strategy can be computed using the wining strategy where ∀t ∈ R+

Sched(Exec(t), t) = τi,k ,with k the kth active job of τi, if there exists ξ in
TΓ with a last configuration (q,v, t) equivalent to Exec(t) and f(ξ) = e with e
is a transition from acti to exeLOi.
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Now, suppose that the task set Γ is AFM feasible according to a job level
fixed priority algorithm and an AFM strategy. Thus, there exists a job level
fixed priority scheduling algorithm Sched respecting the AFM strategy where
no active job misses its deadline. Using the scheduling algorithm, we can compute
a wining strategy f for the timed game defined by TΓ and Formula 1 with

f(ξ) = take transition from acti to exeLOi if the last configuration (q,v, t)
of ξ is equivalent to Exec(t), acti ∈ q and Sched(Exec(t), t) = τi,k.

Theorem 2 (Exact FP AFM schedulability test) The task set Γ is fixed
priority (FP) AFM schedulable (w.r.t. a fault mode policy) iff the network of
timed game automata modeling Γ satisfies the CTL Formula 2.

AG¬
( ∨
τi∈Γ

stopi
)∧
¬
( ∨
τi∈Γ

∨
τj∈lp(i)

(acti ∧ exeLOj)
∨
τi∈Γ

∨
τj∈lp(i)

(acti ∧ exeHIj)

∨
τi∈Γ

∨
τj∈lp(i)

(preLOi ∧ exeLOj)
∨
τi∈Γ

∨
τj∈lp(i)

(preLOi ∧ exeHIj)

∨
τi∈ΓHI

∨
τj∈lp(i)

(preHIi ∧ exeLOj)
∨

τi∈ΓHI

∨
τj∈lp(i)

(preHIi ∧ exeHIj)
)

(2)

Proof. Formula 2 is satisfied iff there exists an execution where no job misses
its deadline (state stopi not reached) and if a job of a task τi cannot be active
(state acti) or preempted (state preLOi or preHIi) if a job of a task τj of lower
priority is executed (state exeLOj or exeHIj). Thus the execution of jobs is
done according to a fixed priority scheduling algorithm.

Theorem 3 (Exact EDF AFM schedulability test ) The task set Γ is ear-
liest deadline first (EDF) AFM schedulable (w.r.t. a fault mode policy) iff the
network of timed game automata modeling Γ satisfies the CTL Formula 3.

AG¬
( ∨
τi∈Γ

stopi
)∧
¬
( ∨
τi∈Γ

∨
τj∈Γ

(acti ∧ exeLOj ∧ pij)
∨
τi∈Γ

∨
τj∈ΓHI

(acti ∧ exeHIj

∧pij)
∨
τi∈Γ

∨
τj∈Γ

(preLOi ∧ exeLOj ∧ pij)
∨
τi∈Γ

∨
τj∈ΓHI

(preLOi ∧ exeHIj ∧ pij)

∨
τi∈ΓHI

∨
τj∈Γ

(preHIi ∧ exeLOj ∧ pij)
∨

τi∈ΓHI

∨
τj∈ΓHI

(preHIi ∧ exeHIj ∧ pij)
)

(3)

where pij is a state of an observer automaton reachable when di − dj >
Di −Dj.

Proof. In earliest deadline first (EDF) schedulability, priorities are assigned to
jobs dynamically according to their absolute deadlines. Formula 3 is satisfied
iff there exists an execution where no job misses its deadline (state stopi not
reached) and a job of a task τi cannot be active (state acti) or preempted (state
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preLOi or preHIi) if a job of a task τj with an absolute deadline less close to
its deadline (Dj − dj > Di − di) is executed (state exeLOj or exeHIj). Thus
the execution of jobs is done according to EDF algorithm.

6 Illustrative Example

We illustrate our approach using a task set Γ1 with τ1 = (HI, 3, 10, 10, (1, 2)),
τ2 = (HI, 2, 8, 8, (2, 4)) and τ3 = (LO, 1, 4, 4, (2, 2)). The CPU utilization of Γ1

in the case where no LO criticality job is stopped and all the jobs of HI criticality
tasks are critical is equal to 1.2, i.e. the task set is not feasible if we don’t scarifice
some LO criticality jobs when the criticality of the system is HI.We present in
sections 6.1 and 6.2 two benefits of using the AFM strategy.

6.1 Decrease the number of sacrificed LO criticality jobs

The first benefit of our approach is that the designer can define a fault mode
policy with the aim of reducing the number of jobs that are sacrificed, i.e. that
are no more activated when the criticality of the system is HI.

We compare our method with the classical adaptive mixed criticality strategy
(AMC) [4]. In AMC, when the criticality of the system is HI, LO criticality tasks
are no more activated, and all jobs of HI criticality tasks are supposed to have
an execution time equal to their HI WCET. We consider, also for AMC, that the
system returns to LO mode at the first instant where no active job is critical.

Using the sufficient schedulability test, AMCrtb, of AMC presented in [4],
we cannot conclude that Γ1 is schedulable using AMC, however we use the

AFM strategy with a policy, policyAMC , defined by policy
−→
HI
AMC(τ3) = 1 for all

the criticality configurations where τ1 or τ2 have a critical job. Using the exact
schedulability test of Formula 2, we prove that the task set Γ1 is fixed priority
AFM schedulable according to policyAMC .

We compare the AMC strategy to an AFM strategy using the fault mode

policy, policy1, where policy
−→
HI
1 (τ3) = 1 for all the criticality configurations where

τ2 has a critical job and policy
−→
HI
1 (τ3) = 0 otherwise. In other words, LO crit-

icality jobs are sacrified only when a job of task τ2 is critical. Using the exact
schedulability test of Formula 2, we prove that the task set Γ1 is fixed priority
AFM schedulable according to policy1. We conclude that there is no need to
scarify jobs of task τ3 when only jobs of tasks τ1 are critical, this will reduce the
number of LO criticality jobs to stop to ensure the schedulability of the system.

To illustrate this, we consider an execution scenario in a time window from
0 to 44. In this scenario, the two last jobs of τ1 are critical and the three last
jobs of τ2 are critical. We remind that a job is critical if the job does notify its
completion after the execution of its WCET at the LO criticality level. Critical
jobs are presented in black in the figures.

Figure 3 represents the schedule using AMC. At time 12, the system moves
to HI criticality mode until time 17. As a consequence, the forth job of task τ3
is not activated. Note that even if the second job of task τ2 is not critical, its
WCET is equal to 4 as all jobs of HI criticality tasks are supposed to have an
execution time equal to their HI WCET when the criticality of the system is HI
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τ3

τ2

τ1

Fig. 3. FP Scheduling of Γ1 using AMC

in AMC. The criticality of the system is again HI in the time interval [24, 26],
[28, 33] and [40, 42]. Using AMC, we can see that 6 jobs of τ3 are not activated.

0 10 20 30 40

τ3

τ2

τ1

Fig. 4. FP Scheduling of Γ1 using AFM and policy1

In Figure 4, we can see that for the same execution scenario, using AFM
strategy with FP scheduling and policy1, only 3 jobs of τ3 are not activated. In
fact, the others job of task τ3 are activated as even if the criticality mode of the
system is HI, only the task τ1 has a critical job.

6.2 LO criticality jobs are necessary in some HI criticality
configurations

Even if some tasks are classified as LO criticality tasks by the designer, they
may be necessary for the good functioning of the system. For example, in the
case where task τ3 is a non critical task performing some image analysis that are
necessary when both jobs of τ1 and τ2 are critical to help the system to recover.

In this case, even if the task set is schedulable using policy1, the system is
unsafe because, as we can see in Figure 4, at instant 32, jobs of both τ1 and τ2
are critical, and the job of τ3 is not executed, while it is necessary to ensure the
safety of the system.

To test if the task set is schedulable if LO criticality tasks are not stopped
when jobs of both τ1 and τ2 are critical, we use the fault mode policy policy2.

This policy is defined with, policy
−→
HI
2 (τ3) = 1 for all the criticality configurations

where ”only” τ2 has a critical job and policy
−→
HI
2 (τ3) = 0 otherwise.

Using the exact schedulability test of Formula 2, we prove that the task set
is not FP AFM schedulable according to policy2. As we can see in Figure 5, at
time 32 the two tasks τ1 and τ2 have a critical job, in this case, according to
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Fig. 5. FP Scheduling of Γ1 using AFM and policy2

the policy, the job of task τ3 is activated. Using this policy, the third job of τ1
misses its deadline.

0 10 20 30 40

τ3

τ2

τ1

Fig. 6. EDF Scheduling of Γ1 using AFM and policy2

However, using the exact schedulability test of Formula 3, we prove that the
task set is EDF AFM schedulable according to policy2. As we can see in Figure
6, at time 32 the two tasks τ1 and τ2 have a critical job, in this case, according
to the policy, the job of task τ3 is activated.

7 Conclusion

In this paper, we introduce a scheduling strategy for the mixed criticality real-
time scheduling problem where the designer can define his own policy to deal
with low criticality tasks when the criticality of the system is high. For this
model, we propose exact feasibility and schedulability tests for job level fixed
priority algorithms based on CTL model checking for timed game automata.
Using an example, we illustrate the benefits of the proposed strategy. We are
aware that our exact tests face the state explosion problem, since the upper
bound complexity of model checking on time game automata is EXPTIME,
however, as future work, we plan to propose a more specific game model taking
into account the characteristics of our real-time scheduling problem, our intuition
is that only a subset of configuration is needed to prove the feasibility of the
problem. An other direction, is to be able to generate the fault mode policy.
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