
HAL Id: hal-03094562
https://hal.science/hal-03094562v1

Submitted on 5 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

XbarGen: A memristor based boolean logic synthesis
tool

Marcello Traiola, Mario Barbareschi, Antonino Mazzeo, Alberto Bosio

To cite this version:
Marcello Traiola, Mario Barbareschi, Antonino Mazzeo, Alberto Bosio. XbarGen: A memristor based
boolean logic synthesis tool. IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), Sep 2016, Tallinn, Estonia. �10.1109/VLSI-SoC.2016.7753567�. �hal-03094562�

https://hal.science/hal-03094562v1
https://hal.archives-ouvertes.fr


1

XbarGen: a Memristor Based Boolean Logic
Synthesis tool

Marcello Traiola1, Mario Barbareschi1, Antonino Mazzeo1, Alberto Bosio2

1DIETI, University of Naples Federico II 2LIRMM, Université Montpellier
Naples, Italy Montpellier, France

m.traiola@studenti.unina.it bosio@lirmm.fr
{mario.barbareschi, mazzeo}@unina.it

Abstract—The shrinking process of CMOS technology
is reaching its physical limits, thus impacting on several
aspects, such as performances, power consumption and
many others. Alternative solutions are under investigation
in order to overcome CMOS limitations. Among them, the
memristor is one of the promising technologies. Several
works have been proposed so far, describing how to
implement boolean logic functions employing memristors
in a crossbar architecture. In this paper, we propose a
tool able to automatically map any boolean function to a
memristor based crossbar implementation. The proposed
tool helps to perform a design space exploration to identify
the best implementation w.r.t. performances and area
overhead.

Index terms—Memristor crossbar, Design Space Explo-
ration, Boolean Functions. Circuit Synthesis

I. INTRODUCTION

Today’s computing devices are based on the CMOS tech-
nology, that is the subject of the famous Moore’s Law [1]
predicting that the number of transistors in an integrated circuit
will be doubled every two years. Despite the advantages of
the technology shrinking, we are facing the physical limits
of CMOS. Among the multiple challenges arising from tech-
nology nodes lower than 20 nm, we can highlight the high
leakage current (i.e., high static power consumption), reduced
performance gain, reduced reliability, complex manufacturing
process leading to low yield and complex testing process, and
extremely costly masks [2], [3], [4], [5].

Additionally, the expected never-ending increasing of per-
formances is indeed no longer true. Looking in more detail,
the classical computer architectures, either von Neumann or
Harvard, divide the computational element (i.e., CPU) from
the storage element (i.e., memory). Therefore, data have to
be transferred inside the computational element in order to
be processed and then transferred back to be stored. The
main problem of this paradigm is the bottleneck due to the
data transfer time limited by the bandwidth. For example,
transferring one TeraByte at the rate of 1Gbit/second requires
more than two hours.

Many new technologies are under investigation, among
them the memristor is a promising one [9]. The memristor

is a non-volatile device able to act as both storage and
information processing unit that presents many advantages:
CMOS process compatibility, lower cost, zero standby power,
nanosecond switching speed, great scalability, high density
and non-volatile capability [10], [11]. Thanks to its nature
(i.e., computational as well as storage element), the memristor
is exploited in different kind of applications, such as neuro-
morphic systems [12], non-volatile memories [13], computing
architecture for data-intensive applications [6].

A fundamental component of any kind of computing archi-
tecture is the implementation of boolean logic functions. In
[14], the authors proposed a methodology for the synthesis of
boolean logic function on a memristor crossbar. Their work
showed that is possible to implement any kind of boolean
function on a memristor crossbar. However, the experimental
results have been carried out on a couple of small circuits
only due to the lack of an automated synthesis tool. In this
paper, we aim to extend the work of [14] by presenting a tool
able to automatically map any boolean function to a memristor
based crossbar implementation. Moreover, we investigate the
impact of different synthesis optimization parameters on the
memristor crossbar to evaluate area and performances.

The remainder of the paper is structured as following.
Section II presents the state of the art and provides the required
background on the memristor based computation. Section III
details the proposed memristor and crossbar model as well
as the synthesis methodology, while the Section IV gives
the experimental results. Finally, the Section V draws the
conclusions.

II. BACKGROUND AND STATE OF THE ART

In this section we provide the basics about the memristor
modeling, as well as the way how the memristor can be
exploited to implement a given boolean function.

A. Memristor model

A memristor is a non-linear electrical component whose
electrical resistance is not constant but depends on the history
of the charge flowed through the device itself. Since we intend
to implement a digital circuit, we refer to the memristor
Voltage-Current relation depicted in Figure 1, detailed in [8],

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)



2

as the best solution for modeling the memristor’s behavior
(i.e., thanks to the ideal response to a pulse-wave). Thus, as
the Figure 1 shows, the voltage applied to the memriristor’s
terminals does not change its resistance until it crosses a
threshold. In the adopted ideal model, the upper and the lower
thresholds have the same absolute value.

We resort to the Snider Boolean Logic (SBL) [8] convention
whereby a lower resistance (steeper curve denoted as RON)
represents a logic ‘0’ while an higher resistance (lower slope
curve denoted as ROFF) represents a logic ‘1’.

Two basic operations can be performed, defined as SET
and RESET. The first one allows to program the memristor to
RON and thus at logic ‘0’, while the second one programs the
memristor to ROFF that corresponds to logic ‘1’. The Figure
1 depicts SET and RESET operations as described by Xie et
al. in [14]

RON = 0

ROFF = 1

V

I

-Vth

Vth

Memristor ideal Voltage-Current relation [8]

Vx = GND

RON

ROFF

+

-

Vw

I

+

- Vw

Vx = GND

-

ROFF
+

RON I

+

-

SET RESET

Figure 1. Set and Reset operations [14]

B. Fast Boolean Logic Circuits

Snider proposed in [8] a design methodology for memristor
crossbar that aimed to implement boolean functions. This
design was then improved by Xie et al. in [14]. Let us
briefly recall their proposition referring to it as Fast Boolean
Logic Circuit (FBLC). First, the logic circuit requires that the
Boolean function is expressed in the SOP format:

f = M1 + M2 + ... + Mn = M1 · M2 · · · · · · Mn[[NAND
AND

NOT

[

Then, as Figure 2-a shows, FBLC is divided in blocks,
useful to accomplish FSM’s steps (fig 2-b) which are:

INA: initialize all the memristors to ROFF;
RI: the input block receives the inputs;
CFM configure all minterms simultaneously, in parallel;
EVM: evaluate all minterms simultaneously (NAND);
EVR: evaluate results: f is calculated (AND);
INR: invert results: f need to be inverted to achieve f
SO: send outputs: the result captured in OL is sent out.

IN

A
N
D

OL

...

0
1 F

INR

RI

EVR

CMF

EVM

SO

INA

(a) (b)

M1—

Mn
—

F—

Figure 2. Fast Boolean Logic Circuit

Below, the description of the blocks:

• input block, where inputs are stored during the RI step;
• minterms block, where minterms are configured during

CFM and evaluated during EVM;
• AND block, where results of EVM are stored and AND

operation is performed during EVR;
• output block, where results of EVR are stored and inver-

sion operation is performed during INR;

For the purpose of realizing each step of the FSM, the authors
proposed some primitive operations that we summarize in
Figure 3.

Each of these operations can be performed using as many
input and output memristors as desired.

Vx = GND

ROFF ROFF

Vw GND
- -

++
Vx = Vw

RON

Vw GND
- -

++
RON

ROFF

Vx = GND
-

ROFF

-

VR Vw
++

RON

ROFF

Vx = VR
-

RON

-

VR Vw
++

ROFF

Copy1 Copy0 Invert1 Invert0

Vx = GND
--

ROFF ROFF

-

VRVR Vw
+++

RON

ROFF

Vx = GND

--

ROFF ROFF

-GNDVw

+++

Vw

ROFF

NAND (all input 1) AND (all input 1)

Vx = VR
--

ROFF RON

-

ROFF

VRVR Vw
+++

Vx = Vw

--

ROFF RON

-GNDVw

+++

RON

ROFF

Vw

NAND (at least one input 0) AND (at least one input 0)

Figure 3. FBLC primitive operations

By driving the crossbar’s nano-wires with the right voltages
during each step, it is possible to calculate a boolean function
in a constant number of steps. We report below in Figure 4 an
example of crossbar for a simple 2 inputs / 1 output function,
built following the FBLC approach.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)



3

—

A B A B
— — O— O

IN

A B
A B
A B

— —

—

—
—
O—

H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V5

M02M01

M11 M12

H0

H1

V1 V2

O = AB +AB +AB = AB ·AB ·AB
Figure 4. FBLC example

III. TOWARDS AUTOMATIC CROSSBAR SYNTHESIS

Due to the lack of an automated process of translation from
a given boolean function to a memristor based crossbar archi-
tecture, deeply investigating about memristor based crossbar
circuits turns out to be really hard to accomplish. Therefore,
in order to overcome these problems, we developed XbarGen.

XbarGen is a command line tool written in C++ which,
starting from a boolean function described in the Synopsys
equation format - EQN - (fig 5), executes the mapping
to a memristor based crossbar architecture and produces a
schematic view of the crossbar(s).

INORDER = a b c ;
OUTORDER = o1 ;
n5 = ! b ∗ c ;
n6 = a ∗ ! n5 ;
n7 = b ∗ ! c ;
n8 = ! n5 ∗ ! n7 ;
n9 = ! a ∗ ! n8 ;
o1 = n6 + n9 ;

INORDER = a b c ;
OUTORDER = o1 ;
o1 = ! a∗b ∗ ! c +
! a ∗ ! b∗c + a ∗ ! c + a∗b ;

Figure 5. Synopsys equation format (EQN)

First, the tool operates an analysis of the given function.
As the figure 5 shows, it is possible either that a function’s
output depends directly on its inputs either that it depends on
“intermediate values”, which indeed depends on inputs.

Thus, we will call level a set of inputs and outputs such
that:

• inputs are independent from one another
• each output depends only on inputs

In this way we are able to describe a boolean function as a
set of levels each one dependent from one another (figure 6)

n7

n8
n9

c

b

n5

a

n6

o1

Figure 6. Function’s levels

Second, the tool performs a mapping to one or more
crossbars depending on how many levels it finds. Mapping
to a crossbar means that inputs, outputs and related minterms
of each level are translated into a FBLC, as explained in [14]
and briefly reminded above. It is worth noting that, when more
crossbars are produced, they must be connected together in
series, as proposed by Snider in [8] and depicted in figure 7.
Consequently, the latency of the circuit grows proportionally
to the number of serially connected crossbars.

N7N7B N5

—BC

N5 N7

N7

—
B CC
— — N5

—

IN

BC
—

—
H0

H1

H2

H3

H4

V0 V1 V2 V3 V4 V6

—

V5 V7

N5
—

N7
—

—
—

A A— — N8
—

IN

N5

A—

—

N6
— N8 N6

N8
—

N6

N5

N5 N7
—

—

—

Latch

Latch

—
A N8 A N8

— — N9
—

IN

AN8
—

N9

N9
—

— —
N6 N9 N6 N9

— — O1
—

IN

N6 N9

O1

O1
—

Latch
Output
Latch

Input 
Latch

CMOS Control Logic
data flow

control wire

V0 V1 V2 V3 V4 V6V5 V7

H0

H1

H2

H3

H4

V8 V9

V0 V1 V2 V3 V4 V5

H0

H1

H2

V0 V1 V2 V3 V4 V5

H0

H1

H2

Figure 7. Snider Boolean Logic Circuit

IV. EXPERIMENTS AND RESULTS

This section provides the experimental results achivied by
the proposed synthesis tool and the adopted crossbar model.
We also compare the proposed approach with the state of the
art.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)



4

bmark Inputs Chakraborti et al. [7] Single Crossbar Multiple Crossbars Multiple Crossbars (optimized)
Ms OPs Mp OPp Nmin Nmem A C NC TXbG Nmin Nmem A C NC TXbG Nmin Nmem A C NC TXbG

rd53f1 5 7 58 15 34 6 48 96 7 1 4,40771 16 120 492 56 8 13,1694 11 87 378 35 5 9,26288
rd53f2 5 8 59 17 35 20 132 264 7 1 5,71666 27 203 1318 49 7 17,8544 25 191 1108 49 7 17,5566
rd53f3 5 7 41 11 35 16 108 216 7 1 7,27523 22 156 894 42 6 15,5731 13 93 326 42 6 10,0649
xor5_d 5 7 41 11 35 16 108 216 7 1 6,88398 22 156 894 42 6 14,4109 13 93 326 42 6 10,9131
con1f1 7 8 59 17 47 5 37 98 7 1 4,11653 13 105 338 49 7 17,004 9 69 242 28 4 9,66641
con2f2 7 9 47 18 47 6 38 96 7 1 4,71909 16 122 490 49 7 18,7644 10 74 284 28 4 9,93731
rd73f1 7 8 84 18 48 42 330 704 7 1 10,9064 113 851 15232 98 14 92,7335 80 606 9354 70 10 69,9187
rd73f2 7 7 57 13 49 64 528 1056 7 1 14,0526 34 244 1842 56 8 25,8204 19 139 706 42 6 12,7191
rd73f3 7 7 106 25 46 35 275 592 7 1 9,78765 59 459 4186 91 13 39,1519 40 312 2212 63 9 27,0125

newill_d 8 11 104 33 50 22 177 432 7 1 6,02758 51 401 3040 91 13 36,2447 23 177 884 70 10 16,5744
newtagd 8 7 63 14 51 14 107 288 7 1 5,35582 24 192 900 77 11 18,9949 10 78 260 35 5 8,82142
rd84f1 8 8 99 21 57 120 1098 2196 7 1 32,4858 188 1418 37746 119 17 163,551 144 1082 26978 84 12 126,552
rd84f2 8 7 63 15 57 128 1170 2340 7 1 28,5734 40 288 2892 56 8 30,3401 22 162 1028 42 6 14,4034
rd84f3 8 7 62 14 56 1 27 54 7 1 3,52854 7 63 126 49 7 12,4683 7 63 294 21 3 7,68629
rd84f4 8 10 135 33 57 162 1476 2952 7 1 42,7301 176 1336 34468 119 17 158,735 142 1082 26504 84 12 130,351

max46_d 9 28 456 150 72 47 475 980 7 1 10,6472 185 1379 37264 112 16 210,26 156 1188 30628 98 14 141,284
sao2f1 10 9 187 46 73 10 124 264 7 1 5,7189 41 323 2320 91 13 27,696 39 309 2496 70 10 26,6478
sao2f2 10 9 179 46 83 20 242 484 7 1 6,67963 60 474 5226 98 14 49,9699 45 345 3974 63 9 36,1185
sao2f3 10 9 149 34 71 92 914 2068 7 1 23,0123 130 1002 18000 126 18 105,365 80 628 9160 84 12 65,3744
sao2f4 10 9 159 32 69 85 898 1914 7 1 24,8451 137 1051 19684 133 19 111,094 83 651 9810 84 12 66,9386

sym10_d 10 11 196 40 70 837 9229 18458 7 1 592,392 639 4721 372748 154 22 887,967 466 3494 240148 119 17 625,83
t481_d 16 5 137 26 107 1547 21699 52666 7 1 2476,55 657 5033 292290 203 29 878,071 427 3253 177764 161 23 508,84
5xp1 7 14 283 84 73 70 385 2754 7 1 19,3511 140 985 23218 70 10 171,619 101 740 13030 63 9 86,1893
alu2 10 12 1030 284 148 257 2282 8448 7 1 106,399 404 3100 74522 280 40 4250,49 363 2767 71596 217 31 3192,4
alu4 14 8 3634 642 334 1791 19947 79200 7 1 4330,92 740 5706 199562 294 42 54801,5 657 5061 191338 238 34 39688,8

apex1 45 12 7975 1626 705 206 3018 44000 7 1 1471,98 2677 19430 5110198 189 27 11086,1 2020 14817 3827274 119 17 7804,18
apex2 39 10 1701 122 237 1035 15610 85198 7 1 1811,35 445 3627 134188 203 29 614,329 268 2134 71438 140 20 315,608
apex4 9 11 5727 2073 447 438 5489 24678 7 1 2875,89 3466 24824 9858816 147 21 18019,5 2744 19958 7830882 119 17 15452,3
apex5 117 16 6630 806 888 1160 8004 495908 7 1 1401,94 1293 9630 1239620 147 21 3189,77 832 6213 629036 84 12 1863,43
apex6 135 22 3761 770 1169 656 4926 353808 7 1 669,392 740 5138 569256 105 15 1405,3 674 4678 505306 98 14 1227,78
apex7 49 28 1937 290 437 507 4126 93740 7 1 315,733 252 1769 53172 98 14 279,106 197 1404 36774 91 13 232,827

b9 41 19 634 125 298 107 642 15996 7 1 73,3105 113 861 20768 70 10 117,437 92 690 15366 56 8 95,8065
clip 9 21 485 120 89 166 1078 4816 7 1 41,0498 180 1354 33454 77 11 175,761 111 829 14098 63 9 107,43

cm150a 21 21 199 56 127 17 142 836 7 1 10,778 62 468 4502 91 13 50,1216 47 363 4102 63 9 48,2901
cm162a 14 14 198 46 102 43 230 1862 7 1 32,4292 38 298 2216 63 9 31,2726 33 257 1626 56 8 34,8671
cm163a 16 8 176 42 116 42 229 2016 7 1 23,054 36 288 2148 56 8 30,6175 32 254 1810 49 7 34,41

dalu 75 13 4856 627 470 2224 26700 407862 7 1 5701 1387 10169 879430 245 35 20674,4 1122 8270 700910 217 31 15307,3
e64 65 24 840 94 456 65 2470 34060 7 1 125,161 1437 12134 416608 448 64 2436,47 520 3885 348982 70 10 1088,73

ex1010 10 11 6606 1984 396 1024 18950 41400 7 1 108896 3350 23952 8992430 168 24 17142,5 2616 19132 7027470 119 17 15397,7
ex4 128 7 3076 256 928 620 5220 124460 7 1 359,811 478 3672 299178 112 16 735,931 408 3124 248724 98 14 618,099
frg2 143 22 8433 803 1005 4159 35729 2424636 7 1 13511,8 1208 8712 1265816 91 13 3972,73 728 5142 518280 77 11 1768,91

misex1 8 18 231 83 69 18 132 780 7 1 7,30883 72 504 7314 49 7 59,2965 61 423 5740 42 6 46,7335
misex3 14 14 2969 444 185 1426 15559 80696 7 1 2430,17 1582 11604 1803240 161 23 4496,13 1167 8691 1280548 140 20 3152,18
misex3c 14 10 2453 429 239 297 2710 18096 7 1 701,002 734 5380 483346 161 23 1188,36 590 4340 405166 126 18 1003,96
parity 16 7 119 23 113 32768 557090 1114180 7 1 1,95466e+06 46 346 3956 56 8 51,0531 46 346 3956 56 8 50,9398
pdc 16 17 3658 507 142 2192 61318 250096 7 1 1,65169e+06 1624 11994 1398822 182 26 4124,41 840 6290 627542 147 21 1741,17
seq 41 11 10808 1566 692 1066 14502 167504 7 1 2323,22 2413 17877 3580692 203 29 9025,33 1775 13437 2541004 154 22 6382,24

squar5 5 18 224 93 56 30 261 1014 7 1 15,6276 68 484 6936 49 7 55,5393 48 326 3928 42 6 34,2392
t481 16 11 137 26 107 481 5267 16422 7 1 232,543 1875 13495 3463670 147 21 7784,26 803 5875 857962 91 13 2170,26

table5 17 14 4068 580 168 158 2566 11136 7 1 416,991 2001 14648 2370246 182 26 5730,48 1481 11082 1841246 154 22 4415,77
tcon 17 7 166 57 118 32 154 3234 7 1 18,7235 48 298 6034 21 3 35,5259 40 226 5218 14 2 29,4298

term1 34 10 896 105 260 257 2298 23584 7 1 88,2616 313 2420 107300 112 16 393,415 150 1165 29526 84 12 162,668
too_large 38 14 2866 282 232 1035 15610 85198 7 1 1389,22 827 6375 411848 210 30 1394,65 463 3621 194054 168 24 699,077

vda 17 11 3039 805 273 93 1544 14896 7 1 376,691 955 6855 640324 112 16 2693,42 650 4638 444516 70 10 1737,85
x1 51 11 2810 230 398 309 2624 59340 7 1 156,096 400 3007 179366 91 13 544,872 286 2091 123350 70 10 371,451
x2 10 11 206 60 80 17 118 850 7 1 7,6228 60 428 5680 49 7 52,4899 46 314 3636 42 6 42,7509
x3 135 22 3761 770 1169 738 5535 392184 7 1 648,998 841 6241 893392 105 15 1961,42 611 4527 550626 77 11 1221,77
x4 94 39 3042 401 642 530 3431 198660 7 1 329,832 470 3378 207320 70 10 660,801 341 2403 112264 63 9 406,664

Table I
COMPARISON OF BENCHMARKS

A. Experiments

In order to investigate about the impact of different synthesis
optimization parameters on the memristor crossbar in terms of
area and performances, we carried out several experiments.

Given a function expressed in BLIF format, we first used
synthesis tools (i.e. ABC and SIS by Berkeley) in order to
produce EQN format. Specifically we used:

• SIS to generate equations in which outputs depend di-
rectly on inputs, so they can be translated to a single
crossbar

• ABC to generate equations in which outputs depend
on intermediate values, so they can be translated to
more crossbars. Also an “optimized” version has been
produced using the resyn2 script [15]

An overview about achieved results is presented and discussed
hereafter. In table II a legend of the used labels is reported.

B. Discussion

Table I shows the synthesis results on a number of combi-
national benchmarks. We noticed that:

1) As the levels’ number of a function grows - thus the
number of crossbars and, hence, the latency - the number
of memristor grows instead of decreasing.

2) Given the number of crossbars, the response time of the
circuit remains constant for any function.

a) Therefore, in terms of both area and performances,
is better to have only a single crossbar in order
to obtain a tiny and constant time and use fewer
memristors.

3) The number of minterms has an high impact on the
memristors’ total number.

a) At the current state of art, there is not any tool
that makes possible to optimize a boolean function
in terms of number of minterms. Maybe the next
direction could be such.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)



5

Symbol Description Expressed as
pij Whether the i-th minterm is in the j-th level (boolean) Given

Nin(lj) Num. of input for the j-th level Given
Nout(lj) Num. of output for the j-th level Given

Nocc(mi, lj) Num. of occurrences of the i-th minterm in the j-th level Given
Nlit(mi) Num. of literals of the i-th minterm Given

Nmem No. of memristors in the circuit
∑
j

[
2 ∗Nin(lj) +

∑
i

(Nocc(mi, lj)) +
∑
i

(Nlit(mi) ∗ pij) + 2 ∗Nout(lj)

]
Nmin No. of minterms in the circuit Given

A Total area
∑
j

{
[2 ∗Nin(lj) + 2 ∗Nout(lj)] ∗

[
1 +

∑
(pij)
i

+Nout(lj)

]}
tM Memristor switching time Given

NSteps Num. of steps of a Crossbar computation Given
TC “Latency” of a Crossbar tM ∗NSteps

NC Num. of Crossbar in the circuit Given
C Needed Cycles to complete computation TC ∗NC

TXbG Time (in milliseconds) needed by XbarGen to execute Experimental
Tsim Time (in milliseconds) for simulate VHDL design (50ns long) Experimental

Chakraborti et al. [7]
Ms No. of memristors (serial)
OPs No. of memristor micro-operations (serial)
Mp No. of memristors (parallel)
OPp No. of memristor micro-operations (parallel)

Table II
LEGEND

In addition, with regard to feasability of translation and simu-
lation of memristor crossbar behavioral circuits, we collected
the time that XbarGen needs to translate a boolean function
and produce the crossbar schematic view (table I). XbarGen
experiments were run on a dual-core i7 MacBook Pro with
2,8GHz clock, 4 GB RAM and running OSX v10.11.4.

C. Comparison

Chakraborti et al. in [7] proposed an architecture based on
material implication operation implemented using memristors.
In brief, they came up with a realization of 2-to-1 multi-
plexer using memristors, and a synthesis methodology that
represents a given Boolean function as a Reduced Ordered
Binary Decision Diagram (ROBDD) and maps it to memristor
implementation. They carried out some benchmarks too (table
I), reporting interesting results: comparing experiments that
exploit parallelism and those that do not, the inverse ratio
time-area is respected; from our side, instead, it is not true.
On the other hand, execution time of the architecture in [7]
depends on the function under consideration; execution time
of Snider architecture could be independent from the function,
if it is translated to a single crossbar. This could mean that one
would prefer an architecture such as proposed in [7] in case of
area constraints and an architecture such as Snider proposed
in [8] in case of time constraints.

V. CONCLUSION

The memristor is one of the most promising technologies
which is able to deal with the CMOS limitations. In particular,
since the memristor is inherently able to behave also as a
non-volatile device, it allows to overcome the bottleneck of
the data transfer to the computational unit and back to storage
elements. The research community is facing with the synthesis
of boolean functions by exploiting memristor-based crossbars

and, in this paper, we advanced the state-of-the-art with a
comparison with the state-of-the-art of performances w.r.t.
several benchmarks. Indeed, we developed XbarGen, a tool
which is able to process boolean equations for the mapping
over memristor crossbars.

REFERENCES

[1] ITRS 2013 report. [Online]. Available: http://www.itrs.net/
[2] B. Hoefflinger, “Chips 2020: A Guide to the Future of Nanoelectronics”,

The Frontiers Collection, Springer Berlin Heidelberg, 2012, pp. 421–
427

[3] J. McPherson, “Reliability trends with advanced CMOS scaling and the
implications for design”, in IEEE Custom Integrated Circuits Confer-
ence, 2007, pp. 405–412

[4] S. Borkar, “Design perspectives on 22Nm CMOS and beyond”, in
Proceedings of the 46th Annual Design Automation Conference, 2009,
pp. 93-94

[5] G. Gielen, et al., “Emerging yield and reliability challenges in nanometer
CMOS technologies”, in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1322-1327, 2008

[6] S. Hamdioui, et al., ‘Memristor based computation-in-memory architec-
ture for data-intensive applications’, in Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 1718-1725, 2015

[7] S. Chakraborti, P. V. Chowdhary, K. Datta and I. Sengupta, "BDD based
synthesis of Boolean functions using memristors," 2014 9th International
Design and Test Symposium (IDT), Algiers, 2014, pp. 136-141.

[8] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[9] L. Chua, ‘Memristor-the missing circuit element’, IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971

[10] R. Waser et al., “Redox-based resistive switching memories–nanoionic
mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 2009

[11] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013

[12] J. R. Burger et al., “Variation-tolerant computing with memristive reser-
voirs,” IEEE/ACM International Symposium in Nanoscale Architectures
(NANOARCH), 2013, pp. 1–6.

[13] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, pp. 389–395, 2011.

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)



6

[14] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui,
Koen Bertels, “Fast Boolean Logic Mapped on Memristor Crossbar”,
IEEE International Conference on Computer Design (ICCD), pp. 335-
342, 2015.

[15] ABC User Guide. [Online]. Available:
http://www.eecs.berkeley.edu/~alanmi/abc/

2016 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

View publication statsView publication stats

https://www.researchgate.net/publication/310807724

