Marcello Traiola

Mario Barbareschi
email: mario.barbareschi@unina.it

Alberto Bosio

Formal Design Space Exploration for memristor-based crossbar architecture

Keywords: Memristor crossbar, Design Space Exploration, Boolean Functions, Circuit Synthesis

The unceasing shrinking process of CMOS technology is leading to its physical limits, impacting several aspects, such as performances, power consumption and many others. Alternative solutions are under investigation in order to overcome CMOS limitations. Among them, the memristor is one of promising technologies. Several works have been proposed so far, describing how to synthesize boolean logic functions on memristors-based crossbar architecture. However, depending on the synthesis parameters, different architectures can be obtained. Design Space Exploration (DSE) is therefore mandatory to help and guide the designer in order to select the best crossbar configuration. In this paper, we present a formal DSE approach. The main advantage is that it does not require any simulation and thus it avoids any runtime overheads. Preliminary results show the huge gain in runtime compared to simulation-based DSE.

I. INTRODUCTION

Today's computing devices are based on the CMOS technology, that is the subject of the famous Moore's Law [START_REF]ITRS 2013 report[END_REF], predicting that the number of transistors in an integrated circuit will be doubled every two years. Despite the advantages of the technology shrinking, we are facing the physical limits of CMOS. Among the multiple challenges arising from technology nodes lower than 20 nm, we can highlight the high leakage current (i.e., high static power consumption), reduced performance gain, reduced reliability, complex manufacturing process leading to low yield, complex testing process, and extremely costly masks [START_REF] Hoefflinger | Chips 2020: A Guide to the Future of Nanoelectronics[END_REF], [START_REF] Mcpherson | Reliability trends with advanced CMOS scaling and the implications for design[END_REF], [START_REF] Borkar | Design perspectives on 22Nm CMOS and beyond[END_REF], [START_REF] Gielen | Emerging yield and reliability challenges in nanometer CMOS technologies[END_REF].

Additionally, the expected never-ending increasing of performances is indeed no longer true. Looking in more detail, the classical computer architectures, either Von Neumann or Harvard, divide the computational unit (i.e., CPU) from the storage element (i.e., memory). Therefore, data have to be transferred inside the computational element in order to be processed and then transferred back to be stored. The main problem of this paradigm is the bottleneck due to the data transfer time limited by the bandwidth. For instance, transferring one TeraByte at the rate of 1Gbit/second requires more than two hours.

Many new technologies are under investigation, among them the memristor is a promising one [START_REF] Chua | Memristor-the missing circuit element[END_REF]. Indeed, being a non-volatile device able to act as both storage and information processing unit, the memristor presents many advantages: CMOS process compatibility, lower cost, zero standby power, nanosecond switching speed, great scalability, high density and non-volatile capability [START_REF] Waser | Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[END_REF], [START_REF] Yang | Memristive devices for computing[END_REF]. Thanks to its nature (i.e., computational as well as storage element), the memristor is exploited in different kind of applications, such as neuromorphic systems [START_REF] Burger | Variation-tolerant computing with memristive reservoirs[END_REF], non-volatile memories [START_REF] Kim | A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications[END_REF], computing architectures for data-intensive applications [START_REF] Hamdioui | Memristor based computation-in-memory architecture for data-intensive applications[END_REF].

A fundamental component of any kind of computing architecture is the implementation of boolean logic functions. In [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF], the authors proposed a methodology for the synthesis of boolean logic functions on a memristor-based crossbar. Their work showed that is possible to implement any kind of boolean function on a memristor-based crossbar. In our previous work, we illustrated a methodology to automatically map an arbitrary boolean function to a memristor-based crossbar implementation [START_REF] Traiola | XbarGen: A memristor based boolean logic synthesis tool[END_REF]. By applying different minimization tools and different synthesis parameters, we also showed that each obtained architecture is strongly dependent on them. Design Space Exploration (DSE) is therefore mandatory to help and guide the designer in order to select the best architecture.

Bearing in mind such consideration, in this paper, we present a formal DSE approach that aims to calculate interesting circuits attributes avoiding simulation campaigns. We propose an algorithmic method to estimate both workload independent attributes (e.g. performance, area, etc.) and workload dependent ones. In particular, we estimate the power consumption of a given memristor-based crossbar architecture (the Fast Boolean Logic Circuit [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF]) providing both a lower and an upper bound for the power consumption and an error estimation.

The remainder of the paper is structured as following. Section II presents the state of the art and provides the required background about the memristor-based computation. Section III presents the synthesis flow and the design space exploration framework, while the Section IV gives the experimental results. Finally, the Section V draws the conclusions.

II. BACKGROUND AND STATE-OF-THE-ART

In this section we provide the basics about the memristor modeling, as well as the way the memristor can be exploited to implement an arbitrary boolean function.

A. Memristor model

The memristor is a non-linear electrical component characterized by a variable electrical resistance, which value depends on the history of the charge flowed through the device itself. As we aim to implement a digital circuit, we refer to the memristor Voltage-Current relation depicted in Figure 1, detailed in [START_REF] Snider | Computing with hysteretic resistor crossbars[END_REF], as the best solution for modeling the memristor's behavior (i.e., thanks to the ideal response to a pulse-wave). Such a model considers that the voltage applied to the memristor's terminals does not change the device resistance until it crosses one of the two thresholds V th . In the adopted ideal model, they are symmetrically defined.

We resort to the Snider Boolean Logic (SBL) [START_REF] Snider | Computing with hysteretic resistor crossbars[END_REF] convention whereby a lower resistance (steeper curve denoted as R ON) represents a 0-logic while an higher resistance (lower slope curve denoted as R OFF) represents a 1-logic.

Two basic operations can be performed, defined as SET and RESET. The former allows to program the memristor to R ON , hence at 0-logic, while the latter performs the memristor switching to R OFF , that corresponds to 1-logic. The Figure 1 depicts SET and RESET operations as described by Xie et al. in [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF].

RON = 0 ROFF = 1 V I -Vth

Vth

Memristor ideal Voltage-Current relation [START_REF] Snider | Computing with hysteretic resistor crossbars[END_REF]

B. Fast Boolean Logic Circuits

Snider proposed in [START_REF] Snider | Computing with hysteretic resistor crossbars[END_REF] a design methodology to implement boolean functions on memristor-based crossbar. The proposed approach was then improved by Xie et al. in [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF]. Let us briefly recall their proposition referring to it as Fast Boolean Logic Circuit (FBLC). First, the logic circuit requires that the Boolean function is expressed as sum of products:

f = M 1 + M 2 + ... + M n = M 1 • M 2 • • • • • • M n [[NAND AND NOT [
Then, as Figure 2-a shows, FBLC is divided in blocks, useful to accomplish FSM's steps (Figure 2-b Below, the description of the blocks:

• Input box: where inputs are stored during the RI step;

• NAND box: where minterms are configured during CFM and evaluated during EVM; • AND box: where results of EVM are stored and AND operation is performed during EVR; • Output box: where results of EVR are stored and inversion operation is performed during INR; For the purpose of realizing each step of the FSM, the authors proposed some primitive operations [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF] Each of these operations can be performed using as many input and output memristors as desired.

By driving the crossbar's nano-wires with the right voltages during each step, it is possible to evaluate a boolean function in a constant number of steps.

III. SYNTHESIS FLOW AND DSE

As described in [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF], FBLC approach implements a boolean function as a Sum-of-Product (SoP). Thus, the resulting crossbar has to be configured accordingly to the function's minterms.

XbarGen

Fig. 3: Synthesis flow.

The proposed synthesis flow is depicted in the Figure 3. The input of the flow is the target boolean function that is minimized by using two different synthesis tools (i.e., SIS [START_REF] Sentovich | SIS: A System for Sequential Circuit Synthesis[END_REF] and ABC [15] by Berkeley). We exploited two different tools in order to estimate the impact of different synthesis parameters and algorithms on the circuit characteristics (i.e., performance, area, power consumption, etc.). More in detail, SIS is exploited for generating 2-levels logical networks while ABC is exploited for generating multi-levels logical networks. The result is the boolean function minimized and described as a set of minterms. As described above, different descriptions can be obtained.

The subsequent step is the mapping of minimized boolean function onto a crossbar-based memristor circuit. The tool XbarGen [START_REF] Traiola | XbarGen: A memristor based boolean logic synthesis tool[END_REF] is able to extract the function minterms from the generated representation in order to analyze them and build the corresponding FBLC circuit. The result is a set of VHDL files modeling the crossbar circuit. Finally, the crossbar VHDL model can be simulated by using any available logic simulator.

During the mapping process, XbarGen extracts the crossbar attributes that will be exploited by the proposed formal DSE approach. Let us first detail those attributes before moving to the DSE description. They can be divided in two main categories, namely the workload independent and workload dependent. Next subsections describe both of them and last subsection details the formal DSE.

A. Workload independent attributes

The workload independent attributes do not need any simulation (i.e., we do not have to simulate the crossbar VHDL model) to be evaluated. They are extracted by XbarGen during the mapping process and they are formalized as follows: Number of memristors in the circuit defined by the following equation:

Nm = j 2 * Nin(lj) + i (Nocc(mi, lj)) + i (Nlit(mi) * pij) + 2 * Nout(lj) (1)
Total area of the circuit defined by the following equation:

Area = j [2 * N in (l j) + 2 * N out (l j)] * 1 + (p ij) i + N out (l j) (2)
Number of crossbars, i.e. N C Response time of the circuit defined by the following equation:

RespT ime = T C * N C (3)
given that:

• Indexes i and j run on minterms and crossbars respectively • N in and N out are the number of inputs and outputs respectively; • N occ (m i , l j) is the number of occurrence of i-th minterm in j-th crossbar; • N lit (m i) is the number of literals of i-th minterm;

• p ij is equal to 1 if the i-th minterm is present in the j-th crossbar, otherwise it is equal to 0; • T C is the 'Latency' of a Crossbar;

• N C is the Number of Crossbars in the circuit.

B. Workload dependent attributes

The workload dependent attributes require the simulation of the generated VHDL circuits to be evaluated. In this work, we consider the power consumption as workload dependent attributes formalized as:

P = j N upj • C up + N downj • C down (4)
given that:

• index j runs on crossbars;

• N upj and N downj are the number of memristors in the j-th crossbar that switch from '0' to '1' and from '1' to '0' respectively; • C up and C down are the power consumption of a memristor switching from '0' to '1' and from '1' to '0' respectively.

It is worth to note that N upj and N downj depend on the applied workload.

C. Formal DSE

The main goal of the proposed DSE is the characterization of the synthesized crossbars w.r.t. the above identified attributes. The idea is to avoid any simulation to speed up the DSE. Clearly, for the workload independent attributes the formal DSE is straightforward since it is enough to exploit the equations (1),(2) and (3).

The challenging issue is determining the actual power consumption. Even if the power consumption is a workload dependent attribute, we will show how to compute two bounds that cannot be exceeded by the actual power consumption: a worst case bound and a best case bound. It is worth to emphasize that such bounds will be computed without any simulation.

Referring to the equation (4), the idea that we exploit is to identify within the crossbar the elements that do not depend on actual inputs and manage those which are dependent on actual inputs. Thus, we can observe -as Figure 4 shows -that the architecture has a first RESET stage (INA) in which all the memristor in the circuit are set to '1'. Therefore, during this stage, we have only the contribution of N upj • C up while, during the rest of the computation, only N downj • C down contributes to the power consumption. Moreover, in both worst and best case scenarios, we consider a concatenation of executions providing inputs which trigger the worst and the best case respectively. Bearing in mind this, we can observe that, whether N downj memristors switch from '1' to '0' during the computation, the RESET phase has to switch the same number of memristors from '0' to '1'. Therefore, considering both worst and best case, we can assume that the two contributions are equal:

N upj = N downj (5)
In order to estimate this contribution let us consider that a crossbar can be divided in 4 parts, as depicted in the Figure 2a. Hence we can assume the following:

• Concerning the green IN box, it is clear that half of the input memristors are going to switch during each execution of the circuit. It is worth noting that for each input x i of the function we have 2 memristors: x i and x i ; • The same consideration is true for the output memristors, in the blue OL box. Therefore such two blocks of memristors can be evaluated, in terms of switching memristors, independently from the actual input values. Thus, we are able to rewrite the equation 5 as follows:

N upj = N downj = N in (l j) + N out (l j) + N intj (6)
where:

• N intj is the number of memristors that belong to the minterm boxes NAND and AND within the j-th crossbar that switches during the computation:

N intj = (N m N AN D + N m AN D) j (7)
Let us now discuss about the remaining orange NAND and the red AND boxes. The memristors of these parts switch, accordingly with the actual input values. For them, the goal is to find the two bounds.

It is worth to highlight that the number of switching memristors in the AND box depends on which memristors switch in the NAND box. Therefore, the best and worst cases are computed by considering only the NAND box.

Bearing in mind that half of the input memristors will eventually switch 1 → 0 during each execution of the circuit, in order to find the best and worst input vectors we count, for each vertical nanowire, the number of memristors in the NAND box. For each couple of literals x i and x i (vertical nanowires) we consider, as for the best case, the one that leads to the minimum number of memristors and, as for the worst case, the one that leads to the maximum.

Finally, we compute how many AND memristors will switch using the selected input vectors: since the minterms box is performing a NAND operation, if a minterm has at least one literal among those in the selected input vectors, the corresponding memristor in the AND box will not switch, otherwise it will.

It is worth to note that, in order to compute (N m N AN D , N m AN D) worst/best we do not need the truth table of the function; we only count the number of memristors in the NAND box in order to find the best and the worst combinations of inputs and then we verify if each minterm will be whether '0' or '1'. Therefore the algorithm has a linear complexity. This is a great improvement compared to doing a simulation with all the combinations of inputs that would lead to a complexity θ(2 n), with n the number of inputs

The algorithm 1 realizes what we explained so far. Let us resort to the example of Figure 5 to illustrate the above considerations. It is easy to see that, depending on

A B A B - -O -O IN A B A B A B -- - O - H0 H1 H2 H3 H4 V0 V1 V2 V3 V4 V5
Fig. 5: FBLC example.

the chosen input vector, the number of switching memristors changes. The table I shows the different scenarios depending on the applied input vectors.

-From 1 st to 4 th column we have input vectors; -In the "NAND box" column the nanowire coordinates of the switching NAND memristors are reported in the form vX-hY; -In the "AND box" column the nanowire coordinates of the switching AND memristors are reported in the form vX-hY; -In the "Tot" column the sum of the two previous columns is reported.

A B A B NAND box AND box Tot 0 0 1 1 v0-h3, v1-h1, v1-h3 v4-h2 4 0 1 1 0 v0-h3, v3-h2 v4-h1 3 1 0 0 1 v1-h1, v1-h3, v2-h1, v2-h2 // 4 1 1 0 0 v2-h1, v2-h2, v3-h2 v4-h3 4 TABLE I: Switching memristors.
The worst case is estimated by choosing the input vector that makes switch the maximum number of memristors in the NAND box, like explained so far. In the example, the tool selects the inputs "1001" that make N m N AN D be equal to 4. Then N m AN D is also calculated for that particular case (0 in the example).

The best case is estimated by choosing the input vector that makes switch the minimum number of memristors in the NAND box. In the example above, the tool selects the inputs "0110" that make N m N AN D be equal to 2. Then N m AN D is also calculated for that particular case (1 in the example).

Error estimation: Since without a simulation it is not possible to know how many AND memristors would have switched if the tool had chosen another input vector, we perform an error estimation. Observing the example in Figure 6 and the relative table II, the importance of estimating the error become clear. In the worst case, the tool would choose the input vector "0011" that makes switch 4 NAND memristor and 2 AND ones; however the real worst case is given by the input vector "1100". Indeed, despite it would make switch only 2 NAND memristor, it would make switch 6 AND memristors.

A B A B

NAND box AND box Tot 0 0 1 1 v0-h2, v0-h3, v1-h1, v1-h3 v4-h4, v6-h5 6 0 1 1 0 v0-h2, v0-h3, v3-h5 v4-h1, v4-h4, v6-h1 6 1 0 0 1 v1-h1, v1-h3, v2-h4 v4-h2, v6-h2, v6-h5 6 1 1 0 0 v2-h4, v3-h5 v4-h1, v4-h2, v4-h3, v6-h1,v6-h2, v6-h3 8

TABLE II: Switching memristors.

In the best case, the tool would choose the input vector "1100" that make switch only 2 NAND memristors but 6 AND ones; however, this is not the real best case. Indeed, despite the other input vectors would make switch more NAND memristors, they would make switch less AND memristors producing better results.

Therefore we estimate the error in a conservative manner as follows:

-in the worst case is the difference between total number of AND memristors and the actual number of switched AND memristors:

E worst = N m AN Dmax -N m AN D (8)
-in the best case is just N m AN D :

E best = N m AN D (9)
In both best and worst cases the error is overestimated. Referring to the above example (Figure 6) we note that:

-E worst is actually equal to 8 -6 = 2 but the tool will overestimate it:

E worst = N m AN Dmax -N m AN D = 8 -2 = 6.
-E best is actually equal to 2 but the tool will overestimate it:

E best = N m AN D = 6.
Moreover, we must make another observation about the estimation of the power consumption in presence of more crossbars: in both best and worst cases we assume that each crossbar of the circuit gets as input the vector that triggers the best (worst) case. Nevertheless, each crossbar's input depends on the output of the previous one which has a low probability to produce exactly the output we estimated.

In conclusion we estimate the power consumption bounds in both best and worst cases as follows:

P = (C up + C down) • j N in (l j) + N out (l j) + N intj (10)
where:

• N intj depends on the input vector and can be estimated in both best and worst cases.

IV. EXPERIMENTAL RESULTS

This section provides experimental results achieved by the flow discussed in section III. A bunch of combinatorial circuits are used as benchmarks, details about circuits characteristics are available in [START_REF] Yang | Logic Synthesis and Optimization Benchmarks User Guide[END_REF]. Tables III and IV report the achieved results for the single crossbar and for the multiple crossbars respectivley.

For each circuit, Tables report the number of inputs (IN), minterms, memristors (N m), the area, the estimated power As shown in the tables, the cost of performing a full simulation to determine the power consumption is in average very high: about 617% for the single crossbar and about 300% for the multiple crossbar. This clearly prove the benefits of using our approach instead of a full simulation. The difference between single and multiple crossbars can be explained by the fact that multiple crossbars are more complex to manage for our tool, so that the execution time is slightly higher than for the single crossbar.

It is worth emphasizing that, on a given circuit, the simulation is performed on a single workload while the formal DSE execution is actually independent of any specific workload. Thus, the formal DSE takes only one execution in order to perform the estimation of both best and worst cases of power consumption, along with an error estimation. The simulation approach, on the other hand, require a full simulation per each workload to find actual best and worst cases of power consumption.

V. CONCLUSION

In this paper, we presented a formal DSE approach avoiding simulation campaigns. We proposed an algorithmic method to estimate both workload independent attributes and workload dependent ones. In particular, we estimate the power consumption of a given memristor-based crossbar architecture providing both a lower and an upper bounds and the related error estimation. As part of future work, we aim to compare memristor architectures against "classic" CMOS ones.

Fig. 1 :

 1 Fig. 1: Set and Reset operations [12].

Fig. 2 :

 2 Fig. 2: Fast Boolean Logic Circuit.

-Fig. 4 :

 4 Fig. 4: Reset stage.

Fig. 6 :

 6 Fig. 6: FBLC estimating error.

 INvert Results: F need to be inverted to achieve f SO: Send Outputs: the result captured in OL is sent out.

) which are:
	INA: INitialize All the memristors to R OFF ;
	RI: the input block Receives the Inputs;
	CFM: ConFigure all Minterms simultaneously, in parallel;
	EVM: EValuate all Minterms simultaneously (NAND);
	EVR: EValuate Results: F is calculated (AND);
	INR:

 Literals, Minterms Result: (Nm N AN D , Nm AN D) worst/best for each crossbar j do for each input (x i , x i) do if x i .NandOccurrence > x i .NandOccurrence then vectorWorstCase ← x

Data: i ; vectorBestCase ← x i ; (Nm N AN D)worst += x i .N andOccurrence; (Nm N AN D) best += x i .N andOccurrence; else vectorWorstCase ← x i ; vectorBestCase ← x i ; (Nm N AN D)worst += x i .N andOccurrence; (Nm N AN D) best += x i .N andOccurrence; end end for each minterm m do if m does not contain any element of vectorWorstCase then (Nm AN D)worst = (Nm AN D)worst + 1; end if m does not contain any element of vectorBestCase then (Nm AN D) best = (Nm AN D) best + 1; end end end Algorithm 1: Get best and worst case.

TABLE III :

 III Experiments Single Crossbar

	Exp.	IN	Minterms	Nm	Area	Multiple Crossbars Time Xbars Pworst Eworst Pbest Ebest DSE Time (ms) SimTime Overhead
	xor5	5	22	156	894	42	6	80	20	70	14	7,20985	536,45%
	rd53	5	58	414	4790	56	8	215	56	183	40	20,3347	468,59%
	squar5	5	71	515	6546	56	8	274	69	228	56	25,9582	476,89%
	con1	7	19	139	804	35	5	71	19	62	13	6,58962	524,34%
	5xp1	7	140	985	23218	70	10	512	133	438	98	61,8654	418,40%
	rd73	7	155	1135	27178	91	13	601	146	502	114	75,499	398,81%
	Z5xp1	7	199	1430	38432	84	12	751	191	630	142	96,445	399,95%
	misex1	8	72	504	7314	49	7	264	68	226	54	23,0975	511,97%
	rd84	8	374	2756	138236	119	17	1459	354	1214	271	268,565	261,77%
	ex5	8	1224	8648 1228506	105	15	4544	1188	3776	860	1761,63	141,35%
	clip	9	202	1514	42884	77	11	802	196	667	151	108,394	377,48%
	9sym	9	239	1773	66596	98	14	936	231	776	170	140,665	342,63%
	Z9sym	9	266	1986	66928	112	16	1052	258	869	193	156,091	340,54%
	apex4	9	3151	22589 8125002	133	19	11913	3045	9839 2208	11209,4	129,68%
	sao2	10	168	1280	32520	98	14	684	157	567	128	84,4688	405,69%
	alu4	14	1464	10734 1734366	154	22	5695	1415	4692 1068	2775,75	123,68%
	misex3 14	1561	11429 1757416	161	23	6072	1510	4997 1150	2933,87	123,98%
	table3	14	2152	15562 3153604	161	23	8294	2094	6777 1603	4743,15	142,25%
	b12	15	89	649	12954	56	8	341	85	289	66	37,3648	436,55%
	table5	17	1980	14467 2415332	175	25	7774	1941	6296 1544	3939,18	143,80%
	duke2	22	673	5015	381946	147	21	2686	651	2199	521	692,15	205,72%
	cordic	23	111	865	16618	119	17	459	100	390	84	54,124	417,33%
	misex2 25	121	921	19698	77	11	494	118	405	96	49,9148	479,33%
	vg2	25	208	1564	43002	140	20	821	198	694	149	113,663	373,55%
	apex2	39	445	3627	134188	203	29	1986	439	1597	395	354,094	287,99%
	seq	41	2413	17877 3580692	203	29	9599	2357	7790 1869	5833,47	155,45%
	apex1	45	2626	19093 4823786	189	27	10151	2566	8315 1939	7179,4	146,71%
	apex3	54	2240	16127 4110536	140	20	8510	2178	7023 1584	5738,37	130,22%
	e64	65	1437	12134 416608	448	64	6754	1437	5349 1406	1535,65	262,27%
	apex5 117	1293	9630 1239620	147	21	5346	1276	4197 1189	2412,64	120,04%
	o64	130	130	1162	67872	56	8	645	130	517	130	159,803	180,74%

TABLE IV :

 IV Experiments Multiple Crossbars consumption from P worst downto P best including the error estimations (E worst and E best). Moreover, in columns DSE Time and SimTime Overhead we report respectively the execution time of the proposed formal DSE and the overhead of a single simulation of the synthesized VHDL circuit compared to DSE. Simulations were carried out using ModelSim 10.3.