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!  Integrated circuits in radioactive environment 
"  Suffer from various types of Single Event Effects (SEE) 

I. Introduction 

-  Single Event Transient (SET), 

-  Single Event Upset (SEU), 

-  Single Event Latchup (destructive) 

-  Single Event Gate Rupture, etc. 

!  Bulk Built-In Current Sensor (BBICS) 
"  Design to monitor the advent of SETs and SEUs 

"  Not to prevent their effects 
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I. Introduction 

!  SET mechanism – The inverter case 

P substrate 

N well 

P+ 

C"

out ‘1’ 

to Vdd 

P+ N+ N+ N+ P+ 

to Gnd 

in ‘0’ 

NMOS PMOS

Metal 1 
MOS gate 

Sensitive area: reverse biased PN junction (drain of the off transistor) 

sensitive
PN junction 

4 / 20 



PTAP

I. Introduction 

!  SET mechanism – The inverter case 

P substrate 

N well 

P+ 

C"

out ‘1’ 

to Vdd 

P+ N+ N+ N+ P+ 

to Gnd 

in ‘0’ 

NMOS PMOS

Metal 1 
MOS gate 

ionizing ion track 

Sensitive area: reverse biased PN junction (drain of the off transistor) 

4 / 20 



PTAP

I. Introduction 

P substrate 

N well 

P+ 

C"

out ‘1’ 

to Vdd 

P+ N+ N+ N+ P+ 

to Gnd 

in ‘0’ 

NMOS PMOS

Metal 1 
MOS gate 

!  SET mechanism – The inverter case 

ionizing ion track 

=> ‘0’ 

SEE current flows through substrate and its biasing TAPs 
4 / 20 



PTAP

I. Introduction 

P substrate 

N well 

P+ 

C"

out ‘1’ 

to Vdd 

P+ N+ N+ N+ P+ 

to Gnd 

in ‘0’ 

NMOS PMOS

Metal 1 
MOS gate 

SEE current flows through substrate and its biasing TAPs 
5 / 20 

!  BBICS principle: monitoring bulk currents 



BBICS: monitor SEE current through node NMOS_bulk 
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BBICS: monitor SEE current through node NMOS_bulk 
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II. Zhang et al. BBICS architecture 

!  Zhang et al. BBICS architecture     [zhang2010] 
"  Published in 2010, experimental validation reported in 2013 

NMOS monitoring less effective than expected?! 
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II. Zhang et al. BBICS architecture 

"  NMOS-BVIS : NMOS monitoring / PMOS-BVIS : PMOS monitoring 
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II. Zhang et al. BBICS architecture 

"  Experimental testing of NMOS-/PMOS-BVIS    [zhang2013] 

Test chip CMOS bulk 90 nm: 
•  many instances of NMOS-/PMOS-BVIS, 

•  multiplier as a test element. 
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II. Zhang et al. BBICS architecture 

"  Experimental testing of NMOS-/PMOS-BVIS    [zhang2013] 

Ionizing particle effect emulation with a laser source: 

 - λ = 800 nm, laser spot Ø = 1.6 µm, pulse duration = 1 ps  

# of biasing contact (NTAPs or PTAPs) 10 40 80 160 

Multiplier SEE sensitivity threshold 82 pJ 82 pJ 82 pJ 82 pJ 

PMOS-BVIS detection threshold 15 pJ 42 pJ 75 pJ n.d. 

NMOS-BVIS detection threshold 110 pJ 149 pJ n.d. n.d. 

n.d. = not detected 

PMOS monitoring: efficient up to 80 biasing contacts 

NMOS monitoring: inefficient 
SEE sensitivity always < BBICS detection threshold 
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III. Analysis 

!  Experimental measurements 
"  Understanding SEE currents in NMOS/PMOS 

Test chip: CMOS 90 nm, bulk and triple-well, single NMOS and PMOS 

Experiment settings: measure of laser-induced currents 

at  λ = 1064 nm, laser spot Ø = 5 µm, pulse duration = 20 µs, 1.25 W  
(settings outside ionizing particle emulation) 
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III. Analysis 

!  Improving BBICS efficiency 
"  Use of triple-well CMOS 
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III. Analysis 

"  Use of triple-well CMOS Pwell-DNwell junction  
reverse biased NMOS current: 

Bulk current (NMOS-BBICS monitored) 
6 mA 

Drain current contributing to SEE  
200 µA 

laser beam 

Bulk current an order of magnitude above drain current 
Promote detection over SEE generation  
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IV. Validation 

!  Single BBICS architecture 
•  Design of a test chip: CMOS 65-nm (bulk and triple-well) 

•  New BBICS architecture: the single BBICS (design to bring together NMOS and 
PMOS monitoring ability) 
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IV. Validation 

"  Validation on the basis of simulation 

•  Post-layout electrical simulation (parasitic R and C extracted) 

•  Current source to model SEE currents: 
current pulse, double exponent, 50 ps rise time, 150 ps fall time, µA range 

•  Investigation of SEE and BBICS detection thresholds 
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IV. Validation 

"  Validation on the basis of simulation 

# of inverters 40 80 120 200 

Threshold of NMOS SET 102 µA 104 µA 104 µA 104 µA 

Single BBICS detection threshold 56 µA 82 µA 107 µA 155 µA 

1. CMOS bulk (NMOS on Psub, ie. no triple-well) 

Threshold of PMOS SET 126 µA 131 µA 134 µA 137 µA 

       corresp. PMOS bulk current >1.2mA >1.3mA >1.3mA >1.3mA 

Single BBICS detection threshold 45 µA 67 µA 107 µA 134 µA 

NMOS monitoring weakness confirmed on the basis of simulation 
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IV. Validation 

"  Validation on the basis of simulation 

# of inverters 40 80 120 200 

Threshold of NMOS SET 94 µA 95 µA 98 µA 100 µA 

       corresp. NMOS bulk current >0.9mA >0.9mA >0.9mA >1 mA 

Single BBICS detection threshold 75 µA 112 µA 147 µA 212 µA 

2. Triple-well CMOS (NMOS in Pwell) 

Threshold of PMOS SET 118 µA 125 µA 127 µA 130 µA 

       corresp. PMOS bulk current >1.1mA >1.2mA >1.2mA >1.3mA 

Single BBICS detection threshold 84 µA 125 µA 163 µA 237 µA 

Triple-well restore NMOS monitoring ability of BBICS 
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IV. Conclusion 

!  Review of BBICS principle 

!  Perspectives  

"  Experiments on a 

!  Analysis and proposal of a solution 

"  Exp. revealed a weakness in monitoring NMOS 

"  Use of triple-well CMOS (NMOS in Pwells) 

"  Validation on simulation basis (new BBICS architecture) 

CMOS 65-nm test chip 
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