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Abstract—The shrinking process of CMOS technology
is reaching its physical limits, thus impacting on several
aspects, such as performances, power consumption and
many others. Alternative solutions are under investigation
in order to overcome CMOS limitations. Among them, the
memristor is one of the promising technologies. Several
works have been proposed so far, describing how to
implement boolean logic functions employing memristors
in a crossbar architecture. In this paper, we propose a
tool able to automatically map any boolean function to a
memristor based crossbar implementation. The proposed
tool helps to perform a design space exploration to identify
the best implementation w.r.t. performances and area
overhead.

Index terms—Memristor crossbar, Design Space Explo-
ration, Boolean Functions. Circuit Synthesis

I. INTRODUCTION

Today’s computing devices are based on the CMOS tech-
nology, that is the subject of the famous Moore’s Law [1]
predicting that the number of transistors in an integrated circuit
will be doubled every two years. Despite the advantages of
the technology shrinking, we are facing the physical limits
of CMOS. Among the multiple challenges arising from tech-
nology nodes lower than 20 nm, we can highlight the high
leakage current (i.e., high static power consumption), reduced
performance gain, reduced reliability, complex manufacturing
process leading to low yield and complex testing process, and
extremely costly masks [2], [3], [4], [5].

Additionally, the expected never-ending increasing of per-
formances is indeed no longer true. Looking in more detail,
the classical computer architectures, either von Neumann or
Harvard, divide the computational element (i.e., CPU) from
the storage element (i.e., memory). Therefore, data have to
be transferred inside the computational element in order to
be processed and then transferred back to be stored. The
main problem of this paradigm is the bottleneck due to the
data transfer time limited by the bandwidth. For example,
transferring one TeraByte at the rate of 1Gbit/second requires
more than two hours.

Many new technologies are under investigation, among
them the memristor is a promising one [9]. The memristor

is a non-volatile device able to act as both storage and
information processing unit that presents many advantages:
CMOS process compatibility, lower cost, zero standby power,
nanosecond switching speed, great scalability, high density
and non-volatile capability [10], [11]. Thanks to its nature
(i.e., computational as well as storage element), the memristor
is exploited in different kind of applications, such as neuro-
morphic systems [12], non-volatile memories [13], computing
architecture for data-intensive applications [6].

A fundamental component of any kind of computing archi-
tecture is the implementation of boolean logic functions. In
[14], the authors proposed a methodology for the synthesis of
boolean logic function on a memristor crossbar. Their work
showed that is possible to implement any kind of boolean
function on a memristor crossbar. However, the experimental
results have been carried out on a couple of small circuits
only due to the lack of an automated synthesis tool. In this
paper, we aim to extend the work of [14] by presenting a tool
able to automatically map any boolean function to a memristor
based crossbar implementation. Moreover, we investigate the
impact of different synthesis optimization parameters on the
memristor crossbar to evaluate area and performances.

The remainder of the paper is structured as following.
Section II presents the state of the art and provides the required
background on the memristor based computation. Section III
details the proposed memristor and crossbar model as well
as the synthesis methodology, while the Section IV gives
the experimental results. Finally, the Section V draws the
conclusions.

II. BACKGROUND AND STATE OF THE ART

In this section we provide the basics about the memristor
modeling, as well as the way how the memristor can be
exploited to implement a given boolean function.

A. Memristor model

A memristor is a non-linear electrical component whose
electrical resistance is not constant but depends on the history
of the charge flowed through the device itself. Since we intend
to implement a digital circuit, we refer to the memristor
Voltage-Current relation depicted in Figure 1, detailed in [8],
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as the best solution for modeling the memristor’s behavior
(i.e., thanks to the ideal response to a pulse-wave). Thus, as
the Figure 1 shows, the voltage applied to the memriristor’s
terminals does not change its resistance until it crosses a
threshold. In the adopted ideal model, the upper and the lower
thresholds have the same absolute value.

We resort to the Snider Boolean Logic (SBL) [8] convention
whereby a lower resistance (steeper curve denoted as Ron)
represents a logic ‘0’ while an higher resistance (lower slope
curve denoted as Ropp) represents a logic ‘1°.

Two basic operations can be performed, defined as SET
and RESET. The first one allows to program the memristor to
Ron and thus at logic ‘0’, while the second one programs the
memristor to Ropp that corresponds to logic ‘1’. The Figure
1 depicts SET and RESET operations as described by Xie et
al. in [14]

I Ron=0

-Vth \
Rorr=1 Vih

Memristor ideal Voltage-Current relation [8]
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Figure 1. Set and Reset operations [14]

B. Fast Boolean Logic Circuits

Snider proposed in [8] a design methodology for memristor
crossbar that aimed to implement boolean functions. This
design was then improved by Xie et al. in [14]. Let us
briefly recall their proposition referring to it as Fast Boolean
Logic Circuit (FBLC). First, the logic circuit requires that the
Boolean function is expressed in the SOP format:

f=M +My+ ..+ My=M M- I,
I NANI:;«ND I

NOT

Then, as Figure 2-a shows, FBLC is divided in blocks,
useful to accomplish FSM’s steps (fig 2-b) which are:

INA: initialize all the memristors to Rogg;
RIL: the input block receives the inputs;

CFM configure all minterms simultaneously, in parallel;
EVM: evaluate all minterms simultaneously (NAND);
EVR: evaluate results: f is calculated (AND);

INR: invert results: f need to be inverted to achieve f
SO: send outputs: the result captured in OL is sent out.

Figure 2. Fast Boolean Logic Circuit

Below, the description of the blocks:

« input block, where inputs are stored during the RI step;

o minterms block, where minterms are configured during
CFM and evaluated during EVM;

o AND block, where results of EVM are stored and AND
operation is performed during EVR;

« output block, where results of EVR are stored and inver-
sion operation is performed during INR;

For the purpose of realizing each step of the FSM, the authors
proposed some primitive operations that we summarize in
Figure 3.

Each of these operations can be performed using as many
input and output memristors as desired.

NAND (at least one input 0)

AND (at least one input 0)

Figure 3. FBLC primitive operations

By driving the crossbar’s nano-wires with the right voltages
during each step, it is possible to calculate a boolean function
in a constant number of steps. We report below in Figure 4 an
example of crossbar for a simple 2 inputs / 1 output function,
built following the FBLC approach.
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O=AB+AB+AB=AB-AB-AB

Figure 4. FBLC example

III. TOWARDS AUTOMATIC CROSSBAR SYNTHESIS

Due to the lack of an automated process of translation from
a given boolean function to a memristor based crossbar archi-
tecture, deeply investigating about memristor based crossbar
circuits turns out to be really hard to accomplish. Therefore,
in order to overcome these problems, we developed XbarGen.

XbarGen is a command line tool written in C++ which,
starting from a boolean function described in the Synopsys
equation format - EQN - (fig 5), executes the mapping
to a memristor based crossbar architecture and produces a
schematic view of the crossbar(s).

INORDER = a b c;
OUTORDER = ol ;

Figure 6. Function’s levels

Second, the tool performs a mapping to one or more
crossbars depending on how many levels it finds. Mapping
to a crossbar means that inputs, outputs and related minterms
of each level are translated into a FBLC, as explained in [14]
and briefly reminded above. It is worth noting that, when more
crossbars are produced, they must be connected together in
series, as proposed by Snider in [8] and depicted in figure 7.
Consequently, the latency of the circuit grows proportionally
to the number of serially connected crossbars.
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n5 = !b *x c¢; INORDER = a b c;

n6 = a * !n5; OUTORDER = ol ;

n7 = b x lc; ol = laxbx!c +

n8 = !'n5 * !n7; lax!bxc + ax!c + axb;
n9 = !a x !'n8;

ol = n6 + n9;

Figure 5. Synopsys equation format (EQN)

First, the tool operates an analysis of the given function.
As the figure 5 shows, it is possible either that a function’s
output depends directly on its inputs either that it depends on
“intermediate values”, which indeed depends on inputs.

Thus, we will call level a set of inputs and outputs such
that:

e inputs are independent from one another
« each output depends only on inputs

In this way we are able to describe a boolean function as a
set of levels each one dependent from one another (figure 6)
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Figure 7. Snider Boolean Logic Circuit

IV. EXPERIMENTS AND RESULTS

This section provides the experimental results achivied by
the proposed synthesis tool and the adopted crossbar model.
We also compare the proposed approach with the state of the
art.
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bmark Inputs

Chakraborti et al. [7]

Single Crossbar

Multiple Crossbars Multiple Crossbars (optimized)

A. Experiments

M, [OP, [ M, | OP || Nouin | Nowem | A C [ Ne [ Txoc Nonin | Noven | A C [ No | Txio Nonin | N | A C [ Ne | Txio
1d5311 5 |7 |58 15 |34 6 13 9% 71 | 440771 16 120 | 492 56 |8 | 13,1694 || 11 87 378 35 |5 | 9.26288
1d5312 5 |8 |59 17 |35 20 132 264 7|1 | 571666 27 203 1318 49 |7 | 17,8544 || 25 191 1108 49 |7 | 17,5566
rd53f3 5 (7 |4 1 |3 16 108 216 71 72753 22 156 | 894 2 |6 |155731 || 13 93 326 2 |6 | 10,0649
xor5_d 5 |7 |4 1 |3 16 108 216 71 |688398 22 156 | 894 2 |6 | 144109 | 13 93 326 2 |6 | 109131
conlfl 7 |8 |39 17 |47 5 37 98 71 |411653 3 105 | 338 9 |7 | 17004 |9 69 242 28 |4 | 966641
con2f2 7 (9 |47 18 |47 6 38 96 711 | 471900 16 122 | 490 49 [7 | 18,7644 || 10 74 284 28 |4 | 9,93731
7311 7 [8 |8 8 |48 » 330 704 71 10,9064 113 | 851 15232 |98 | 14 | 92,7335 || 80 606 | 9354 70 | 10 | 69,9187
rd732 7 |7 |57 3 |49 64 528 1056 71 | 140526 34 244 1842 56 |8 | 25,8204 || 19 139 | 706 2 |6 | 127191
rd7313 7 |7 [106 |25 |46 35 275 592 71 |978765 59 459 | 4186 91 |13 | 39,1519 || 40 312 | 2212 63 |9 | 270125
newilld | 8 |11 | 104 |33 |50 7] 177 132 7|1 | 602758 51 401 3040 91 | 13 | 362447 || 23 177 | 884 70 | 10 | 16,5744
newtagd 8 |7 |63 14|51 14 107 288 711 | 535582 24 192|900 77 |11 | 189949 || 10 78 260 35 |5 | 882142
rd84f1 8 |8 |9 21 |57 120 | 1098 | 2196 7|1 | 324858 188 | 1418 | 37746 | 119 | 17 | 163,551 || 144 | 1082 | 26978 | 84 | 12 | 126,552
rd84f2 8 |7 |63 15 |57 128 | 1170 | 2340 71 | 285734 40 288 | 2892 56 |8 | 303401 || 22 162 1028 2 |6 | 144034
8413 8 |7 |62 4 |56 1 27 54 7|1 | 352854 7 63 126 49 |7 | 124683 | 7 63 294 21 |3 | 7.68629
1d84T4 8 |10 | 135 |33 |57 162 | 1476 | 2952 7|1 | 42,7301 176 | 1336 | 34468 | 119 | 17 | 158,735 || 142 | 1082 | 26504 | 84 | 12 | 130,351
maxd6.d | 9 |28 | 456 | 150 | 72 47 475 980 71 10,6472 185 | 1379 | 37264 | 112 | 16 | 210,26 || 156 | 1188 | 30628 | 98 | 14 | 141,284
520211 10 |9 |87 |46 |73 10 124 264 71 |57189 41 323 | 2320 91 |13 | 27.69 || 39 300 | 249% 70 | 10 | 26,6478
sa02f2 10 |9 [179 |46 |83 20 242 134 7|1 | 661963 60 474 | 5226 98 | 14 | 49.9699 || 45 345 | 3974 63 |9 | 361185
520213 10 |9 | 149 |34 |71 92 914 2068 7|1 | 230123 130 | 1002 | 18000 | 126 | 18 | 105,365 || 80 628 | 9160 84 | 12 | 65,3744
sa02f4 0 [9 |159 |32 |69 85 398 1914 7T | 248451 137 | 1051 | 19684 | 133 | 19 | 11,094 || 83 651 9810 84 | 12 | 66,9386
symi0_d | 10 |11 | 196 |40 |70 837 | 9229 | 18458 |7 |1 | 592392 639 | 4721 | 372748 | 154 | 22 | 887,967 || 466 | 3494 | 240148 | 119 | 17 | 625,83
481 d 16 |5 | 137 |26 | 107 || 1547 | 21699 | 52666 |7 |1 | 247655 657 | 5033 | 292290 | 203 | 29 | 878,071 || 427 | 3253 | 177764 | 161 | 23 | 508,84
5xpl 7 |14 [283 |84 |73 70 385 2754 711 ]193511 140 [ 985 [ 23218 |70 |10 | 171,619 | 101 | 740 13030 [ 63 |9 | 86,1893
alu2 10 |12 | 1030 | 284 | 148 || 257 | 2282 | 8448 7|1 | 106,399 404 | 3100 | 74522 | 280 | 40 | 425049 || 363 | 2767 | 71596 | 217 | 31 | 31924
alud 14 |8 | 3634 | 642 | 334 || 1791 | 19947 | 79200 |7 |1 | 4330,92 740 | 5706 | 199562 | 294 | 42 | 548015 || 657 | 5061 | 191338 | 238 | 34 | 396888
apex| 45 |12 | 7975 | 1626 | 705 || 206 | 3018 | 44000 |7 | 1 1471,98 2677 | 19430 | 5110198 | 189 | 27 | 11086,1 || 2020 | 14817 | 3827274 | 119 | 17 | 7804,18
apex2 39 |10 | 1701 | 122 | 237 || 1035 | 15610 | 85198 |7 |1 | 181135 445 | 3627 | 134188 | 203 | 29 | 614,329 || 268 | 2134 | 71438 | 140 | 20 | 315,608
apexd 9 |11 | 5727 | 2073 | 447 || 438 | 5489 | 24678 |7 |1 | 2875.89 3466 | 24824 | 9858816 | 147 | 21 | 18019,5 || 2744 | 19958 | 7830882 | 119 | 17 | 154523
apex5 117 | 16 | 6630 | 806 | 888 || 1160 | 8004 | 495908 | 7 | 1 1401,94 1203 | 9630 | 1239620 | 147 | 21 | 3189.77 || 832 | 6213 | 629036 | 84 | 12 | 186343
apex6 135 |22 | 3761 | 770 | 1169 || 656 | 4926 | 353808 |7 | I | 669,392 740 | 5138 | 569256 | 105 | 15 | 14053 || 674 | 4678 | 505306 | 98 | 14 | 122778
apex7 49 |28 | 1937 | 290 | 437 || 507 | 4126 | 93740 |7 |1 | 315,133 252 | 1769 | 53172 | 98 | 14 | 279,106 || 197 | 1404 | 36774 |91 | 13 | 232,827
[ 41 |19 | 634 | 125 | 298 || 107 | 642 15996 |7 |1 | 733105 113 | 861 20768 | 70 | 10 | 117,437 || 92 690 15366 | 56 |8 | 95,8065
clip 9 |21 [ 485 | 120 |89 166 | 1078 | 4816 7 |1 | 41,0498 180 | 1354 | 33454 |77 | I1 | 175761 | 111 | 829 14098 |63 |9 | 10743
cmi50a | 21 |21 | 199 |56 | 127 | 17 142 336 711 10,778 62 468 | 4502 91 | 13 | 50,1216 || 47 363 | 4102 63 |9 | 482901
cml62a | 14 |14 | 198 |46 | 102 || 43 230 1862 71T | 3249 38 298 | 2216 63 |9 | 312726 || 33 257 1626 56 | 8 | 34,8671
cmi63a | 16 |8 | 176 |42 | 116 | 42 229 2016 71 | 23054 36 288 | 2148 56 |8 | 30,6175 || 32 254 1810 9 |7 |34
dalu 75 | 13 | 4856 | 627 | 470 || 2224 | 26700 | 407862 |7 |1 | 5701 1387 | 10169 | 879430 | 245 | 35 | 206744 || 1122 | 8270 | 700910 | 217 | 31 | 153073
64 65 |24 | 840 |94 |456 | 65 2470 | 34060 |7 | 1 125,161 1437 | 12134 | 416608 | 448 | 64 | 243647 || 520 | 3885 | 348982 | 70 | 10 | 1088,73
ex1010 10 | 11 | 6606 | 1984 | 396 || 1024 | 18950 | 41400 |7 | 1 108896 3350 | 23952 | 8992430 | 168 | 24 | 17142,5 || 2616 | 19132 | 7027470 | 119 | 17 | 15397.7
x4 128 |7 | 3076 | 256 | 928 || 620 | 5220 | 124460 |7 |1 | 359811 478 | 3672 | 299178 | 112 | 16 | 735,931 || 408 | 3124 | 248724 | 98 | 14 | 618,099
frg2 143 |22 | 8433 | 803 | 1005 || 4159 | 35729 | 2424636 | 7 | 1 | 135118 1208 | 8712 | 1265816 | 91 | 13 | 3972,73 || 728 | 5142 | 518280 | 77 | 11 | 176891
‘misex| 8 |18 | 231 |8 |69 18 132 780 7 |1 | 730883 72 504 | 7314 49 |7 | 592965 || 61 423 | 5740 42 |6 | 467335
misex3 14 |14 | 2969 | 444 | 185 || 1426 | 15559 | 80696 |7 | 1 | 2430,17 1582 | 11604 | 1803240 | 161 | 23 | 4496,13 || 1167 | 8691 | 1280548 | 140 | 20 | 3152,18
misex3c | 14 | 10 | 2453 | 429 | 239 || 297 | 2710 | 18096 |7 |1 | 701,002 734 | 5380 | 483346 | 161 | 23 | 1188,36 || 590 | 4340 | 405166 | 126 | 18 | 100396
parity 16 |7 | 119 |23 | 113 || 32768 | 557090 | 1114180 | 7 | 1 | 1,95466e+06 || 46 346 | 3956 56 | 8 | 51,0531 || 46 346 | 3956 56 |8 | 50,9398
pdc 16 | 17 | 3658 | 507 | 142 || 2192 | 61318 | 250096 | 7 | 1 1,65169e+06 || 1624 | 11994 | 1398822 | 182 | 26 | 412441 || 840 | 6290 | 627542 | 147 | 21 | 174117
seq 41 | 11 | 10808 | 1566 | 692 || 1066 | 14502 | 167504 | 7 | 1 | 232322 2413 | 17877 | 3580692 | 203 | 29 | 902533 || 1775 | 13437 | 2541004 | 154 | 22 | 6382,24
squars 5 |18 [224 |93 |56 30 261 1014 711 | 156276 68 184 | 6936 49 |7 555393 || 48 326 | 3928 2 |6 | 34239
431 16 |11 | 137 |26 | 107 || 481 | 5267 | 16422 |7 |1 | 232,543 1875 | 13495 | 3463670 | 147 | 21 | 778426 || 803 | 5875 | 857962 | 91 | 13 | 217026
table5 17 | 14 | 4068 | 580 | 168 || 158 | 2566 | 11136 |7 |1 | 416,991 2001 | 14648 | 2370246 | 182 | 26 | 573048 || 1481 | 11082 | 1841246 | 154 | 22 | 441577
tcon 17 |7 |166 |57 |118 || 32 154 3234 711 18,7235 43 298 | 6034 21 |3 | 355259 || 40 226 | 5218 14 |2 [294298
terml 34 |10 | 896 | 105 | 260 || 257 | 2298 | 23584 |7 |1 | 882616 313 | 2420 | 107300 | 112 | 16 | 393415 || 150 | 1165 | 29526 | 84 | 12 | 162,668
too_large | 38 | 14 | 2866 | 282 | 232 || 1035 | 15610 | 85198 |7 | 1 | 138922 827 | 6375 | 411848 | 210 | 30 | 139465 || 463 | 3621 | 194054 | 168 | 24 | 699,077
vda 17 |11 | 3039 |805 | 273 || 93 1544 | 14896 |7 |1 | 376,691 055 | 6855 | 640324 | 112 | 16 | 269342 || 650 | 4638 | 444516 | 70 | 10 | 1737.85
X1 51 | 11 | 2810 | 230 | 398 || 309 | 2624 | 59340 |7 | 1 156,006 400 | 3007 | 179366 | 91 | 13 | 544872 || 286 | 2091 | 123350 | 70 | 10 | 371451
X2 10 |11 |206 |60 |80 17 118 350 71 | 76228 60 28 | 5680 39 |7 | 524899 || 46 314 | 3636 2 |6 | 42,7509
X3 135 |22 | 3761 | 770 | 1169 || 738 | 5535 | 392184 |7 |1 | 648998 841 | 6241 | 893392 | 105 | 15 | 196142 || 611 | 4527 | 550626 | 77 | 11 | 1221,77
x4 94 |39 | 3042 | 401 | 642 || 530 | 3431 198660 | 7 | 1 | 329,832 470 | 3378 | 207320 | 70 | 10 | 660,801 || 341 | 2403 | 112264 | 63 | 9 | 406,664
Table T

COMPARISON OF BENCHMARKS

In order to investigate about the impact of different synthesis
optimization parameters on the memristor crossbar in terms of
area and performances, we carried out several experiments.

Given a function expressed in BLIF format, we first used
synthesis tools (i.e. ABC and SIS by Berkeley) in order to
produce EQN format. Specifically we used:

o SIS to generate equations in which outputs depend di-
rectly on inputs, so they can be translated to a single

crossbar

o« ABC to generate equations in which outputs depend
on intermediate values, so they can be translated to
more crossbars. Also an “optimized” version has been
produced using the resyn2 script [15]

An overview about achieved results is presented and discussed
hereafter. In table II a legend of the used labels is reported.

B. Discussion

Table I shows the synthesis results on a number of combi-
national benchmarks. We noticed that:

1) As

the levels’ number of a function grows - thus the

number of crossbars and, hence, the latency - the number
of memristor grows instead of decreasing.

2) Given the number of crossbars, the response time of the
circuit remains constant for any function.

a) Therefore, in terms of both area and performances,

is better to have only a single crossbar in order
to obtain a tiny and constant time and use fewer
memristors.

3) The number of minterms has an high impact on the
memristors’ total number.

a) At the current state of art, there is not any tool

that makes possible to optimize a boolean function
in terms of number of minterms. Maybe the next
direction could be such.
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[ Symbol | Description \ Expressed as
Dij Whether the i-th minterm is in the j-th level (boolean) Given
Nin(l;) Num. of input for the j-th level Given
Nout () Num. of output for the j-th level Given
Noce(mg, l]-) Num. of occurrences of the i-th minterm in the j-th level Given
Nyt (my;) Num. of literals of the i-th minterm Given
Noem No. of memristors in the circuit > {2 * Nin (1) + 3 (Noce(mi, 1)) + > (Niie(mi) = pij) + 2 Nout(lj)J
7 7 7
Npin No. of minterms in the circuit Given
A Total area > {[2 # Nin (L) + 2 % Nowr ()] % |14+ (psj) + Nl,ut(lj)J }
J 7
tm Memristor switching time Given
Nsteps Num. of steps of a Crossbar computation Given
Tc “Latency” of a Crossbar tar * Nsteps
N¢o Num. of Crossbar in the circuit Given
C Needed Cycles to complete computation Tc * No
Txva Time (in milliseconds) needed by XbarGen to execute Experimental
Tsim Time (in milliseconds) for simulate VHDL design (50ns long) Experimental
Chakraborti et al. [7]
M, No. of memristors (serial)
OPs No. of memristor micro-operations (serial)
M, No. of memristors (parallel)
OP, No. of memristor micro-operations (parallel)
Table TT
LEGEND

In addition, with regard to feasability of translation and simu-
lation of memristor crossbar behavioral circuits, we collected
the time that XbarGen needs to translate a boolean function
and produce the crossbar schematic view (table I). XbarGen
experiments were run on a dual-core i7 MacBook Pro with
2,8GHz clock, 4 GB RAM and running OSX v10.11.4.

C. Comparison

Chakraborti et al. in [7] proposed an architecture based on
material implication operation implemented using memristors.
In brief, they came up with a realization of 2-to-1 multi-
plexer using memristors, and a synthesis methodology that
represents a given Boolean function as a Reduced Ordered
Binary Decision Diagram (ROBDD) and maps it to memristor
implementation. They carried out some benchmarks too (table
I), reporting interesting results: comparing experiments that
exploit parallelism and those that do not, the inverse ratio
time-area is respected; from our side, instead, it is not true.
On the other hand, execution time of the architecture in [7]
depends on the function under consideration; execution time
of Snider architecture could be independent from the function,
if it is translated to a single crossbar. This could mean that one
would prefer an architecture such as proposed in [7] in case of
area constraints and an architecture such as Snider proposed
in [8] in case of time constraints.

V. CONCLUSION

The memristor is one of the most promising technologies
which is able to deal with the CMOS limitations. In particular,
since the memristor is inherently able to behave also as a
non-volatile device, it allows to overcome the bottleneck of
the data transfer to the computational unit and back to storage
elements. The research community is facing with the synthesis
of boolean functions by exploiting memristor-based crossbars

and, in this paper, we advanced the state-of-the-art with a
comparison with the state-of-the-art of performances w.r.t.
several benchmarks. Indeed, we developed XbarGen, a tool
which is able to process boolean equations for the mapping
over memristor crossbars.
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