
HAL Id: hal-03094567
https://hal.science/hal-03094567

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Design Space Exploration for memristor-based
crossbar architecture

Marcello Traiola, Mario Barbareschi, Alberto Bosio

To cite this version:
Marcello Traiola, Mario Barbareschi, Alberto Bosio. Formal Design Space Exploration for
memristor-based crossbar architecture. DDECS 2017 - 20th International Symposium on Design
and Diagnostics of Electronic Circuits and Systems, Apr 2017, Dresden, Germany. pp.145-150,
�10.1109/DDECS.2017.7934557�. �hal-03094567�

https://hal.science/hal-03094567
https://hal.archives-ouvertes.fr


Formal Design Space Exploration for
Memristor-based Crossbar Architecture

Marcello Traiola1, Mario Barbareschi2, Alberto Bosio1
1LIRMM - University of Montpellier / CNRS - France - Email: {firstname.lastname}@lirmm.fr.

2 DIETI - University of Naples Federico II - Italy - Email: mario.barbareschi@unina.it

Abstract—The unceasing shrinking process of CMOS technol-
ogy is leading to its physical limits, impacting several aspects,
such as performances, power consumption and many others.
Alternative solutions are under investigation in order to over-
come CMOS limitations. Among them, the memristor is one
of promising technologies. Several works have been proposed
so far, describing how to synthesize boolean logic functions on
memristors-based crossbar architecture. However, depending on
the synthesis parameters, different architectures can be obtained.
Design Space Exploration (DSE) is therefore mandatory to help
and guide the designer in order to select the best crossbar
configuration. In this paper, we present a formal DSE approach.
The main advantage is that it does not require any simulation
and thus it avoids any runtime overheads. Preliminary results
show the huge gain in runtime compared to simulation-based
DSE.

Index terms - Memristor crossbar, Design Space Exploration,
Boolean Functions, Circuit Synthesis

I. INTRODUCTION

Today’s computing devices are based on the CMOS tech-
nology, that is the subject of the famous Moore’s Law [1],
predicting that the number of transistors in an integrated circuit
will be doubled every two years. Despite the advantages of
the technology shrinking, we are facing the physical limits
of CMOS. Among the multiple challenges arising from tech-
nology nodes lower than 20 nm, we can highlight the high
leakage current (i.e., high static power consumption), reduced
performance gain, reduced reliability, complex manufacturing
process leading to low yield, complex testing process, and
extremely costly masks [2], [3], [4], [5].

Additionally, the expected never-ending increasing of per-
formances is indeed no longer true. Looking in more detail,
the classical computer architectures, either Von Neumann
or Harvard, divide the computational unit (i.e., CPU) from
the storage element (i.e., memory). Therefore, data have to
be transferred inside the computational element in order to
be processed and then transferred back to be stored. The
main problem of this paradigm is the bottleneck due to the
data transfer time limited by the bandwidth. For instance,
transferring one TeraByte at the rate of 1Gbit/second requires
more than two hours.

Many new technologies are under investigation, among
them the memristor is a promising one [6]. Indeed, being a
non-volatile device able to act as both storage and information
processing unit, the memristor presents many advantages:
CMOS process compatibility, lower cost, zero standby power,
nanosecond switching speed, great scalability, high density

and non-volatile capability [7], [8]. Thanks to its nature (i.e.,
computational as well as storage element), the memristor is
exploited in different kind of applications, such as neuro-
morphic systems [9], non-volatile memories [10], computing
architectures for data-intensive applications [11].

A fundamental component of any kind of computing ar-
chitecture is the implementation of boolean logic functions.
In [12], the authors proposed a methodology for the synthesis
of boolean logic functions on a memristor-based crossbar.
Their work showed that is possible to implement any kind of
boolean function on a memristor-based crossbar. In our previ-
ous work, we illustrated a methodology to automatically map
an arbitrary boolean function to a memristor-based crossbar
implementation [13]. By applying different minimization tools
and different synthesis parameters, we also showed that each
obtained architecture is strongly dependent on them. Design
Space Exploration (DSE) is therefore mandatory to help and
guide the designer in order to select the best architecture.

Bearing in mind such consideration, in this paper, we
present a formal DSE approach that aims to calculate inter-
esting circuits attributes avoiding simulation campaigns. We
propose an algorithmic method to estimate both workload
independent attributes (e.g. performance, area, etc.) and work-
load dependent ones. In particular, we estimate the power
consumption of a given memristor-based crossbar architecture
(the Fast Boolean Logic Circuit [12]) providing both a lower
and an upper bound for the power consumption and an error
estimation.

The remainder of the paper is structured as following.
Section II presents the state of the art and provides the
required background about the memristor-based computation.
Section III presents the synthesis flow and the design space
exploration framework, while the Section IV gives the exper-
imental results. Finally, the Section V draws the conclusions.

II. BACKGROUND AND STATE-OF-THE-ART

In this section we provide the basics about the memristor
modeling, as well as the way the memristor can be exploited
to implement an arbitrary boolean function.

A. Memristor model

The memristor is a non-linear electrical component char-
acterized by a variable electrical resistance, which value
depends on the history of the charge flowed through the
device itself. As we aim to implement a digital circuit, we



refer to the memristor Voltage-Current relation depicted in
Figure 1, detailed in [14], as the best solution for modeling
the memristor’s behavior (i.e., thanks to the ideal response
to a pulse-wave). Such a model considers that the voltage
applied to the memristor’s terminals does not change the
device resistance until it crosses one of the two thresholds Vth.
In the adopted ideal model, they are symmetrically defined.

We resort to the Snider Boolean Logic (SBL) [14] con-
vention whereby a lower resistance (steeper curve denoted as
RON) represents a 0-logic while an higher resistance (lower
slope curve denoted as ROFF) represents a 1-logic.

Two basic operations can be performed, defined as SET
and RESET. The former allows to program the memristor to
RON, hence at 0-logic, while the latter performs the memristor
switching to ROFF, that corresponds to 1-logic. The Figure 1
depicts SET and RESET operations as described by Xie et al.
in [12].

RON = 0

ROFF = 1

V

I

-Vth

Vth

Memristor ideal Voltage-Current relation [14]

Vx = GND

RON

ROFF

+

-

Vw

I

+

- Vw

Vx = GND

-

ROFF

+

RON I

+

-
SET RESET

Fig. 1: Set and Reset operations [12].

B. Fast Boolean Logic Circuits

Snider proposed in [14] a design methodology to implement
boolean functions on memristor-based crossbar. The proposed
approach was then improved by Xie et al. in [12]. Let us
briefly recall their proposition referring to it as Fast Boolean
Logic Circuit (FBLC). First, the logic circuit requires that the
Boolean function is expressed as sum of products:

f = M1 + M2 + ... + Mn = M1 · M2 · · · · · · Mn[[NAND
AND

NOT

[

Then, as Figure 2-a shows, FBLC is divided in blocks,
useful to accomplish FSM’s steps (Figure 2-b) which are:

INA: INitialize All the memristors to ROFF;
RI: the input block Receives the Inputs;

CFM: ConFigure all Minterms simultaneously, in parallel;
EVM: EValuate all Minterms simultaneously (NAND);
EVR: EValuate Results: F is calculated (AND);
INR: INvert Results: F need to be inverted to achieve f
SO: Send Outputs: the result captured in OL is sent out.

IN

A
N
D

OL

...

0
1 F

INR

RI

EVR

CMF

EVM

SO

INA

(a) (b)

M1—

Mn
—

F—

Fig. 2: Fast Boolean Logic Circuit.

Below, the description of the blocks:
• Input box: where inputs are stored during the RI step;
• NAND box: where minterms are configured during CFM

and evaluated during EVM;
• AND box: where results of EVM are stored and AND

operation is performed during EVR;
• Output box: where results of EVR are stored and inver-

sion operation is performed during INR;
For the purpose of realizing each step of the FSM, the authors
proposed some primitive operations [12]

Each of these operations can be performed using as many
input and output memristors as desired.

By driving the crossbar’s nano-wires with the right voltages
during each step, it is possible to evaluate a boolean function
in a constant number of steps.

III. SYNTHESIS FLOW AND DSE

As described in [12], FBLC approach implements a boolean
function as a Sum-of-Product (SoP). Thus, the resulting
crossbar has to be configured accordingly to the function’s
minterms.

Boolean
Function

Minterms
Extraction

Minimization ABCSIS

SoP Multilevel
SoP

Synthesis

Crossbar
VHDL project

SimulationStimuli Results

XbarGen

Fig. 3: Synthesis flow.

The proposed synthesis flow is depicted in the Figure 3.
The input of the flow is the target boolean function that is



minimized by using two different synthesis tools (i.e., SIS [16]
and ABC [15] by Berkeley). We exploited two different
tools in order to estimate the impact of different synthesis
parameters and algorithms on the circuit characteristics (i.e.,
performance, area, power consumption, etc.). More in detail,
SIS is exploited for generating 2-levels logical networks while
ABC is exploited for generating multi-levels logical networks.
The result is the boolean function minimized and described as
a set of minterms. As described above, different descriptions
can be obtained.

The subsequent step is the mapping of minimized boolean
function onto a crossbar-based memristor circuit. The tool
XbarGen [13] is able to extract the function minterms from
the generated representation in order to analyze them and build
the corresponding FBLC circuit. The result is a set of VHDL
files modeling the crossbar circuit. Finally, the crossbar VHDL
model can be simulated by using any available logic simulator.

During the mapping process, XbarGen extracts the crossbar
attributes that will be exploited by the proposed formal DSE
approach. Let us first detail those attributes before moving
to the DSE description. They can be divided in two main
categories, namely the workload independent and workload
dependent. Next subsections describe both of them and last
subsection details the formal DSE.

A. Workload independent attributes

The workload independent attributes do not need any sim-
ulation (i.e., we do not have to simulate the crossbar VHDL
model) to be evaluated. They are extracted by XbarGen during
the mapping process and they are formalized as follows:
Number of memristors in the circuit defined by the follow-
ing equation:

Nm =
∑
j

[
2 ∗Nin(lj) +

∑
i

(Nocc(mi, lj)) +
∑
i

(Nlit(mi) ∗ pij) + 2 ∗Nout(lj)

]
(1)

Total area of the circuit defined by the following equation:

Area =
∑
j

{
[2 ∗Nin(lj) + 2 ∗Nout(lj)] ∗

[
1 +

∑
(pij)
i

+Nout(lj)

]}
(2)

Number of crossbars, i.e. NC

Response time of the circuit defined by the following
equation:

RespT ime = TC ∗NC (3)

given that:

• Indexes i and j run on minterms and crossbars respec-
tively

• Nin and Nout are the number of inputs and outputs
respectively;

• Nocc(mi, lj) is the number of occurrence of i-th minterm
in j-th crossbar;

• Nlit(mi) is the number of literals of i-th minterm;
• pij is equal to 1 if the i-th minterm is present in the j-th

crossbar, otherwise it is equal to 0;
• TC is the ‘Latency’ of a Crossbar;
• NC is the Number of Crossbars in the circuit.

B. Workload dependent attributes

The workload dependent attributes require the simulation
of the generated VHDL circuits to be evaluated. In this work,
we consider the power consumption as workload dependent
attributes formalized as:

P =
∑
j

[
Nupj

· Cup +Ndownj
· Cdown

]
(4)

given that:

• index j runs on crossbars;
• Nupj

and Ndownj
are the number of memristors in the

j-th crossbar that switch from ‘0’ to ‘1’ and from ‘1’ to
‘0’ respectively;

• Cup and Cdown are the power consumption of a mem-
ristor switching from ‘0’ to ‘1’ and from ‘1’ to ‘0’
respectively.

It is worth to note that Nupj
and Ndownj

depend on the
applied workload.

C. Formal DSE

The main goal of the proposed DSE is the characteriza-
tion of the synthesized crossbars w.r.t. the above identified
attributes. The idea is to avoid any simulation to speed up
the DSE. Clearly, for the workload independent attributes the
formal DSE is straightforward since it is enough to exploit the
equations (1),(2) and (3).

The challenging issue is determining the actual power
consumption. Even if the power consumption is a workload
dependent attribute, we will show how to compute two bounds
that cannot be exceeded by the actual power consumption:
a worst case bound and a best case bound. It is worth to
emphasize that such bounds will be computed without any
simulation.

Referring to the equation (4), the idea that we exploit is to
identify within the crossbar the elements that do not depend
on actual inputs and manage those which are dependent on
actual inputs. Thus, we can observe - as Figure 4 shows - that
the architecture has a first RESET stage (INA) in which all
the memristor in the circuit are set to ‘1’.

—

A B A B
— — O— O

IN

A B
A B
A B

— —

—

—
—

O—

H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V5

M02M01

M11 M12

H0

H1

V1 V2

1 = ROFF 0 = RON

O = AB +AB +AB = AB ·AB ·AB
Fig. 4: Reset stage.



Therefore, during this stage, we have only the contribution
of Nupj · Cup while, during the rest of the computation,
only Ndownj · Cdown contributes to the power consumption.
Moreover, in both worst and best case scenarios, we consider a
concatenation of executions providing inputs which trigger the
worst and the best case respectively. Bearing in mind this, we
can observe that, whether Ndownj

memristors switch from ‘1’
to ‘0’ during the computation, the RESET phase has to switch
the same number of memristors from ‘0’ to ‘1’. Therefore,
considering both worst and best case, we can assume that the
two contributions are equal:

Nupj
= Ndownj (5)

In order to estimate this contribution let us consider that a
crossbar can be divided in 4 parts, as depicted in the Figure 2-
a. Hence we can assume the following:

• Concerning the green IN box, it is clear that half of
the input memristors are going to switch during each
execution of the circuit. It is worth noting that for each
input xi of the function we have 2 memristors: xi and
xi;

• The same consideration is true for the output memristors,
in the blue OL box.

Therefore such two blocks of memristors can be evaluated,
in terms of switching memristors, independently from the
actual input values.
Thus, we are able to rewrite the equation 5 as follows:

Nupj
= Ndownj

= Nin(lj) +Nout(lj) +Nintj (6)

where:
• Nintj is the number of memristors that belong to the

minterm boxes NAND and AND within the j-th crossbar
that switches during the computation:

Nintj = (NmNAND
+NmAND

)j (7)

Let us now discuss about the remaining orange NAND and
the red AND boxes. The memristors of these parts switch,
accordingly with the actual input values. For them, the goal is
to find the two bounds.

It is worth to highlight that the number of switching
memristors in the AND box depends on which memristors
switch in the NAND box. Therefore, the best and worst cases
are computed by considering only the NAND box.

Bearing in mind that half of the input memristors will
eventually switch 1→ 0 during each execution of the circuit,
in order to find the best and worst input vectors we count,
for each vertical nanowire, the number of memristors in the
NAND box. For each couple of literals xi and xi (vertical
nanowires) we consider, as for the best case, the one that leads
to the minimum number of memristors and, as for the worst
case, the one that leads to the maximum.

Finally, we compute how many AND memristors will
switch using the selected input vectors: since the minterms
box is performing a NAND operation, if a minterm has at
least one literal among those in the selected input vectors,

the corresponding memristor in the AND box will not switch,
otherwise it will.

It is worth to note that, in order to compute
(NmNAND

, NmAND
)worst/best we do not need the truth

table of the function; we only count the number of
memristors in the NAND box in order to find the best and
the worst combinations of inputs and then we verify if each
minterm will be whether ‘0’ or ‘1’. Therefore the algorithm
has a linear complexity.

This is a great improvement compared to doing a simulation
with all the combinations of inputs that would lead to a
complexity θ(2n), with n the number of inputs

The algorithm 1 realizes what we explained so far.

Data: Literals, Minterms
Result: (NmNAND , NmAND )worst/best

for each crossbar j do
for each input (xi, xi) do

if xi.NandOccurrence > xi.NandOccurrence then
vectorWorstCase ← xi;
vectorBestCase ← xi;
(NmNAND )worst += xi.NandOccurrence;
(NmNAND )best += xi.NandOccurrence;

else
vectorWorstCase ← xi;
vectorBestCase ← xi;
(NmNAND )worst += xi.NandOccurrence;
(NmNAND )best += xi.NandOccurrence;

end
end
for each minterm m do

if m does not contain any element of vectorWorstCase then
(NmAND )worst = (NmAND )worst + 1;

end
if m does not contain any element of vectorBestCase then

(NmAND )best = (NmAND )best + 1;
end

end
end

Algorithm 1: Get best and worst case.

Let us resort to the example of Figure 5 to illustrate the
above considerations. It is easy to see that, depending on

A B A B
— —

O
—

O

IN

A B

A B

A B

— —

—

O
—

H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V5

Fig. 5: FBLC example.

the chosen input vector, the number of switching memristors
changes. The table I shows the different scenarios depending



on the applied input vectors.
- From 1st to 4th column we have input vectors;
- In the “NAND box” column the nanowire coordinates of the
switching NAND memristors are reported in the form vX-hY;
- In the “AND box” column the nanowire coordinates of the
switching AND memristors are reported in the form vX-hY;
- In the “Tot” column the sum of the two previous columns
is reported.

A B A B NAND box AND box Tot
0 0 1 1 v0-h3, v1-h1, v1-h3 v4-h2 4
0 1 1 0 v0-h3, v3-h2 v4-h1 3
1 0 0 1 v1-h1, v1-h3, v2-h1, v2-h2 // 4
1 1 0 0 v2-h1, v2-h2, v3-h2 v4-h3 4

TABLE I: Switching memristors.

The worst case is estimated by choosing the input vector
that makes switch the maximum number of memristors in the
NAND box, like explained so far. In the example, the tool
selects the inputs “1001” that make NmNAND

be equal to 4.
Then NmAND

is also calculated for that particular case (0 in
the example).

The best case is estimated by choosing the input vector
that makes switch the minimum number of memristors in the
NAND box. In the example above, the tool selects the inputs
“0110” that make NmNAND

be equal to 2. Then NmAND
is

also calculated for that particular case (1 in the example).
Error estimation: Since without a simulation it is not

possible to know how many AND memristors would have
switched if the tool had chosen another input vector, we per-
form an error estimation. Observing the example in Figure 6
and the relative table II, the importance of estimating the error
become clear.

—
B—

—A
—

A B A B
— —

—INB
A

O1
—

H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V5

A
B

O2
—

O1
—

O2
—O1 O2

—

V6 V7

H5

H6

H7

Fig. 6: FBLC estimating error.

In the worst case, the tool would choose the input vector
“0011” that makes switch 4 NAND memristor and 2 AND
ones; however the real worst case is given by the input vector
“1100”. Indeed, despite it would make switch only 2 NAND
memristor, it would make switch 6 AND memristors.

A B A B NAND box AND box Tot
0 0 1 1 v0-h2, v0-h3, v1-h1, v1-h3 v4-h4, v6-h5 6
0 1 1 0 v0-h2, v0-h3, v3-h5 v4-h1, v4-h4, v6-h1 6
1 0 0 1 v1-h1, v1-h3, v2-h4 v4-h2, v6-h2, v6-h5 6
1 1 0 0 v2-h4, v3-h5 v4-h1, v4-h2, v4-h3, v6-h1,v6-h2, v6-h3 8

TABLE II: Switching memristors.

In the best case, the tool would choose the input vector
“1100” that make switch only 2 NAND memristors but 6 AND
ones; however, this is not the real best case. Indeed, despite
the other input vectors would make switch more NAND
memristors, they would make switch less AND memristors
producing better results.

Therefore we estimate the error in a conservative manner
as follows:

- in the worst case is the difference between total number
of AND memristors and the actual number of switched AND
memristors:

Eworst = NmANDmax
−NmAND (8)

- in the best case is just NmAND
:

Ebest = NmAND (9)

In both best and worst cases the error is overestimated.
Referring to the above example (Figure 6) we note that:

- Eworst is actually equal to 8− 6 = 2 but the tool will
overestimate it:

Eworst = NmANDmax
−NmAND

= 8− 2 = 6.

- Ebest is actually equal to 2 but the tool will overestimate it:

Ebest = NmAND
= 6.

Moreover, we must make another observation about the
estimation of the power consumption in presence of more
crossbars: in both best and worst cases we assume that each
crossbar of the circuit gets as input the vector that triggers the
best (worst) case. Nevertheless, each crossbar’s input depends
on the output of the previous one which has a low probability
to produce exactly the output we estimated.

In conclusion we estimate the power consumption bounds
in both best and worst cases as follows:

P = (Cup + Cdown) ·
∑
j

[
Nin(lj) +Nout(lj) +Nintj

]
(10)

where:
• Nintj depends on the input vector and can be estimated

in both best and worst cases.

IV. EXPERIMENTAL RESULTS

This section provides experimental results achieved by the
flow discussed in section III. A bunch of combinatorial circuits
are used as benchmarks, details about circuits characteristics
are available in [17]. Tables III and IV report the achieved
results for the single crossbar and for the multiple crossbars
respectivley.

For each circuit, Tables report the number of inputs (IN),
minterms, memristors (Nm), the area, the estimated power



Exp. IN Single Crossbar
Minterms Nm Area Time Xbars Pworst Eworst Pbest Ebest DSE Time (ms) SimTime Overhead

xor5 5 16 108 216 7 1 46 16 47 1 2,18945 1286,08%
squar5 5 30 261 1014 7 1 92 85 88 4 8,25324 669,46%
rd53 5 32 192 576 7 1 90 32 76 6 3,66841 1159,77%
con1 7 9 50 216 7 1 23 8 21 2 1,93385 992,99%
5xp1 7 70 385 2754 7 1 168 74 159 16 8,86976 919,19%

Z5xp1 7 128 1506 4726 7 1 466 575 471 6 183,385 210,45%
rd73 7 141 1001 2900 7 1 486 141 417 43 19,3369 1260,28%

misex1 8 18 132 780 7 1 60 32 43 3 4,22439 751,92%
rd84 8 255 2475 6240 7 1 1036 411 1029 1 120,229 543,06%
ex5 8 256 9810 45440 7 1 1129 7586 1125 30 32241,5 11,66%

9sym 9 87 629 1780 7 1 277 86 268 2 10,8552 1347,78%
clip 9 166 1078 4816 7 1 506 164 417 9 24,1155 1098,00%

Z9sym 9 420 4220 8440 7 1 1900 420 1900 0 143,374 790,09%
apex4 9 438 5489 24678 7 1 2002 1716 1775 4 1823,29 82,04%
sao2 10 58 529 1764 7 1 302 78 151 2 10,1846 1170,25%

table3 14 175 2702 10640 7 1 1252 645 805 0 366,519 190,27%
alu4 14 954 8306 42372 7 1 3933 973 3428 28 588,95 441,86%

misex3 14 1426 15559 80696 7 1 8801 1828 4932 2 2618,36 260,61%
b12 15 76 412 4128 7 1 245 75 118 26 11,4098 780,89%

table5 17 158 2566 11136 7 1 1220 606 740 0 353,965 185,95%
duke2 22 87 1103 11934 7 1 618 242 247 4 63,8902 426,18%
cordic 23 1206 19625 60450 7 1 9789 1204 8634 2 1797,42 591,21%
misex2 25 29 303 4128 7 1 169 27 110 3 11,1904 562,40%

vg2 25 110 980 7854 7 1 534 110 350 14 23,0245 1030,28%
apex2 39 1035 15610 85198 7 1 12719 1075 2068 252 1292,45 591,65%

seq 41 1066 14502 167504 7 1 9831 1457 3222 8 2022,78 327,43%
apex1 45 206 3018 44000 7 1 1175 1103 776 36 824,237 97,92%
apex3 54 280 3498 68848 7 1 1393 1019 1090 4 707,142 132,90%
e64 65 65 2470 34060 7 1 2212 65 195 2 81,5855 802,18%

apex5 117 1160 8004 495908 7 1 5150 1184 1844 174 940,781 274,71%
o64 130 65 457 17554 7 1 261 65 196 65 69,1192 151,54%

TABLE III: Experiments Single Crossbar
Exp. IN Multiple Crossbars

Minterms Nm Area Time Xbars Pworst Eworst Pbest Ebest DSE Time (ms) SimTime Overhead
xor5 5 22 156 894 42 6 80 20 70 14 7,20985 536,45%
rd53 5 58 414 4790 56 8 215 56 183 40 20,3347 468,59%

squar5 5 71 515 6546 56 8 274 69 228 56 25,9582 476,89%
con1 7 19 139 804 35 5 71 19 62 13 6,58962 524,34%
5xp1 7 140 985 23218 70 10 512 133 438 98 61,8654 418,40%
rd73 7 155 1135 27178 91 13 601 146 502 114 75,499 398,81%

Z5xp1 7 199 1430 38432 84 12 751 191 630 142 96,445 399,95%
misex1 8 72 504 7314 49 7 264 68 226 54 23,0975 511,97%

rd84 8 374 2756 138236 119 17 1459 354 1214 271 268,565 261,77%
ex5 8 1224 8648 1228506 105 15 4544 1188 3776 860 1761,63 141,35%
clip 9 202 1514 42884 77 11 802 196 667 151 108,394 377,48%

9sym 9 239 1773 66596 98 14 936 231 776 170 140,665 342,63%
Z9sym 9 266 1986 66928 112 16 1052 258 869 193 156,091 340,54%
apex4 9 3151 22589 8125002 133 19 11913 3045 9839 2208 11209,4 129,68%
sao2 10 168 1280 32520 98 14 684 157 567 128 84,4688 405,69%
alu4 14 1464 10734 1734366 154 22 5695 1415 4692 1068 2775,75 123,68%

misex3 14 1561 11429 1757416 161 23 6072 1510 4997 1150 2933,87 123,98%
table3 14 2152 15562 3153604 161 23 8294 2094 6777 1603 4743,15 142,25%
b12 15 89 649 12954 56 8 341 85 289 66 37,3648 436,55%

table5 17 1980 14467 2415332 175 25 7774 1941 6296 1544 3939,18 143,80%
duke2 22 673 5015 381946 147 21 2686 651 2199 521 692,15 205,72%
cordic 23 111 865 16618 119 17 459 100 390 84 54,124 417,33%
misex2 25 121 921 19698 77 11 494 118 405 96 49,9148 479,33%

vg2 25 208 1564 43002 140 20 821 198 694 149 113,663 373,55%
apex2 39 445 3627 134188 203 29 1986 439 1597 395 354,094 287,99%

seq 41 2413 17877 3580692 203 29 9599 2357 7790 1869 5833,47 155,45%
apex1 45 2626 19093 4823786 189 27 10151 2566 8315 1939 7179,4 146,71%
apex3 54 2240 16127 4110536 140 20 8510 2178 7023 1584 5738,37 130,22%
e64 65 1437 12134 416608 448 64 6754 1437 5349 1406 1535,65 262,27%

apex5 117 1293 9630 1239620 147 21 5346 1276 4197 1189 2412,64 120,04%
o64 130 130 1162 67872 56 8 645 130 517 130 159,803 180,74%

TABLE IV: Experiments Multiple Crossbars

consumption from Pworst downto Pbest including the error
estimations (Eworst and Ebest). Moreover, in columns DSE
Time and SimTime Overhead we report respectively the exe-
cution time of the proposed formal DSE and the overhead of a
single simulation of the synthesized VHDL circuit compared
to DSE. Simulations were carried out using ModelSim 10.3.
As shown in the tables, the cost of performing a full simulation
to determine the power consumption is in average very high:
about 617% for the single crossbar and about 300% for the
multiple crossbar. This clearly prove the benefits of using our
approach instead of a full simulation. The difference between
single and multiple crossbars can be explained by the fact that
multiple crossbars are more complex to manage for our tool,
so that the execution time is slightly higher than for the single
crossbar.

It is worth emphasizing that, on a given circuit, the simula-
tion is performed on a single workload while the formal DSE
execution is actually independent of any specific workload.
Thus, the formal DSE takes only one execution in order to
perform the estimation of both best and worst cases of power
consumption, along with an error estimation. The simulation
approach, on the other hand, require a full simulation per

each workload to find actual best and worst cases of power
consumption.

V. CONCLUSION

In this paper, we presented a formal DSE approach avoiding
simulation campaigns. We proposed an algorithmic method
to estimate both workload independent attributes and work-
load dependent ones. In particular, we estimate the power
consumption of a given memristor-based crossbar architecture
providing both a lower and an upper bounds and the related
error estimation. As part of future work, we aim to compare
memristor architectures against “classic” CMOS ones.

REFERENCES

[1] ITRS 2013 report. [Online]. Available: http://www.itrs.net/
[2] B. Hoefflinger, “Chips 2020: A Guide to the Future of Nanoelectronics”,

The Frontiers Collection, Springer Berlin Heidelberg, 2012, pp. 421–
427

[3] J. McPherson, “Reliability trends with advanced CMOS scaling and the
implications for design”, in IEEE Custom Integrated Circuits Confer-
ence, 2007, pp. 405–412

[4] S. Borkar, “Design perspectives on 22Nm CMOS and beyond”, in
Proceedings of the 46th Annual Design Automation Conference, 2009,
pp. 93-94

[5] G. Gielen, et al., “Emerging yield and reliability challenges in nanometer
CMOS technologies”, in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1322-1327, 2008

[6] L. Chua, ‘Memristor-the missing circuit element’, IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971

[7] R. Waser et al., “Redox-based resistive switching memories–nanoionic
mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 2009

[8] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013

[9] J. R. Burger et al., “Variation-tolerant computing with memristive reser-
voirs,” IEEE/ACM International Symposium in Nanoscale Architectures
(NANOARCH), 2013, pp. 1–6.

[10] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, pp. 389–395, 2011.

[11] S. Hamdioui, et al., ‘Memristor based computation-in-memory architec-
ture for data-intensive applications’, in Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 1718-1725, 2015

[12] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui,
Koen Bertels, “Fast Boolean Logic Mapped on Memristor Crossbar”,
IEEE International Conference on Computer Design (ICCD), pp. 335-
342, 2015.

[13] M. Traiola, M. Barbareschi, A. Mazzeo and A. Bosio, “XbarGen:
A memristor based boolean logic synthesis tool,” 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC),
Tallinn, Estonia, 2016, pp. 1-6.

[14] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[15] ABC User Guide. [Online]. Available:
http://www.eecs.berkeley.edu/˜alanmi/abc/

[16] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P.R. Stephan, Robert K. Brayton and Alberto L.
Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit Syn-
thesis”, EECS Department University of California, Berkeley Technical
Report No. UCB/ERL M92/41 1992

[17] Saeyang Yang, “Logic Synthesis and Optimiza-
tion Benchmarks User Guide”. [Online]. Available:
http://ddd.fit.cvut.cz/prj/Benchmarks/LGSynth91.pdf

View publication statsView publication stats

https://www.researchgate.net/publication/317244969

