Speaking while moving: Does the head compensate for the hands not being able to move?
Hélène Serré, Susanne Fuchs, Marion Dohen, Amélie Rochet-Capellan

To cite this version:
Hélène Serré, Susanne Fuchs, Marion Dohen, Amélie Rochet-Capellan. Speaking while moving: Does the head compensate for the hands not being able to move?. ISSP 2020 - 12th International Seminar on Speech Production, Dec 2020, Providence (virtual), United States. hal-03094445

HAL Id: hal-03094445
https://hal.science/hal-03094445
Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Speaking while moving: Does the head compensate for the hands not being able to move?

Hélène Serré, GIPSA-lab, helene.serre@gipsa-lab.fr
Susanne Fuchs, fuchs@leibniz-zas.de
Marion Dohen, GIPSA-lab, marion.dohen@gipsa-lab.fr
Amélie Rochet-Capellan, GIPSA-lab, amelie.rochet-capellan@gipsa-lab.fr

Background

Not being able to move the hands can reduce vocabulary diversity and precision (Rimé, 1984; Hostetter, Kita & Alibali, 2007) and increase disfluency (Finlayson et al., 2003; Hostetter, Kita & Alibali, 2007). However, for contradictory results see Hoetjes et al., 2014.

While speaking, people also move their head and eyebrows (e.g. Kendon, 2004) potentially in synchrony with prosodic parameters (Graf et al., 2002; Hadar, 1983).

Eyebrow, eye and finger movements would increase when speakers cannot gesture with their hands (Rimé et al., 1984).

Participants could compensate for not being able to move their hands by moving other parts of their body (Finlayson et al., 2003). This compensation might remove the effects of the constraint.

Do head movements compensate for the hands not being able to move?

In this preliminary study, we analyzed the kinematics of head movements using data from a motion capture experiment investigating speech-limb-breathing interaction. People were asked to recall stories in different limb movement conditions.

Automatic analysis of motion using motion capture could be helpful for analyzing larger data sets and provide complementary evidences to qualitative approaches (Zhao et al., 2012).

Question

Do head movements compensate for the hands not being able to move?

Results

In the HF condition, the more the participants gesture with the hands, the more they move their head. It is not correlated with head movement quantity in the HB condition.

Conclusions

There is no difference in average head displacement whether the participants have the hands blocked or not when they speak.

Maybe because they do no gesture a lot. The relationship between hands and head movement quantity suggests that when the speakers are free to move, the more they move their hands, the more they also move their head.

When limbs and hands are blocked in a 50-minute conversation, the activity of eyebrows, eyes, mouth, and fingers increases (Rimé et al., 1984) vs a 2-minute story retelling with a much higher cognitive load less communicative gestures.

MoCap equipment may also affect speakers’ motions. Eyebrows movements may be a more reliable indicator.

Entrainment between body parts, rather than compensation, may support speakers’ behavior.

Motion capture will enable the exploration of different aspects of kinematics such as limb synchronization or rotation motion.

References


Acknowledgments This research is jointly supported by the French National Research Agency (ANR-17-PCR-0002-01) and the German Research Foundation (DFG) as part of the SALAMMBO project (Spoken Language in Motions: Learning and Adaptation of Speech Communication in the context of Body Motions) thank you to François Berard from the LGI, Grenoble, and Silvain Gerber from Gipsa-Lab, for their help.

Procedure

25 German speakers (19 women and 6 men) between 20 and 29 years old (mean=23.3 years, standard deviation=2.5 years)

Main task: recall 4 stories freely, in one of the following conditions: hands free (HF), hands blocked (HB), biking with the legs (LBi), biking with the arms (ABI)

Analysis

1. Switch from fixed to moving coordinate referential
2. Measure of synchronisation between back and head movements on each axis: coherence
3. 3D displacement and rotation movements
4. Averaged displacement and rotation of the head on each trial

Background

20 German speakers (19 women and 6 men) between 20 and 29 years old

Main task: recall 4 stories freely, in one of the following conditions: hands free (HF), hands blocked (HB), biking with the legs (LBi), biking with the arms (ABI)

Results

In the HF condition, the more the participants gesture with the hands, the more they move their head. It is not correlated with head movement quantity in the HB condition.

Conclusions

There is no difference in average head displacement whether the participants have the hands blocked or not when they speak.

Maybe because they do no gesture a lot. The relationship between hands and head movement quantity suggests that when the speakers are free to move, the more they move their hands, the more they also move their head.

When limbs and hands are blocked in a 50-minute conversation, the activity of eyebrows, eyes, mouth, and fingers increases (Rimé et al., 1984) vs a 2-minute story retelling with a much higher cognitive load less communicative gestures.

MoCap equipment may also affect speakers’ motions. Eyebrows movements may be a more reliable indicator.

Entrainment between body parts, rather than compensation, may support speakers’ behavior.

Motion capture will enable the exploration of different aspects of kinematics such as limb synchronization or rotation motion.