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2INL, École Centrale de Lyon, Lyon, France – marcello.traiola@ec-lyon.fr
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Abstract—Nowadays, many electronic systems store valuable
Intellectual Property (IP) information inside Non-Volatile Mem-
ories (NVMs). Therefore, encryption mechanisms are widely
used in order to protect such information from being stolen
or modified by human attacks. Encryption techniques can be
used for protecting the application code, or sensitive sets of
data in the NVM. In particular, in machine-learning applications,
the weights of an Artificial Neural Network (ANN) represent a
highly valuable IP stemming from long time invested in training
the system along the development phase. On the other side,
systems implementing ANN applications are increasingly used
in safety-critical domains (e.g., autonomous driving), where a
high reliability level is required. In a previous paper, we have
shown that encryption techniques, applied to the application code
of generic systems, provide a significantly higher error detection
rate. In this paper, we focus on an ANN application and we
evaluate the detection rate induced by encryption mechanisms
for transient faults possibly impacting the ANN weights. We
performed experiments on a pre-trained ANN, whose weights
represent the sensitive IP of our system. We executed fault
injection campaigns to evaluate the ANN resilience when different
encryption methods are used. Experimental results showed that
the presence of specific encryption mechanisms alone induces
high fault detection rates in such applications. This may allow
the designer to consider security and safety mechanisms together,
achieving the same results with lower costs.

I. INTRODUCTION

In the last decades, digital systems have become widespread,
considerably changing the way people interact with computing ma-
chines. This strong development has imposed design constraints that
were not crucial when computing systems did not manage aspects
related to the safety and security of humans’ life. For this reason, de-
sign guidelines for safety-critical applications aim to obtain reliable
systems that are able to detect a sufficiently high percentage of faults
that could affect the correct operation of the target system. Machine
learning is a prominent example in this direction. In the last years,
several safety-critical domains have been empowered by machine-
learning, such as autonomous driving, robotics and health [1].

Furthermore, malicious users can represent a threat for the in-
tegrity of the system, in the case in which they have physical
access to the device and they are able to perform attacks to extract
valuable secret information from the device. For this reason, memory
encryption techniques are adopted in order to protect data stored into
memories.

Artificial Neural Networks (ANNs) for autonomous driving are
an example of an application where both reliability and security
are essential requirements. On the one hand, hardware security
for ANNs is focused on the protection of training data that are

stored into non-volatile memories (NVMs). Indeed, training data
derive from a long and expensive process, whose results represent
a valuable intellectual property for the system designer [2], [3]. On
the other hand, faults affecting the NVMs have to be detected and
possibly tolerated to avoid catastrophic consequences. Redundancy
solutions are commonly applied in the automotive domain to detect
the occurrence of single- and multiple-bit errors and to possibly
correct some of them. For instance, Error Correction Codes (ECCs)
are commonly used to detect (and possibly correct) errors up to a
given multiplicity [4]. ECCs resort to redundancy (some extra bits
are generated and stored) to check for data integrity. This involves
both hardware and performance overhead. In the literature, alter-
native solutions have been explored. For example, the work from
Martı́nez et al. [5] proposes techniques to increase the probability
that the processor triggers an exception when a faulty instruction is
fetched. However, this solution requires the modification of the CPU
core design, which is often not possible for system companies using
off-the-shelf processors for their applications.

In this paper, we explore the transversal characteristic of memory
encryption, which may augment data corruption in the presence of
faults affecting the system. Such an effect opens some opportuni-
ties for fault tolerance mechanisms. In a previous study [6], we
showed that augmenting the corruption of an application code leads
to increasing the fault detection probability for single faults and
especially for multiple faults. This interesting property can be useful
to optimize the utilization of costly ad-hoc mechanisms to detect
faulty conditions. In this work, we investigate the fault detection
capabilities of memory encryption mechanisms when applied to
data. This study is important from a system designer perspective,
who can thus take informed decisions about the choice of the system
components.

In this work, we consider an ANN as a case study, whose weights
are encrypted with different encryption mechanisms. We perform
fault injection campaigns on the encrypted data, and we evaluate
the impact of the encryption mechanism on the fault detection
capability. Experimental results show that, by performing a sim-
ple padding check after the decryption, important fault detection
capabilities can be achieved. This work paves the way to cleverly
select the encryption mechanism not only to suitably protect the
memory content with respect to malicious attacks, but also to achieve
a sufficiently high degree of reliability.

The remainder of the paper is organized as follows. Section II
briefly describes the background of the work. Section III intro-
duces the reference scenario and details the proposed contribution
of this work. Section IV illustrates the case study and Section V
the obtained experimental results. Finally, Section VI draws the



conclusions.

II. PRELIMINARIES AND SPECIFICATIONS

We previously evaluated the error detection capabilities that spe-
cific encryption mechanisms can provide when applied to the appli-
cation code, stored in NVMs [6]. In that context, a fault may turn an
instruction into an illegal one, causing a failure in the code execution.
We showed that block ciphers amplify the fault effect, propagating
it to a large number of bits. This raises the likelihood of an illegal
instruction exception to be triggered, thereby significantly enhancing
the system’s fault detection capabilities thus complementing ad-hoc
fault detection mechanisms. Specifically, single bit-flip fault detec-
tion values provided by the encryption/decryption mechanism alone
were found to span from 81.5% to 93.5%. Moreover, block-ciphers
proved to own interesting multiple-bit fault detection properties.

In this paper, we focus on how sensitive data, that is also stored
in NVMs, can be protected against faults by only resorting to the
encryption/decryption mechanisms. We consider here a pre-trained
ANN implementing a classifier. In this case, the sensitive informa-
tion is represented by the weights of the network. We are particularly
interested in the weights of the classifier for two main reasons:
(i) the weights, which are the outcome of the training process,
play a significant role since they determine the overall classification
accuracy of the network. They are typically considered as a precious
Intellectual Property (IP). (ii) A fault affecting the ANN weights
is particularly hard to detect without dedicated mechanisms, unless
it triggers specific conditions handled by the software. The next
subsections detail the background concepts and mechanisms used
in this study.

A. Memory Encryption
The most common techniques for the encryption of data stored

into memories are based on symmetric cryptography. In this sce-
nario, the software developer loads the encrypted data inside an
NVM that is usually external to the target System-on-Chip (SoC).
The encryption is performed using a secret key, which is also stored
inside the SoC, in a tamper-proof internal memory. When the device
is running, all data fetched from the NVM are decrypted on-the-
fly by a dedicated hardware decryption module, which generates
the plaintext data that is processed by the CPU. These security
techniques aim at protecting the target device against attackers that
could tamper with the external NVM, stealing data with the purpose
of cloning the system. In an ANN scenario, the network weights
are a valuable IP, which could be the target of attacks aiming at the
replication of the machine-learning model.

The encryption and decryption operations are carried out resorting
to cryptographic functions that are based on pseudo-random permu-
tations, such as the Advanced Encryption Standard (AES). The AES
function takes as input a block of 128 bits and the secret key, and
it outputs another block of 128 bits whose value is an encrypted
version of the input. Therefore, it is not possible to correlate the
output and the input in any way without knowing the secret key. The
AES can be used to build block ciphers and stream ciphers.

Block ciphers take as input the message to cipher (i.e., the
plaintext) one block at a time, and they output the result (i.e., the
ciphertext) in blocks of the same size. In the case of the decryption
function, the inverse operation is performed on the ciphertext to
obtain the plaintext. The AES function can be used to create different
kinds of block ciphers, according to the adopted configuration:
(i) Cipher Block Chaining (CBC) mode; (ii) Cipher Feedback (CFB)
mode; (iii) Propagating CBC (PCBC) mode.

Stream ciphers encrypt and decrypt data one bit at a time. The
AES function can be used to build stream ciphers as well. In this
case, the AES generates a stream of random bits, starting from a seed
value. The generated stream (called keystream) is combined with the
plaintext one bit at a time with a XOR operation. In the decryption
process, the same operation is performed between the ciphertext and
the keystream. The AES function can be used to create different
kinds of stream ciphers, according to the configuration used to create
the keystream: (i) Counter (CTR) mode; (ii) Output Feedback (OFB)
mode.

Encryption schemes based on block-based functions, such as
AES, show some implementation difficulties when the size of the
data to encrypt/decrypt is not multiple of the block size. In this case,
a padding of the plaintext is necessary. Several protocols exist in
order to synchronize the padding. One of the most popular is the
PKCS #7 - RFC 2315 [7]. According to this standard, the last en-
cryption block must be completed with N bytes encoding the value
‘N ’. As we will show later on, the padding system can represent an
interesting opportunity for the purpose of error detection.

For the purpose of this paper, we focus on the decryption function,
which is the only function executed inside the device (the encryption
function is performed off-line by the programmer). Moreover, we
focus on a specific property of the decryption function, i.e., the
peculiarity of propagating a 1-bit corruption of the ciphertext to
multiple bits of the resulting plaintext.

B. Fault Model and Fault Classification

In order to model the effects of possible transient faults affecting
the NVM, in this paper, we consider the Single Event Upset (SEU)
and the Multiple Bit Upset (MBU) fault models. We perform fault in-
jection campaigns only on the ANN weights. Each fault is classified
according to its effects on the ANN application as: • Silent: the fault
does not affect the execution of the program nor the results. • Silent
Data Corruption (SDC): the fault does not affect the execution of
the program but it affects the results. • Detected: (i) the fault affects
the program execution by turning a valid floating point number into
a NaN value and thus causes a software exception; (ii) the fault
corrupts the padding bytes of the ciphertext and a padding check
action detects the anomaly. Obviously, the desirable conditions are
that a fault is either silent or detected. Indeed, we want to avoid
scenarios where anomalous conditions occur and corrupt the system
without warning, i.e., SDC. As already extensively studied [8]–[10],
ANN-based systems are intrinsically rather resilient to errors. A
fault affecting at the LSBs of an ANN weight value will probably
have no effects on the execution of the application, thus it would
be a silent fault. As the fault location moves towards the MSBs, its
effects would be more severe and can lead to silent data corruption
during execution [11], [12]. Faults located in the exponent segment
of the floating point number could lead to NaN values generation.
In the case of a NaN, the software is responsible of detecting it and
handling it by raising an exception that will lead to the detection of
the fault.

III. REFERENCE SCENARIO

A. No Encryption Scenario

When no encryption is used to protect the NVM that stores the
network’s weights, a fault in the memory content will result in the
flipping of a bit (bit-flip). The criticality of the fault strongly depends
on the fault location as explained in Subsection II-B. As mentioned



in Subsection II-B, in this case the only way to detect a fault is that
it causes a NaN value, which in turns triggers an exception.

B. Encryption Scenario
In this scenario, the encryption is used to protect the NVM

content. As reported in Subsection II-A, a requirement for the data
to be correctly encrypted is to have a size multiple of the block
size. Thus, data are often previously padded before the encryption
to satisfy such requirement. This means that some extra bytes are
appended to the data before encryption, and they are removed after
decryption. Before the removal, the integrity of the padding segment
can be checked or not. Depending on that, we differentiate two
possible sub-scenarios: 1) Padding integrity check: the first scenario
concerns the system’s software or hardware being able to perform
checks on the padding bytes after the decryption. 2) No padding
integrity check: in the second scenario the system does not perform
any kind of check on the padding bytes when decrypting.

When a fault corrupts the encrypted memory content, its effect
may propagate to the padding, thanks to the decryption. In this case,
the padding check mechanism immediately detects that the padding
bytes have been altered, thus leading to a detection of the fault.

On the other hand, if the system does not perform the padding
integrity check after decryption, then it is up to the application to
possibly detect the fault. As already mentioned, in our scenario this
happens only if a NaN value is generated.

IV. CASE STUDY

The ANN that we used for our experiments is a classifier, which
was developed using an ANSI C library [13]. It is responsible, given
a point in the (x, y) plane, to classify it in one of the three classes:

• C1: The point belongs to either one of the circles:
(x± 1)2 + (y ± 1)2 ≥ 0.16

• C2: The point belongs to either one of the disks:
0.16 < (x± 1)2 + (y ± 1)2 < 0.64

• C3: The point belongs to neither circle nor disk:
(x± 1)2 + (y ± 1)2 ≥ 0.64

The training and the testing set of the network contain 3, 000
points each (6, 000 in total). In each set 1, 500 randomly generated
points are located inside the [0, 2]× [0, 2] rectangle and 1, 500 points
are located inside the [0,−2]× [0,−2] rectangle.

The network is composed of 1 input layer, 3 hidden layers and
1 output layer. The input layer has 2 neurons, one for each of the
points coordinates (x, y). The hidden layers have 10 neurons each
and the output layer has 3 neurons, one for each of the classes
(C1, C2, C3). In total, the network contains 283 weights (including
each neuron’s BIAS input weight). In order to train the network we
used the supervised learning technique. Every point in our training
and test dataset was encoded using one-hot encoding. The adopted
training algorithm was gradient descent.

The generalization error of the network was found to be 1.33%.
This is the probability for the classifier to misclassify a given point
of the test-set (e.g., to classify a point of the class C1 as a point of
the class C2 or C3). The activation function selected for this network
is the sigmoid function.

V. RESULTS

The results of the experiments that consider SEU as the fault
model are reported in Table I, while the results of the experiments
that consider MBU as the fault model are plotted in the graphs in
Figures 1 and 2. In particular, since we are interested in evaluating

the resilience of the ANN, in the graphs we report the percentage of
cases where a fault occurrence is considered to be ‘safe’, i.e., silent
and/or detected (resilience rate).

A. NO PAD: Experiments Without Padding Checks
Regarding the SEU experiments, in the left part of Table I we

can see that there is no big difference between the results of the
experiments performed with no encryption and those with a stream-
cipher-based encryption. As for the block ciphers, in this case they
do not improve the detection rate and also tend to produce more
SDCs than the other scenarios.

Fig. 1. MBU results: NO PAD experiments

By analyzing the MBU experiments’ results in Figure 1, we
can see that, with respect to the NO ENC experiments, we have a
very small improvement of ANN resiliency in the case of stream
ciphers. Block ciphers, on the other hand, seem to under-perform,
since their detection rates are lower than those of the NO ENC
case. Specifically, for fault multiplicity higher than 200 the block
ciphers’ detection rates drop. These results show a contrasting trend
compared to our previous work [6], where we found that the block
ciphers have a high detection capability for faults occurring in the
code memory space (see Section II). Indeed, a fault may transform
an instruction into an illegal one, causing a failure in the code
execution. When block ciphers are used to encrypt the code, they
amplify the fault effect, propagating it to other bits. This, in turns,
raises the likelihood of an illegal instruction.

On the other hand, since in this work we focus on application data,
the only possible fault detection scenario is for the fault to generate
a NaN value which is detected by the software. In our experiments,
stream ciphers were found to be able to generate NaN values more
frequently than block ciphers.

The next subsection shows that, by simply checking the padding
after the decryption, important results can be achieved.

B. PAD: Experiments With Padding Checks
In the right part of Table I we report the results in case of

SEUs for PAD experiments. In these experiments, we evaluate the
ANN resilience when padding byte checks are performed after the
decryption. The ANN resilience when stream ciphers are used re-
mains substantially unchanged. Unfortunately, CBC and CFB block
ciphers still provide an important amount of SDCs. Nonetheless, it



TABLE I
SEU RESULTS

Encryption
NO PAD PAD

Fault Class Stream ciphers Block Ciphers Stream ciphers Block Ciphers

NO ENC CTR OFB CBC CFB PCBC CTR OFB CBC CFB PCBC
Silent 75.5% 78.8% 77.4% 1.6% 2.6% 6.4% 76.6% 76.6% 0.6% 1.8% 0%
SDC 24% 21.8% 22% 98% 97.4% 92.8% 22.8% 22% 98.2% 96.4 0.6%

Detected 0.3% 0% 0.6% 0.4% 0% 0.8% 0.6% 1.4% 1.2% 1.8% 99.4%
NO PAD: Experiments that do not consider padding checking while decrypting
PAD: Experiments that consider padding checking while decrypting

is remarkable that the PCBC block cipher configuration is able to
achieve a fault detection percentage of 99.4%.

Fig. 2. MBU results: PAD experiments

As shown in Figure 2, a significant improvement is observed also
in the MBU experiments. Both stream and block ciphers improve
the ANN resiliency more than the NO ENC scenario. Block ciphers
perform better than the stream ciphers. In this scenario, we obtained
a trend similar to the one observed in our previous study [6].
Finally, regardless of the multiplicity of the injected faults, the PCBC
configuration achieves ≈ 100% detection rate.

In conclusion, by using the AES PCBC configuration with pad
checking to protect the IP stored in an NVM, it is possible to achieve
a fault detection rate greater than 99%, even without resorting to
costly ad-hoc fault detection mechanisms. Moreover, the padding
check allows achieving an early detection, compared to spending
time in executing the software and catching an exception due to
possible NaN values.

By using this information, a system designer who needs to adopt
encryption mechanisms can take informed decisions about the most
suitable configuration, taking into account both the reliability and
the security requirements.

VI. CONCLUSIONS

Artificial Neural Networks represent a good example where both
hardware security and reliability requirements are crucial. In particu-
lar, ANN weights are often considered as Intellectual Property, thus
they need to be protected from malicious attacks. Moreover, they
play a significant role in determining the overall ANN classification

accuracy, thus they must be protected against possible hardware
faults. In this article, we studied the opportunities offered by the
memory encryption as fault detection mechanism. The main goal
is to help designers to take informed decisions when performing de-
sign choices. We performed fault injection campaigns on encrypted
ANN weights. Experimental results highlighted that it is possible to
achieve important fault detection rates (> 99%) by using a particular
AES configuration, i.e., PCBC with padding check. We are now
extending our analysis to other application domains (e.g., in the
automation area) where the effects of data and code encryption may
result in similar reliability enhancements.
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