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Abstract

We provide a mathematical analysis and a numerical framework for Lorentz force
electrical conductivity imaging. Ultrasonic vibration of a tissue in the presence of
a static magnetic field induces an electrical current by the Lorentz force. This
current can be detected by electrodes placed around the tissue; it is proportional
to the velocity of the ultrasonic pulse, but depends nonlinearly on the conductivity
distribution. The imaging problem is to reconstruct the conductivity distribution
from measurements of the induced current. To solve this nonlinear inverse problem,
we first make use of a virtual potential to relate explicitly the current measurements
to the conductivity distribution and the velocity of the ultrasonic pulse. Then, by
applying a Wiener filter to the measured data, we reduce the problem to imaging
the conductivity from an internal electric current density. We first introduce an
optimal control method for solving such a problem. A new direct reconstruction
scheme involving a partial differential equation is then proposed based on viscosity-
type regularization to a transport equation satisfied by the current density field. We
prove that solving such an equation yields the true conductivity distribution as the
regularization parameter approaches zero. We also test both schemes numerically
in the presence of measurement noise, quantify their stability and resolution, and
compare their performance.
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1 Introduction

Ultrasonic imaging is currently used in a wide range of medical diagnostic applications.
Its high spatial resolution, combined with a real-time imaging capability, lack of side ef-
fects, and relatively low cost make it an attractive technique. However, it can be difficult
to differentiate soft tissues because acoustic impedance varies by less than 10% among
muscle, fat, and blood [11]. In contrast, electrical conductivity varies widely among soft
tissue types and pathological states [13, 21] and its measurement can provide informa-
tion about the physiological and pathological condition of tissue [4]. Several techniques
have been developed to map electrical conductivity. The most well known is electrical
impedance tomography, in which electrodes are placed around the organ of interest, a
voltage difference is applied, and the conductivity distribution can be reconstructed from
the measurement of the induced current at the electrodes [1, 6, 9]. This technique is harm-
less to the patient if low currents are used. However, the ill-posed character of the inverse
problem results in lower spatial resolution than that achieved by ultrasound imaging, and
any speckle information is lost.

The Lorentz force plays a key role in acousto-magnetic tomographic techniques [23].
Several approaches have been developed with the aim of providing electrical impedance
information at a spatial resolution on the scale of ultrasound wavelengths [3, 12, 17,
19, 20, 23, 24, 27]. These include Hall effect imaging, magneto-acoustic current imag-
ing, magneto-acoustic tomography with magnetic induction, and ultrasonically-induced
Lorentz force imaging. Acousto-magnetic tomographic techniques have the potential to
detect small conductivity inhomogeneities, enabling them to diagnose pathologies such as
cancer by detecting tumorous tissues when other conductivity imaging techniques fail to
do so.

In ultrasonically-induced Lorentz force method (experimental apparatus presented in
Figure 1) an ultrasound pulse propagates through the medium to be imaged in the pres-
ence of a static magnetic field. The ultrasonic wave induces Lorentz’ force on the ions in
the medium, causing the negatively and positively charged ions to separate. This separa-
tion of charges acts as a source of electrical current and potential. Measurements of the
induced current give information on the conductivity in the medium. A 1 Tesla magnetic
field and a 1 MPa ultrasonic pulse induce current at the nanoampere scale. Stronger
magnetic fields and ultrasonic beams can be used to enhance the signal-to-noise ratio
[12].

This paper provides a rigorous mathematical and numerical framework for ultra-
sonically-induced Lorentz force electrical impedance tomography. We develop two efficient
methods for reconstructing the conductivity in the medium from the induced electrical
current. As far as we know, this is the first mathematical and numerical modeling of the
experiment conducted in [12] to illustrate the feasibility of ultrasonically-induced Lorentz
force electrical impedance tomography. Earlier attempts to model mathematically this
technique were made in [3, 14].

The paper is organized as follows. We start by describing the ionic model of conduc-
tivity. From this model we derive the current density induced by an ultrasonic pulse in the
presence of a static magnetic field. We then find an expression of the measured current.
The inverse problem is to image the conductivity distribution from such measurements
corresponding to different pulse sources and directions. A virtual potential used with
simple integrations by parts can relate the measured current to the conductivity distri-
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bution and the velocity of the ultrasonic pulse. A Wiener deconvolution filter can then
reduce the problem to imaging the conductivity from the internal electric current density.
The internal electric current density corresponds to that which would be induced by a
constant voltage difference between one electrode and another with zero potential. We
introduce two reconstruction schemes for solving the imaging problem from the internal
data. The first is an optimal control method; we also propose an alternative to this scheme
via the use of a transport equation satisfied by the internal current density. The second
algorithm is direct and can be viewed as a PDE-based reconstruction scheme. We prove
that solving such a PDE yields to the true conductivity distribution as the regularization
parameter tends to zero. In doing so, we prove the existence of the characteristic lines
for the transport equation under some conditions on the conductivity distribution. We
finally test numerically the two proposed schemes in the presence of measurement noise,
and also quantify their stability and resolution.

The ultrasonically-induced Lorentz force electrical impedance tomography investigated
here can be viewed as a new hybrid technique for conductivity imaging. It has been
experimentally tested [12], and was reported to produce images of quality comparable
to those of ultrasound images taken under similar conditions. Other emerging hybrid
techniques for conductivity imaging have also been reported [2, 3, 5, 8, 10, 25, 28].

absorber

sample with electrodes

magnet(300 mT)

transducer (500 kHz)

oil tank

degassed water

Figure 1: Example of the imaging device. A transducer is emitting ultrasound in a sample
placed in a constant magnetic field. The induced electrical current is collected by two
electrodes.

2 Electric measurements from acousto-magnetic cou-

pling

Let a physical object to be imaged occupy a three-dimensional domain Ω with a smooth
boundary ∂Ω. Assume that this body is placed in a constant magnetic field B in the
direction e3 where {e1, e2, e3} denotes the standard orthonormal basis of R3. We are
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interested in recovering the electrical conductivity of this body σ ∈ L∞(Ω) with the
known lower and upper bounds:

0 < σ ≤ σ ≤ σ <∞.

An acoustic transducer sends a short acoustic pulse from y ∈ R3 in the direction ξ ∈ S2,
with S2 being the unit sphere, such that ξ · e3 = 0. This pulse generates the velocity field
v(x, t)ξ with v(x, t) taking the following form:

v(x, t) = w
(
z − ct

)
A
(
z, |r|

)
, (1)

where

z = (x− y) · ξ and r = x− y − zξ ∈ Υξ := {ζ ∈ R3 : ζ · ξ = 0}.

Here, w ∈ C∞c
(
R
)
, supported in ]− η, 0[, is the ultrasonic pulse profile; A ∈ C∞

(
R×R+

)
,

supported in R+ × [0, R], is the cylindrical profile distribution of the wave corresponding
to the focus of the acoustic transducer; and R is the maximal radius of the acoustic beam.

2.1 The ionic model of conductivity

We describe here the electrical behavior of the medium as an electrolytic tissue composed
of ions capable of motion in an aqueous tissue. We consider k types of ions in the medium
with charges of qi, i ∈ {1, . . . , k}. The corresponding volumetric density ni is assumed to
be constant. Neutrality in the medium is described as∑

i

qini = 0. (2)

The Kohlrausch law defines the conductivity of such a medium as a linear combination
of the ionic concentrations

σ = e+
∑
i

µiqini, (3)

where e+ is the elementary charge, and the coefficients µi denote the ionic mobility of
each ion i. See, for example, [20, 22].

2.2 Ion deviation by Lorentz force

We embed the medium in a constant magnetic field B with direction e3, and perturb it
mechanically using the short, focused, ultrasonic pulses v defined in (1). The motion of
the charged particle i inside the medium is deviated by the Lorentz force

Fi = qivξ ×B. (4)

This force accelerates the ion in the orthogonal direction τ = ξ × e3. Then, almost
immediately, the ion reaches a constant speed given by

vτ,i = µi|B|v
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at the first order. See [20, 22] for more details. Finally, the ion i has a total velocity

vi = vξ + µi|B|vτ.

The current density generated by the displacement of charges can be described as follows:

jS =
∑
i

niqivi =

(∑
i

niqi

)
vξ +

(∑
i

niµiqi

)
|B|vτ.

Using the neutrality condition (2) and the definition of σ in (3), we get the following
simple formula for jS:

jS =
1

e+
|B|σvτ, (5)

which is in accordance with the formula used in [3].
This electrolytic description of the tissue characterizes the interaction between the

ultrasonic pulse and the magnetic field through a small deviation of the charged particles
embedded in the tissue. This deviation generates a current density jS orthogonal to ξ
and to B, locally supported inside the domain. At a fixed time t, jS is supported in the
support of x 7→ v(x, t). This current is proportional to σ, and is the source of the current
that we measure on the electrodes placed at ∂Ω. In the next section, a formal link is
substantiated between jS and the measured current I.

2.3 Internal electrical potential

Because the characteristic time of the acoustic propagation is very long compared with
the electromagnetic wave propagation characteristic time, we can adopt the electrostatic
frame. Consequently, the total current j in Ω at a fixed time t can be formulated as

j = jS + σ∇u, (6)

where u is the electrical potential. It satisfies

∇ · (jS + σ∇u) = ∇ · j = 0. (7)

Figure 2 shows the configuration under consideration. Let Γ1 and Γ2 be portions of the
boundary ∂Ω where two planner electrodes are placed. Denote Γ0 = ∂Ω \ (Γ1 ∪ Γ2).

As we measure the current between the two electrodes Γ1 and Γ2, the electrical po-
tential is the same on both electrodes, and can be fixed to zero without loss of generality.
Further, it is assumed that no current can leave from Γ0. The potential u can then be
defined as the unique solution in H1(Ω) of the elliptic system

−∇ · (σ∇u) = ∇ · jS in Ω,

u = 0 on Γ1 ∪ Γ2,

∂νu = 0 on Γ0.

(8)

Throughout this paper ∂ν denotes the normal derivative. Note that the source term jS
depends on the time t > 0, the position of the acoustic transducer y ∈ R3, and the
direction ξ ∈ S2. The electrical potential u also depends on these variables.
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e1

e2

B

Electrode Γ1

Ultrasonic pulse

σ(x)

ξ

Electrode Γ2

Γ0

Figure 2: Imaging system configuration. An ultrasonic wave propagates in a medium of
electrical conductivity σ comprised between electrodes Γ1 and Γ2.

The measurable intensity I is the current flow through the electrodes. Integrating (8)
by parts gives ∫

Γ1

σ∂νu+

∫
Γ2

σ∂νu = 0,

which is the expression of current flow conservation. We define the intensity I by

I =

∫
Γ2

σ∂νu. (9)

2.4 Virtual potential

In order to link I to σ, we introduce a virtual potential U ∈ H1(Ω) defined as the unique
solution of 

−∇ · (σ∇U) = 0 in Ω,

U = 0 on Γ1,

U = 1 on Γ2,

∂νU = 0 on Γ0.

(10)

Then we multiply (8) by U and integrate by parts. Assuming that the support of v does
not intersect the electrodes Γ1 and Γ2, we obtain

−
∫

Ω

σ∇u · ∇U +

∫
Γ2

σ∂νu =

∫
Ω

jS · ∇U.
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From the property of U in (10) and the definition of I in (9), the above identity becomes

I =

∫
Ω

jS · ∇U.

The above identity links the measured intensity I to an internal information of σ using
the expression of jS in (5):

I =
|B|
e+

∫
Ω

v(x, t)σ(x)∇U(x)dx · τ.

According to (1), v depends on y, ξ, and t, so does I. We define the measurement function
as

My,ξ(z) =

∫
Ω

v(x, z/c)σ(x)∇U(x)dx · τ(ξ) (11)

for any y ∈ R3, ξ ∈ S2 and z > 0. We assume the knowledge of this function in a certain
subset of R3×S2×R+ denoted by Y ×S×]0, zmax[. We will discuss later the assumptions
we have to impose on this subset in order to make the reconstruction accurate and stable.

3 Construction of the virtual current

For simplicity, let us restrict ourselves to the two dimensional case where both the con-
ductivity σ and the virtual potential U do not change in e3-direction. For convenience,
the same notations will be used as in the three dimensional case.

In order to obtain the information of σ contained in My,ξ, we need to separate the
contribution of the displacement term v from this measurement function. Using the
cylindrical symmetry of this integration we write for any z ∈]0, zmax[,

My,ξ(z) =

∫
R

∫
Υξ

w(z − z′)(σ∇U)(y + z′ξ + r)A(z′, |r|)drdz′ · τ(ξ),

=

∫
R
w(z − z′)

∫
Υξ

(σ∇U)(y + z′ξ + r)A(z′, |r|)drdz′ · τ(ξ),

= (W ? Φy,ξ) (z) · τ(ξ),

(12)

where W (z) = w(−z), ? denotes the convolution product, and

Φy,ξ(z) =

∫
Υξ

σ(y + zξ + r)A(z, |r|)∇U(y + zξ + r)dr.

As will be shown in section 6, through a one dimensional deconvolution problem that
can be stably solved using, for instance, a Wiener-type filtering method, we get access to
the function Φy,ξ · τ(ξ). Now the question is about the reconstruction of σ from Φy,ξ · τ(ξ).
We can notice that Φy,ξ is a weighted Radon transform applied to the virtual current field
σ∇U . The weight A(z, |r|) is critical for the choice of the method that we can use. Closer
this weight is to a Dirac mass function, better is the stability of the reconstruction. In
this case, if the field σ∇U does not have too large variations, we can recover a first-order
approximation; as discussed in the rest of this section.
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In order to make the reconstruction accurate and stable, we make two assumptions on
the set of parameters Y ×D×]0, zmax[. For any x ∈ Ω, we define

Sx =

{
ξ ∈ S : ξ =

x− y
|x− y|

for some y ∈ Y
}
.

The first assumption is

(H1) ∀x ∈ Ω, ∃ ξ1, ξ2 ∈ Sx s.t. |ξ1 × ξ2| 6= 0,

and the second one reads

(H2) ∀x ∈ Ω, ∀ξ ∈ Sx, ∃ unique y ∈ Y s.t. ξ =
x− y
|x− y|

.

From the assumption (H2), we can define a distance map |x − y| as a function of x
and ξ. We will denote dY (x, ξ) = |x − y|. By a change of variables, we rename our data
function Σ as

ψ(x, ξ) = Φy,ξ

(
dY (x, ξ)

)
· τ(ξ)

=

∫
Υξ

(σ∇U)(x+ r)A
(
dY (x, ξ), |r|

)
dr · τ(ξ).

(13)

Now if we denote by

γ(x, ξ) =

∫
Υξ

A
(
dY (x, ξ), |r|

)
dr τ(ξ), (14)

then we expect that
ψ(x, ξ) ≈ (σ∇U)(x) · γ(x, ξ),

provided the supp(A) is small enough and σ∇U does not vary too much. The following
lemma makes this statement precise.

Lemma 3.1 Consider a fixed direction ξ ∈ S and consider the domain covered by the
pulses of direction ξ defined by Ωξ = {x ∈ Ω : ξ ∈ Sx}. Suppose that the virtual current
σ∇U has bounded variations, then

‖ψ(·, ξ)− σ∇U · γ(·, ξ)‖L1(Ωξ)
≤ cR‖σ∇U‖TV (Ω)2 ,

where R is the maximum radius of the cylindrical support of the envelope A and c > 0
depends on the shape of A. Here, ‖ ‖TV (Ω)2 denotes the total variation semi-norm.

Proof. For a.e. x ∈ Ωξ, we have

|ψ(x, ξ)− (σ∇U)(x) · γ(x, ξ)| ≤∫
Υξ

|(σ∇U)(x+ r)− (σ∇U)(x)|A
(
dY (x, ξ), |r|

)
dr,
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and so
‖ψ(·, ξ)− σ∇U · γ(·, ξ)‖L1(Ωξ)

≤
∫

Υξ

∫
Ωξ

|(σ∇U)(x+ r)− (σ∇U)(x)|A
(
dY (x, ξ), |r|

)
dxdr

≤ ‖σ∇U‖TV (Ω)2

∫
Υξ

|r| sup
0<z<zmax

A(z, |r|)dr

≤ 2πR‖σ∇U‖TV (Ω)2

∫
R+

sup
0<z<zmax

A(z, ρ)dρ.

�

Note that in the most interesting cases, σ∇U has bounded variations. For example, if σ
has a piecewiseW 1,∞ smoothness on smooth inclusions, then σ∇U has bounded variations.
This also holds true for σ in some subclasses of functions of bounded variations. In the
following, we make the assumption, as in Lemma 3.1, that σ∇U has bounded variations.

In conclusion, our data approximates the quantity (σ∇U)(x) · γ(x, ξ) for any x ∈ Ω,
ξ ∈ Sx where the vector γ(x, ξ) is supposed to be known. To get the current (σ∇U)(x),
we simply consider data from two linearly independent directions. Using assumption (H1),
for a fixed x ∈ Ω, there exist ξ1, ξ2 ∈ Sx such that det(ξ1, ξ2) 6= 0. We construct the 2× 2
invertible matrix

Γ(x, ξ1, ξ2) =

[
γ(x, ξ1)⊥

γ(x, ξ2)⊥

]
,

and the data column vector

Ψ(x, ξ1, ξ2) =

[
ψ(x, ξ1)
ψ(x, ξ2)

]
.

We approximate the current σ∇U(x) by the vector field

V (x, ξ1, ξ2) = Γ(x, ξ1, ξ2)−1Ψ(x, ξ1, ξ2).

Indeed, for any open set Ω̃ ⊂ Ωξ1 ∩ Ωξ2 , the following estimate holds:

‖V (·, ξ1, ξ2)− σ∇U‖L1(Ω̃)2

≤ sup
x∈Ω̃

∥∥Γ(x, ξ1, ξ2)−1
∥∥
L(R2)

(
2∑
i=1

‖ψ(·, ξi)− σ∇U · γ(·, ξi)‖L1(Ωξi )

)1/2

≤ cR‖σ∇U‖TV (Ω)2 .

It is worth mentioning that if more directions are available, then we can use them to
enhance the stability of the reconstruction. The linear system becomes over-determined
and we can get the optimal approximation by using a least-squares method.

4 Recovering the conductivity by optimal control

In this section we assume that, according to the previous one, we are in the situation
where we know a good approximation of the virtual current D := σ∇U in the sense of
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L1(Ω)2. The objective here is to provide efficient methods for separating σ from D.
For a < b, let us denote by L∞a,b(Ω) := {f ∈ L∞(Ω) : a < f < b} and define the

operator F : L∞σ,σ(Ω) −→ H1(Ω) by

F [σ] = U :


∇ · (σ∇U) = 0 in Ω,

U = 0 on Γ1,

U = 1 on Γ2,

∂νU = 0 on Γ0.

(15)

The following lemma holds.

Lemma 4.1 The operator F is Fréchet differentiable and for any σ ∈ L∞σ,σ(Ω) and h ∈
L∞(Ω) such that σ + h ∈ L∞σ,σ(Ω) we have

dF [σ](h) = v :


∇ · (σ∇v) = −∇ · (h∇F [σ]) in Ω,

v = 0 on Γ1 ∪ Γ2,

∂νv = 0 on Γ0.

(16)

Proof. Let us denote by w = F [σ+h]−F [σ]−v. This function is in H1(Ω) and satisfies
the equation

∇ · (σ∇w) = −∇ · (h∇(F [σ + h]−F [σ]))

with the same boundary conditions as v. We have the elliptic global control:

‖∇w‖L2(Ω) ≤
1

σ
‖h‖L∞(Ω) ‖∇(F [σ + h]−F [σ])‖L2(Ω) .

Since
∇ · (σ∇(F [σ + h]−F [σ])) = −∇ · (h∇F [σ + h]),

we can also control F [σ + h]−F [σ] with

‖∇(F [σ + h]−F [σ])‖L2(Ω) ≤
1
√
σ
‖h‖L∞(Ω) ‖∇F [σ + h]‖L2(Ω) .

Then, there is a positive constant C depending only on Ω such that

‖∇F [σ + h]‖L2(Ω) ≤ C

√
σ

σ
.

Finally, we obtain

‖∇w‖L2(Ω) ≤ C

√
σ

σ2
‖h‖2

L∞(Ω) .

�

We look for the minimizer of the functional

J [σ] =
1

2

∫
Ω

|σ∇F [σ]−D|2 . (17)

In order to do so, we compute its gradient. The following lemma holds.
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Lemma 4.2 For any σ ∈ L∞σ,σ(Ω),

dJ [σ] = (σ∇F [σ]−D −∇p) · ∇F [σ],

where p is defined as the solution to the adjoint problem:
∇ · (σ∇p) = ∇ · (σ2∇F [σ]− σD) in Ω,

p = 0 on Γ1 ∪ Γ2,

∂νp = 0 on Γ0.

(18)

Proof. As F is Fréchet differentiable, so is J . For σ ∈ L∞σ,σ(Ω) and h ∈ L∞(Ω) such that
σ + h ∈ L∞σ,σ(Ω), we have

dJ [σ](h) =

∫
Ω

(σ∇F [σ]−D) · (h∇F [σ] + σ∇dF [σ](h)).

Now, multiplying (18) by dF [σ](h), we get∫
Ω

σ∇p · ∇dF [σ](h) =

∫
Ω

(σ2∇F [σ]− σD) · ∇dF [σ](h).

On the other hand, multiplying (16) by p we arrive at∫
Ω

σ∇p · ∇dF [σ](h) = −
∫

Ω

h∇F [σ] · ∇p,

and therefore,

dJ [σ](h) =

∫
Ω

h(σ∇F [σ]−D −∇p) · ∇F [σ].

�

Lemma 4.2 allows us to implement a numerical gradient descent method in order to
find σ. A regularization term can also be added to J [σ] in order to avoid instability. As
we are seeking discontinuous σ with smooth variations out of the discontinuity set, a good
choice would be the minimization of the regularized functional:

Jε[σ] =
1

2

∫
Ω

|σ∇F [σ]−D|2 + ε||σ||TV (Ω), (19)

where ε > 0 is the regularization parameter.

5 The orthogonal field method

In this section, we present an alternative direct method to optimal control for reconstruct-
ing the conductivity σ from the internal data σ∇U . It is based on solving a transport
equation. The following approach may be extended to the three dimensional case. How-
ever, several proofs would need to be revisited.

Given a vector field D = σ∇U which is parallel to ∇U everywhere, we may construct
the vectorial field F = (D2,−D1) which is everywhere orthogonal to D. The flow of F

11



may define the level sets of U . Assuming that the variations of the conductivity σ are
far enough from Γ0, we can assume that U(x) = x2 on this boundary part. Then U is a
solution of the following transport equation:{

F · ∇u = 0 in Ω,

u = x2 on ∂Ω.
(20)

In the case where (20) is well posed and can be solved, we can reconstruct the virtual
potential U . The conductivity σ is deduced from U and D by the following identity

σ =
D · ∇U
|D|2

. (21)

Despite to its very simple form, this first-order equation is really tricky. Existence and
uniqueness are both difficult challenges in the general case. Our main difficulty here is
due to the fact that F is discontinuous. As the function U that we are looking for is a
natural solution of this equation, we are only concerned here with the uniqueness of a
solution to (20).

5.1 Uniqueness result for the transport equation

The uniqueness of a solution to (20) is directly linked to the existence of outgoing char-
acteristic lines defined by the dynamic system:{

X ′(t) = F (X(t)), t ≥ 0,

X(0) = x, x ∈ Ω,
(22)

which usually needs the continuity of F . As σ is in general not continuous, F is not
continuous, which makes the classical existence results useless. Nevertheless, under some
assumptions on σ, we can insure the existence of the characteristic lines.

Definition 5.1 For any k ∈ N, α ∈]0, 1[, for any curve C of class C1,α such that Ω \ C
is a union of connected domains Ωi, i = 1, 2, · · ·n, we define Ck,α

C
(
Ω
)

to be the class of
functions f : Ω −→ R satisfying

f |Ωi ∈ Ck,α
(
Ωi

)
∀i = 1, · · ·n.

Definition 5.2 A conductivity σ is said to be admissible if there exists a constant α ∈]0, 1[
and a curve C of class C1,α such that σ ∈ C0,α

C
(
Ω
)
∩ L∞σ,σ(Ω) and

inf
Ω\C

σ∇F [σ] · e2 > 0.

If σ is admissible and belongs to C0,α
C
(
Ω
)
, then the solution U of (10) belongs to C1,α

C
(
Ω
)

and the field F = (σ∇U)⊥ satisfies

F ∈ C0,α
C
(
Ω
)

and inf
Ω\C

F · e1 > 0.

Moreover, as F is orthogonal to σ∇U , we can describe the jump of F at the curve C.
Defining the normal and tangential unit vectors ν and τ and also the local sides (+) and
(-) with respect to ν, we can write F on both sides as

12



F+ = σ+∂νU
+τ + σ+∂τU

+ν,

F− = σ−∂νU
−τ + σ−∂τU

−ν

with the transmission conditions, σ+∂νU
+ = σ−∂νU

− and ∂τU
+ = ∂τU

−. Finally, we
characterize the discontinuity of F by

[F ] = [σ]∂τUν,

where [ ] denotes the jump across C.
With all of these properties for the field F , we can prove the existence of the charac-

teristic lines for (22).

Theorem 5.1 (Local existence of characteristics) Assume that F ∈ C0,α
C
(
Ω
)

with C of
class C1,α for α ∈]0, 1[. Assume that the discontinuity of F on C satisfies

F+ = fτ + σ+gν,

F− = fτ + σ−gν

with f, g, σ+, σ− ∈ C0,α(C) where σ+, σ− are positive and g is locally signed. Then, for any
x0 ∈ Ω, there exists T > 0 and X ∈ C1

(
[0, T [,Ω

)
such that t 7→ F (X(t)) is measurable

and

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [.

Proof. If x0 /∈ C, then F is continuous in a neighborhood of x0 and the Cauchy-Peano
theorem can be applied.

If x0 ∈ C, then we choose a disk B ⊂ Ω centered at x0. The oriented line C separates
B in two simply connected open domains called B+ and B−. For ease of explanation,
we may assume that C ∩B is straight line (since we can flatten the curve using a proper
C0,α-diffeomorphism).

Assume that g(x0) > 0. Up to rescaling B, we can assume that g(x) > 0 for all
x ∈ C ∩ B. We extend F |B+ to a continuous field F̃ ∈ C0(B) by even reflection. The
Cauchy-Peano theorem insures the existence of T > 0 and X ∈ C1

(
[0, T [,Ω

)
such that

X(0) = x0 and X ′(t) = F̃ (X(t)) for all t ∈ [0, T [. As g(x0) > 0, we have X ′(0) · ν(x0) > 0
and X(t) ∈ B+ in a neighborhood of 0. Thus, for a small enough t, X ′(t) = F (X(t)). If
g(x0) < 0, then we apply the same argument by interchanging B− and B+.

Suppose now that g(x0) = 0. The field F is now tangent to the discontinuity line.
If f(x0) = 0, then X(t) = x0 is a solution. We assume here that f(x0) > 0. As g
is assumed to be locally signed, we can suppose that g ≥ 0 in a small sub-curve of C
satisfying (x−x0) · τ(x0) > 0. Again, we extend F |B+ to a continuous field F̃ ∈ C0(B) by
even reflection and use the Cauchy-Peano theorem to show that there exists T > 0 and
X ∈ C1

(
[0, T [,Ω

)
such that X(0) = x0 and X ′(t) = F̃ (X(t)) for all t ∈ [0, T [. In order to

complete the proof, we should show that X(t) belongs to B+ for t small enough. If not,
there exists a sequence tn ↘ 0 such that X(tn) ∈ B−. By the mean value theorem, there
exists t̃n ∈ (0, tn) such that F (X(t̃n)) · ν(x0) = X ′(t̃n) · ν(x0) < 0. Thus, X(t) belongs to
B+ and X ′(t) = F (X(t)) for t small enough.
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Note that the local monotony of g is satisfied in many cases. For instance if C is
analytic and σ is piecewise constant, then ∇U is analytic on C and hence, g is locally
signed. �

It is worth mentioning that existence of a solution for the Cauchy problem (22) has
been proved in [7] provided that F ·ν > 0 on C. Here, we have made a weaker assumption.
In fact, we only need that F · ν is locally signed.

Corollary 5.2 (Existence of outgoing characteristics) Consider F ∈ C0,α
C (Ω) satisfying

the same conditions as in Theorem 5.1 and the condition

inf
Ω\C

F · e1 ≥ c,

where c is a positive constant. Then for any x0 ∈ Ω there exists 0 < T < Tmax where

Tmax =
1

c
diam(Ω) and X ∈ C0

(
[0, T [,Ω

)
satisfying

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [,

lim
t→T

X(t) ∈ ∂Ω.

This result means that from any point x0 ∈ Ω, the characteristic line reaches ∂Ω in a
finite time.

Proof. Let x0 ∈ Ω and X ∈ C0
(
[0, T [,Ω

)
a maximal solution of (22). Using F · e1 ≥ c we

have that X ′(t) · e1 ≥ c and so X(t) · e1 ≥ x0 · e1 + ct and as X(t) ∈ Ω for all t ∈ [0, T [, it
is necessary that T < Tmax. As F ∈ C0,α

C (Ω), F is bounded, X is Lipschitz, and the limit
of X(t) when t goes to T exists in Ω and is called X(T ). Let us show that X(T ) ∈ ∂Ω.
Suppose that X(T ) ∈ Ω, then applying Theorem 5.1 at X(T ), we can continuously extend
X on [T, T+ε[ for some positive ε which contradicts the fact that X is a maximal solution.
�

Corollary 5.3 (Uniqueness for the transport problem) Consider F ∈ C0,α
C (Ω) satisfying

the same conditions as in Corollary 5.2 and consider u ∈ C0
(
Ω
)
∩ C1

C
(
Ω
)
. If u is a

solution of the system {
F · ∇u = 0 in Ω,

u = 0 on ∂Ω,
(23)

then u = 0 in Ω.

Proof. Consider x0 ∈ Ω and a characteristic X ∈ C0
(
[0, T [,Ω

)
satisfying

X(t) = x0 +

∫ t

0

F (X(s))ds, ∀t ∈ [0, T [,

lim
t→T

X(t) ∈ ∂Ω.
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We define f ∈ C0
(
[0, T ],R

)
by f(t) = u(X(t)). We show that f is constant. Let us define

I = X−1(C) then f is differentiable in [0, T ]\I and f ′(t) = ∇u(X(t)) · F (X(t)) = 0. Let
us take t ∈ I. If t is not isolated in I, using the fact that ∂τu

+ and ∂τu
− are locally

signed, F (X(t)) is parallel to C and for an ε > 0, X(s) ∈ B+ (or B−) for s ∈ [t, t + ε[.
Then, f(s) = u(x(s)) is differentiable on [t, t + ε[ with f ′(s) = ∇u+(X(s)) · F (X(s)).
This proves that f is right differentiable at t and (f ′)+(t) = 0. By the same argument,
f is left differentiable at t and (f ′)−(t) = 0 and so f is differentiable at t with f ′(t) = 0.
Finally, except for a zero measure set of isolated points, f is differentiable on [0, T ] and
f ′ = 0 almost everywhere. This is not enough to conclude because there exists continuous
increasing functions whose derivative is zero almost everywhere. Since for all t, s ∈ [0, T ],

|f(t)− f(s)| ≤ sup |∇u||X(t)−X(s)| ≤ sup |∇U | sup |F ||t− s|,

f is Lipschitz and thus absolutely continuous which implies, since f ′ = 0 a.e., that f is
constant on [0, T ]. We finally have u(x0) = f(0) = f(T ) = u(X(T )) = 0. �

Hence we conclude that if σ is admissible, then U is the unique solution to (20) and
we can recover σ by (21).

Remark 5.4 The characteristic method can be used to solve the transport problem. How-
ever, it suffers from poor numerical stability which is exponentially growing with the dis-
tance to the boundary. To avoid this delicate numerical issue, we propose a regularized
approach for solving (20). Our approach consists in forming from (20) a second-order
PDE and adding to this PDE a small elliptic term of order two.

5.2 The viscosity-type regularization

In this subsection we introduce a viscosity approximation to (20). Let ε > 0. We regularize
the transport equation (20) by considering the well-posed elliptic problem{

∇ ·
[(
εI + FF T

)
∇uε

]
= 0 in Ω,

uε = x2 on ∂Ω.
(24)

The main question is to understand the behavior of uε when ε goes to zero. Or more
precisely, whether uε converges to the solution U of the transport equation (20) for a
certain topology. The following result holds.

Theorem 5.5 The sequence (uε − U)ε>0 converges strongly to zero in H1
0 (Ω).

Proof. We first prove that the sequence (uε − U)ε>0 converges weakly to zero in H1
0 (Ω)

when ε goes to zero. For any ε > 0, ũε := uε − U is in H1
0 (Ω) and satisfies

∇ ·
[(
εI + FF T

)
∇ũε

]
= −ε4U in Ω. (25)

Multiplying this equation by ũε and integrating by parts over Ω, we obtain

ε

∫
Ω

|∇ũε|2 +

∫
Ω

|F · ∇ũε|2 = −ε
∫

Ω

∇U · ∇ũε (26)
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and so,

‖ũε‖2
H1

0 (Ω) ≤
∫

Ω

|∇u · ∇ũε| ≤ ‖U‖H1(Ω) ‖ũε‖H1
0 (Ω) .

Then ‖ũε‖H1
0 (Ω) ≤ ‖U‖H1(Ω). The sequence (uε)ε>0 is bounded in H1

0 (Ω) and so by Banach-

Alaoglu’s theorem, we can extract a subsequence which converges weakly to u∗ in H1
0 (Ω).

Multiplying (25) by u∗ and integrating by parts, we get∫
Ω

(F · ∇ũε) (F · ∇u∗) = −ε
∫

Ω

∇U · ∇u∗ − ε
∫

Ω

∇ũε · ∇u∗.

Taking the limit when ε goes to zero,

‖F · ∇u∗‖L2(Ω) = 0.

So u∗ is a solution of the transport equation (23), and by Corollary 5.3, u∗ = 0 in Ω.
Actually, there is no need for the extraction of a subsequence to get the weak convergence
result. Indeed, zero is the only accumulation point for uε for the weak topology. Consider
a subsequence uφ(ε). It is still bounded in H1

0 (Ω). Therefore, using the same argument as
above, zero is an accumulation point of this subsequence.

Now, we are ready to prove the strong convergence. From (26) we get that∫
Ω

|∇ũε|2 ≤ −
∫

Ω

∇U · ∇ũε,

and as ũε ⇀ 0 in H1
0 (Ω), the term in the right-hand side goes to zero when ε goes to zero.

Hence, ‖ũε‖H1
0 (Ω) → 0. �

Finally, using Theorem 5.5 we define the approximate resistivity by

1

σε
=
D · ∇uε
|D|2

,

which strongly converges to
1

σ
in L2(Ω).

6 Numerical results

In this section we first discuss the deconvolution step. Then we test both the optimal
control and the orthogonal field reconstruction schemes.

6.1 Deconvolution

In this subsection, we consider the problem of recovering Φy,ξ from the measurements
My,ξ in the presence of noise. From (12), it is easy to see that this can be done by
deconvolution. However, deconvolution is a numerically very unstable process. In order
to render stability we use a Wiener filter [18]. We assume that the signal My,ξ(.) is
perturbed by a random white noise:

M̃y,ξ(z) = My,ξ(z) + µ(z), (27)
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Figure 3: L2 norm of the relative error ‖Σ−Σ̃‖2
‖Σ‖2 with respect to the signal-to-noise ratio.

where µ is a white Gaussian noise with variance ν2. Equation (27) can be written as

M̃y,ξ(z) = (W ? Φy,ξ) (z) + µ(z).

Denote by S(Σ) =
∫
R |F(Φy,ξ)(ω)|dω the mean spectral density of Σ, where F is the

Fourier transform. The Wiener deconvolution filter can be written in the frequency do-
main as

L̂(ω) =
F(W )(ω)

|F(W )|2(ω) + ν
S(Σ)

.

The quotient ν/S(Σ) is the signal-to-noise ratio. So, in order to use the filter, we need
to have an a priori estimate of the signal-to-noise ratio. We then recover Σ up to a small
error by

Σ̃y,ξ = F−1
(
F(M̃)L̂

)
.
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Figure 4: Conductivity map to be reconstructed.

6.2 Conductivity reconstructions

In the numerical simulations, we choose Ω =]0, 2[×]0, 1[. Figure 4 shows the true conduc-
tivity map in the medium. The simulations are done using a PDE solver. The data is
simulated numerically on a fine mesh. For the orthogonal field method, in order to solve
(24), we use a coarse mesh. Then we reconstruct an initial image of the conductivity.
Based on the initial image, an adaptive mesh refinement for solving (24) yields a conduc-
tivity image of a better quality. Figure 5 shows the used meshes for solving the viscosity
approximation.

6.2.1 The optimal control method

The minimization procedure gives a decent qualitative reconstruction. The main interfaces
are easy to see, yet this method, due to its regularizing effect, fails to show details in weaker
contrasts zones. Figures 6, 7, and 8 show the reconstruction obtained with different
measurement noise levels.

6.2.2 The orthogonal field method

To find the solution of problem (24), we fix ε = 10−3, and solve the equation on a uniform
mesh on Ω. We reconstruct an approximation of σ, and adapt the mesh to this first
reconstruction. We do this procedure a couple of times in order to get refined mesh near
the conductivity jumps. We can see that besides being computationally lighter than the
minimization method, the orthogonal field method allows a quantitative reconstruction
of σ and shows details even in the low contrast zones. It is relatively stable with respect
to measurement noise. Figures 9, 10, and 11 show the reconstruction with different
measurement noise levels. Figure 12 shows the L2 norm of the error with respect to
measurement noise, with ε fixed at 10−3. A smaller ε increases the noise sensibility at
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Figure 5: Meshes for solving (24): initial mesh (left), adapted mesh (middle), and the
mesh used to generated the data (right).
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Figure 6: Reconstructed image without measurement noise.
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Figure 7: Reconstructed image with 2% measurement noise.
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Figure 8: Reconstructed image with 20% measurement noise.
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Figure 9: Reconstructed image without measurement noise.

higher noise levels, but also improves the details and reduces the smoothing effect of the
ε∆ term in (24).

7 Concluding remarks

In this paper we have provided the mathematical basis of ultrasonically-induced Lorentz
force electrical impedance tomography. We have designed two efficient algorithms and
tested them numerically. The resolution of the reconstructed images is fixed by the ul-
trasound wavelength and the width of the ultrasonic beam. The orthogonal field method
performs much better than the optimization scheme in terms of both computational time
and accuracy. In a forthcoming work, we intend to generalize our approach for imag-
ing anisotropic conductivities by ultrasonically-induced Lorentz force [26]. We will also
propose an algorithm to find σ∇U from the data function ψ using (13) and correct the
leading-order approximation (14). This will enhance the resolution of the reconstructed
conductivity images. Another challenging problem under consideration is to interpret the
high-frequency component of My,ξ in terms of speckle conductivity contrasts.
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