
HAL Id: hal-03094220
https://hal.science/hal-03094220

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expedition in the Update Universe
Guillaume Aucher

To cite this version:
Guillaume Aucher. Expedition in the Update Universe. Dynamic Logic. New Trends and Appli-
cations. DaLi 2020., Oct 2020, Prague, Czech Republic. pp.1-16, �10.1007/978-3-030-65840-3_1�.
�hal-03094220�

https://hal.science/hal-03094220
https://hal.archives-ouvertes.fr


Expedition in the Update Universe

Guillaume Aucher

Univ Rennes, CNRS, IRISA
263, Avenue du Général Leclerc

35042 Rennes Cedex, France
guillaume.aucher@irisa.fr

Abstract. Dynamic epistemic logic (DEL) is a logic dealing with knowl-
edge and belief change based on the concepts of event model and product
update. The product update accounts for the way we update our knowl-
edge and beliefs about situations when events occur. However, DEL does
not account for the way we update our knowledge and beliefs about
events when other events occur. Indeed, events are assumed to occur in-
stantaneously in DEL and this idealization precludes to study this kind
of update. We provide a logical analysis of updates without this assump-
tion. It leads us to identify a graph structure for events based on their
relative dependence of occurence and to introduce a generic product
update. The DEL product update is a specific instance of this generic
product update.

1 Introduction

It is commonly believed that only our knowledge and beliefs about situations
can be updated, whereas our knowledge and beliefs about events cannot. This
common belief implies that what we represent has always a manichean nature:
on the one hand we have situations and on the other hand we have events, and
the occurrence of events update our knowledge and beliefs about situations. The
most prominent logical formalisms of knowledge representation and reasoning
are all based on this approach [13, 14].

As we shall see, this manichean distinction is not fine enough to account for
the dynamics of knowledge and beliefs. In fact, our knowledge and beliefs about
events can also be updated and this can be demonstrated by the following sce-
nario. Assume that there are two barrels of wine: barrel 1 and barrel 2. Barrel 1
is being filled with wine but Ann and Bob do not know which of these barrels is
being filled. Clearly, this filling of barrel 1 with wine is an event, perceived iden-
tically by Ann and Bob. Now, assume that the wine waiter privately announces
to Bob that it is actually barrel 1 which is being filled. Again, clearly, this an-
nouncement is another event, perceived differently by Ann and Bob. Then, as a
result of this second event, Bob knows that barrel 1 is being filled but Ann still
does not know which barrel is being filled. So, Bob’s knowledge and beliefs of
the first event (the filling with wine) has been updated by his perception of the
second event (the announcement).



This scenario cannot be directly represented in DEL because only situations,
and not events, can be updated by events. This stems from the assumption that
events are implicitly assumed to be instantaneous in DEL, thus leading to a new
situation, and our perception of an event can be updated only if this event lasts
long enough, obviously. Hence, this idealization precludes the study of important
logical dynamics like the one of the barrel example. However, this assumption
can be perfectly removed from the DEL framework. Once we remove it, we realize
that the fact that events and not only situations can be updated by other events
is only the ‘tip of the iceberg’ and many other logical dynamics start to appear.
In particular, we realize that events have an internal and rich structure based
on their relative dependence of occurrence. Moreover, this structure constrains
and determines the updates which are possible and a generic kind of product
updates can then be identified. A contribution of this article is to provide a
formal account of these logical dynamics by eliciting a series of principles. These
principles will guide us for defining our formal framework.

Organization of the article. In Section 2, we briefly recall DEL. In Section 3,
we analyze the structure of events by means of various examples and we elicit a
number of intuitive principles about events. We use them in Section 4 for mo-
tivating our formal definitions of event structures and generic product updates.
We end Section 4 by providing an example of scenario which cannot (or hardly)
be modeled in DEL. We conclude and discuss our approach in Section 5.

2 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is a relatively recent non-classical logic intro-
duced by [4]. It extends ordinary modal epistemic logic [11] by the inclusion of
event models to describe actions/events, and a product update operator that de-
fines how epistemic models are updated as the consequence of executing actions
described through event models. For more details about DEL, see [3, 14].

2.1 Epistemic Models

In the rest of this article, A := {1, . . . , N} is a finite set of indices called agents
and P0 is a set of propositional letters called atomic facts which describe static
situations.

Definition 1 (Language L (P)). Let P be a set of propositional letters. We
define the language L (P) inductively by the following grammar in BNF:

L (P) : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �jϕ

where p ranges over P and j over A. When P = P0, L (P0) is called the epistemic
language. We will use the following abbreviations: ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ) and
ϕ→ ψ := ¬ϕ ∨ ψ. To save parenthesis, we use the following ranking of binding
strength: �j ,¬,∧,∨,→ ( i.e., �j binds stronger than ¬, which binds stronger
than ∧, etc.). For example, �j¬p ∧ q → r ∨ s means ((�j(¬p)) ∧ q) → (r ∨ s).
If E = {ϕ1, . . . , ϕn}, we write

∧
E := ϕ1 ∧ . . . ∧ ϕn and

∨
E := ϕ1 ∨ . . . ∨ ϕn.

2



A (pointed) epistemic model (M, w) represents how the actual world repre-
sented by w is perceived by the agents. Atomic facts are used to state properties
of this actual world. Intuitively, wRjv means that in world w agent j considers
that world v might be the actual world w.

Definition 2 (P–model and epistemic model). Let P be a set of proposi-
tional letters. A P–model is a tuple M = (W,R, V ) where:

– W is a non-empty set;
– R : A→ 2W×W assigns an accessibility relation to each agent;
– V : P→ 2W is a valuation which assigns a subset of W to each atomic event

of P.

If w, v ∈ W , we write wRjv for (w, v) ∈ R(j), and Rj(w) denotes {v ∈
W | wRjv}. We write w ∈ M for w ∈ W and (M, w) is called a pointed P–
model. When P = P0, M is called an epistemic model and (M, w) is called
a pointed epistemic model (w often represents the actual world). The class of
pointed P–models is denoted C(P).

As one can easily notice, a P–model is an ‘ordinary’ Kripke model. Then,
the epistemic language can be used to describe and state properties of epistemic
models.

Definition 3 (Epistemic logic). Let P be a set of propositional letters. We
define the satisfaction relation ⊆ C(P)×L (P) inductively as follows. In the
truth conditions below, (M, w) ∈ C(P) is any pointed P–model and ϕ,ψ ∈ L (P).

M, w p iff w ∈ V (p)

M, w ¬ψ iff it is not the case that M, w ψ

M, w ϕ ∧ ψ iff M, w ϕ and M, w ψ

M, w �jϕ iff for all v ∈ Rj(w), we have M, v ϕ

We write M ϕ when M, w ϕ for all w ∈ M. If S ⊆ L (P), we write
M, w S (M S) when for all ϕ ∈ S, M, w ϕ (resp. M ϕ). The triple(
L (P) , C(P),

)
is a logic called the epistemic logic based on P.

The formula �jϕ reads as “agent j believes ϕ”. Its truth conditions are
defined in such a way that agent j believes ϕ holds in a possible world when ϕ
holds in all the worlds agent j considers possible in this possible world.

Example 1 (‘Barrel’ example). Assume that there are two agents Ann and Bob
and that there are two barrels of wine: barrel 1 and barrel 2. So, we have
A := {A,B} with A standing for Ann and B standing for Bob, and P0 := {p0, q0}
with p0 standing for ‘barrel 1 is full’ and q0 for ‘barrel 2 is full’. The situation
is such that barrel 1 is not full and barrel 2 is full, but Ann and Bob do not
know which one is full. This situation is depicted in the pointed epistemic model
(M0, w0) = (W,R, V,w0) of Fig. 1 (left). We have W = {w0, v0} and the circled
world w represents the actual world. Possible worlds are labeled by the proposi-
tional letters of P0 that are true at these worlds. The accessibility relations are

3



represented by arrows indexed by A or B: an arrow indexed by A (or B) from
a world u to a world u′ means that (u, u′) ∈ RA (resp. (u, u′) ∈ RB). So, we
haveM0, w0 �A(p0 ∨ q0)∧�B(p0 ∨ q0): ‘Ann and Bob both know that one of
the two barrels is full’. The situation where both barrels are full and both Ann
and Bob know it is represented in the pointed epistemic model (N0, u0) of Fig.
1 (right).

w0 : q0

u0 : p0, q0

v0 : p0A,B

A,B

A,B A,B

Fig. 1: Pointed epistemic models (M0, w0) and (N0, u0)

2.2 Event Models

A pointed event model (E , e) represents how the actual event represented by e is
perceived by the agents. Intuitively, eRαj f means that while the possible event
represented by e is occurring, agent j considers possible that the possible event
represented by f is actually occurring.

Definition 4 (Event model). An event model is a tuple E = (Wα, Rα,Pre,Post)
where:

– Wα is a finite and non-empty set of possible events;
– Rα : A→ 2W

α×Wα

assigns an accessibility relation to each agent;
– Pre : Wα → L (P0) is a precondition function which assigns to each possible

event a formula of L (P0);
– Post : Wα → (P0 → L (P0)) is a postcondition function which assigns to

each possible event a function from P0 to L (P0).

If e, f ∈ Wα, we write eRαj f for (e, f) ∈ Rα(j), and Rαj (e) denotes {f ∈ Wα |
eRαj f}. We write e ∈ E for e ∈ Wα, and (E , e) is called a pointed event model
(e often represents the actual event).

Our definition of event models corresponds to the definition of [16]. It embeds
the definition of [15] based on the notion of substitutions.

Example 2 (‘barrel’ example). Assume that barrel 1 is being filled with wine.
Ann and Bob do not know whether it is barrel 1 or barrel 2 which is being filled.
This event and its perception by the agents Ann and Bob is represented in Fig.
2 (left). We use the same notations for the possible events and the accessibility
relations as in Fig. 1. The preconditions are such that Pre(e) = ¬p0 (and
Pre(f) = ¬q0): barrel 1 (resp. barrel 2) is not full when barrel 1 (resp. barrel

4



2) is being filled with wine. The postconditions are such that Post(e)(p0) = >
and Post(e)(q0) = q0 (and Post(f)(p0) = p0 and Post(f)(q0) = >): when the
filling of barrel 1 (resp. barrel 2) terminates, barrel 1 (resp. barrel 2) is full, the
other barrel remaining in the same state.

e : ¬p0
g : ¬p0

f : ¬q0A,B

A,B

A,BA,B

Fig. 2: Pointed event models (E , e) and (F , g)

2.3 Product Update

The DEL product update of [4] is defined as follows. This update yields a new
epistemic modelM⊗E representing how the new situation which was previously
represented by M is perceived by the agents after the occurrence of the event
represented by E .

Definition 5 (Product update). Let M = (W,R, V ) be an epistemic model
and let E = (Wα, Rα1 , . . . , R

α
N ,Pre,Post) be an event model. We define the

epistemic model M⊗ E = (W⊗, R⊗, V ⊗) as follows (with the proviso that W⊗

is not empty): for all p ∈ P0 and all j ∈ A,

– W⊗ :=
{

(w, e) ∈W ×Wα | M, w Pre(e)
}

;

– (v, f) ∈ R⊗j (w, e) iff v ∈ Rj(w) and f ∈ Rαj (e);

– (w, e) ∈ V ⊗(p) iff M, w Post(e)(p).

If (M, w) and (E , e) are pointed epistemic and event models. IfM, w Pre(e),
we define the pointed epistemic model (M, w)⊗ (E , e) = (M⊗E , (w, e)).

Example 3. The product update of (M0, w0) by (E , e) results in the epistemic
model represented on the extreme right of Fig. 3. This epistemic model is in fact
bisimilar to the epistemic model (N0, u0) of Fig. 1. In this epistemic model, we
have that N0, u0 (p0 ∧ q0) ∧�A(p0 ∧ q0) ∧�B(p0 ∧ q0): ‘both barrels are full
and Ann and Bob both know it’.

2.4 DEL

Definition 6 ([4]). We define the language Ldel inductively by the following
grammar in BNF:

Ldel : ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �jϕ | [E , e]ϕ

where p ranges over P0, j over A and (E , e) over Cα.

5



e : ¬p0

f : ¬q0A,B

A,B

A,B⊗

w0 : q0

v0 : p0A,B

A,B

A,B =

(w0, e) : p0, q0

(v0, f) : p0, q0

A,B

A,B

A,B

Fig. 3: Product update of (M0, w0) by (E , e)

Intuitively, [E , e]ϕ reads as ‘ϕ will hold after the occurence of the event repre-
sented by (E , e)’ and 〈E , e〉ϕ reads as ‘the event represented by (E , e) is executable
in the current situation and ϕ will hold after its execution’.

Definition 7 (Dynamic epistemic logic). We define the satisfaction relation
⊆ C(P0)×Ldel inductively as follows. In the truth conditions below, (M, w) ∈

C(P) is any pointed P–model and ϕ ∈ L (P).

M, w [E , e]ϕ iff if M, w Pre(e) then (M, w)⊗ (E , e) ϕ

The other truth conditions for the Boolean and modal cases are identical to those
of Definition 3. The triple

(
Ldel, C (P0) ,

)
is a logic called dynamic epistemic

logic (DEL).

Proposition 1 ([4]). DEL is as expressive as the epistemic logic based on P0.

3 Analyzing the Structure of Events

In this section, we discuss and analyze two examples from which we elicit a series
of principles about events. These principles, whose some of them are obvious,
are introduced to motivate the formal definitions of Section 4. They will allow
us to show that the dependence graph of Definition 8 can be any directed graph,
and not necessarily a tree or a bipartite graph for example.

In philosophy, the exact definition of an event is a moot topic [17] and we do
not intend to take any stance in this debate. Here, we are not so much interested
in the nature of events but rather in their logical and internal structure. Our
examples will always be chosen so that events are indisputable events.

3.1 The ‘Barrel’ Example

Assume at time t1 that there are two barrels of wine: barrel 1 and barrel 2.
Barrel 2 is full and barrel 1 is being filled with wine, but Ann and Bob do not
know which of these barrels is being filled. However, they know that one of them
is full (and therefore cannot be filled) but they do not know which one. Clearly,
this filling of barrel 1 with wine is an event, perceived identically by Ann and
Bob. We consider two Scenarios from which we are going to elicit a series of
principles.

6



Scenario 1. Assume that during barrel 1 is filled the wine waiter privately an-
nounces to Bob that it is actually barrel 1 which is being filled. Again, clearly,
this announcement is another event, perceived differently by Ann and Bob. Then,
as a result of this second event, Bob knows that barrel 1 is being filled but Ann
still does not know which barrel is being filled. So, Bob’s knowledge and beliefs
of the first event (the filling with wine) has been updated by his perception of
the second event (the announcement).

It is important to modify the event model while it is being executed, as
opposed to modifying the Kripke model that is obtained by applying the event
model because if we sever the relation between (w, e1) and (w, e2) after the
update, this means that the event modeled by e1 has already ended and therefore
the update is on the resulting situation and not on the perception of the event.
What we want to model is an update about the perception of the event itself
while this event is occuring, not after. This example leads us to state the following
principle:

Principle 1: Our knowledge about ongoing events can be updated by the
perception of other events.

Moreover, this announcement depends on the fact that barrel 1 is being filled
and not on the precondition of this event, i.e. the fact that barrel 1 is not full.
In this scenario, the nature of the event is “barrel 1 is being filled with wine”,
its precondition is “barrel 1 is not full” and its postcondition is “barrel 1 is full”.
This example entails that the very nature of events has to be taken into account
when knowledge of events is updated by the perception of other events. This is
captured by the following principle:

Principle 2: The occurrence of events sometimes depends on the nature of
other events and not on their preconditions.

Scenario 2. Assume at time t2 that the wine waiter publicly announces that
barrel 1 is not full. As a result of this announcement, at time t3, Ann and Bob
both know that barrel 2 is full. From this new piece of information, they can
infer at time t5 that it is barrel 1 which is being filled and not barrel 2 (since the
latter is full). Hence, from this example, we can state the following principle:

Principle 3: Our knowledge about a situation or an event can update our
knowledge of another event while this other event is occuring.

Moreover, Ann and Bob may not make immediately the inference that it is
barrel 1 which is being filled, but only as an afterthought at time t4. Hence,

Principle 4: After learning a new piece of information, we do not always
update immediately our knowledge to take it into account.

Note that Principle 4 is very much related to well-known problems in
epistemic logic dealing with bounded rationality and logical omniscience (for
more details on these problems, see [7, Chap. 9], [8, p. 157–168] or [9]). In fact,
for some time, Ann and Bob may entertain the inconsistent possibility that
barrel 2 is full and that at the same time it is being filled. So,

7



Principle 5: We may consider possible at the same time that some event is
occurring and that its precondition does not hold.

Formalizing the ‘barrel’ example. We can formalize the example by introducing
the following sets of propositional letters:

– P0 := {p0, q0}, where p0 stands for “Barrel 1 is full” and q0 for “Barrel 2 is
full”.

– P1 := {p1}, where p1 stands for “The wine waiter truthfully announces that
barrel 1 is not full”.

– P2 := {p2, q2}, where p2 stands for “Barrel 1 is being filled” and q2 for
“Barrel 2 is being filled”.

– P3 := {p3}, where p3 stands for “The wine waiter truthfully announces that
barrel 1 is being filled”.

Then, we can represent the dependence between these sets of propositional
letters by the graph (P,S) of Fig. 4 (where P := {P0,P1,P2,P3} and S ⊆ P×P
is defined in Fig. 4). An edge (Pi,Pj) ∈ S means that the events described by Pi
depend on the events/situations described by Pj . More precisely, an edge is set
from Pi to Pj when the preconditions for the occurrence of any atomic event of
Pi depends on the truth value of formula(s) of L (Pj) or that the occurrence of
the atomic events of Pi will affect in some way or another the occurrence of the
atomic events of Pj or their knowledge and beliefs (to be more concrete, see all
subsequent examples, and in particular the ‘traffic lights’ example).

Note that we have an arrow from P0 to P2. This arrow is motivated by
the example that we used to introduce Principle 3: our knowledge about a
situation can also update our perception/knowledge about an ongoing event.

P0

P1 P2

P3

Fig. 4: Dependence graph for the ‘barrel’ example

For each edge (P′,P) ∈ S, we can define (P′,P)–preconditions functions
PreP′,P : P′ → 2L(P) and (P′,P)–postconditions functions PostP′,P : P′ →(
P− > 2L(P)

)
. The reading of PreP′,P(p) := ϕ is ‘the precondition of the atomic

event p is ϕ’; the reading of PostP′,P(q)(p) := ϕ is ‘p holds after the occurrence
of the atomic event q if, and only if, ϕ held before this occurrence’.

8



– PreP1,P0
(p1) := ¬p0: the wine waiter can truthfully announce that barrel 1

is not full only if it is indeed not full.
PostP1,P0

(p1)(p) := p for all p ∈ P0: the announcement of the wine waiter
does not change the actual state of the world.

– PreP2,P0
(p2) := ¬p0 and PreP2,P0

(q2) := ¬q0: barrel 1 and barrel 2 can be
filled only if they are not full.
PostP2,P0

(p2)(p0) := > and PostP2,P0
(p2)(q0) := q0: after the filling of

barrel 1, it is full, the status of barrel 2 remains unchanged.
PostP2,P0(q2)(p0) := p0 and PostP2,P0(q2)(q0) := >: after the filling of
barrel 2, it is full, the status of barrel 1 remains unchanged.

– PreP3,P2
(p3) := p2: the wine waiter can truthfully announce that barrel 1 is

being filled only if it is indeed being filled.
PostP3,P2(p3)(p) := p for all p ∈ P2: the announcement of the wine waiter
does not change the actual state of the world.

– PreP3,P0
(p3) := ¬p0: the wine waiter can truthfully announce that barrel 1

is being filled only if it is not full (so that it can indeed be filled).
PostP3,P0

(p3)(p) := p for all p ∈ P0: the announcement of the wine waiter
does not change the actual state of the world.

– PreP0,P2(p0) := ¬p2 and PreP0,P2(q0) := ¬q2: if one of the barrels is full, it
is not possible that it is being filled.
PostP0,P2

(p′)(p) := p for all p ∈ P2 and p′ ∈ P0.

Note that there is no arrows towards P1 nor P3. This is because these an-
nouncements are instantaneous, and therefore it is not possible that the agents’
beliefs about them change while they are occurring, unlike the filling event of
P2. This said, we could add arrows from, say, P0 to P1 if we considered that
the agents can assess the truthfulness of the announcement, which can be a lie,
before applying the product update on the event model, and may then revise it
beforehand, based on their beliefs about the barrels.

3.2 The ‘Traffic Lights’ Example

We consider a näıve representation of a traffic lights system on a road. This
example would be classically modeled by means of timed–automata [2], but we
follow here the modeling approach of DEL to investigate what this example
implies in term of representational requirements (formalized by our principles)
for a DEL style modeling approach based on event models and product updates.

Assume that there are n traffic lights on a road. Each traffic light can be
either ‘green’, ‘yellow’ or ‘red’ and only one of them at the same time. The color
changes and goes from green via yellow to red and then back to green. Between
any two of these states, a timer counts the time that elapses and eventually
changes the traffic light from one state to the next after a certain amount of
time. Then, each time the state of a light changes (from ‘green’ to ‘yellow’, from
‘yellow’ to ‘red’, or from ‘red’ to ‘green’), the corresponding timer starts (timer
‘yellow’, timer ‘red’ or timer ‘green’). Multiple timers run at the same time and
they can be arbitrarily many. So,

9



Principle 6: Arbitrary many events can occur at the same time and in par-
allel.

Moreover, we assume that there is a synchronization between the different
traffic lights: when the ‘red’ timer of light k starts, the ‘green’ timer of traffic
light k + 1 ends and the traffic light k + 1 goes to state ‘yellow’ (and then the
yellow timer of traffic light k + 1 starts). This synchronization is set in order to
ease the flow of cars on the road so that cars do not stop at each traffic light.

When a pedestrian comes at traffic light k and presses the ‘crossing button’,
the ‘green’ timer changes its timer mode and goes to another mode in order to
shorten the amount of time that the pedestrian will have to wait. As a result,
and in order to synchronize the other traffic lights on the road, the timer mode
of traffic light k+1 also changes mode if its timer is currently in its usual ‘green’
mode, so as to keep the synchronization between the different traffic lights. (To
be really precise, this change of timer mode of traffic light k should also affect the
timer mode of traffic light k− 1 in order to keep the system fully synchronized.)
Hence,

Principle 7: There can be an arbitrarily long chain of events, each event de-
pending on the occurrence of the previous one.

Moreover, if the pedestrian presses the ‘crossing button’ of traffic light k
when it is green, the new green timer mode will affect not only the green timer
mode of traffic light k + 1 but also the color of traffic light k (when the new
green timer of traffic light k ends). Therefore,

Principle 8: The occurrence of an event can have effects on multiple situations
or types of events.

Formalizing the ‘Traffic lights’ example. We can formalize the example by in-
troducing the following sets of propositional letters: for all k ∈ {1, . . . , n},
– Pk :=

{
gTimerk,yTimerk,rTimerk,gTimer′k

}
,

where gTimerk (resp. yTimerk, rTimerk, gTimer′k) stands for “the green
(resp. yellow, red, modified green) timer of traffic light k is running”.

– Pn+k := {Pressk},
where Pressk stands for “a pedestrian is pressing the crossing button of
traffic light k while it is green”.

– P0 := {greenk,yellowk,redk | k ∈ {1, . . . , n}},
where greenk (resp. yellowk, redk) stands for “traffic light k is green
(resp. yellow, red)”.

Then, we can represent the dependence between these sets of propositional
letters by the graph (P,S) of Fig. 5 (where P := {Pi | i ∈ {0, . . . , 2n}} and
S ⊆ P × P is defined in Fig. 5). An edge (P′,P) ∈ S means that the events
described by P′ depend on the events/situations described by P. We spell out
the precondition and postcondition functions. We only do it for the edges of the
form (Pk,P0) and (P0,Pk), where k ∈ {1, . . . , n}. We define (P′,P)–preconditions
functions PreP′,P : P′ → 2L(P) and (P′,P)–postconditions functions PostP′,P :
P′ →

(
P− > 2L(P)

)
as follows: for all k ∈ {1, . . . , n},

10



P0

P1 P2 P3 Pn

Pn+1 Pn+2 Pn+3 P2n

Fig. 5: Dependence graph for the ‘Traffic lights’ example

– PrePk,P0
(gTimerk) := greenk,

PrePk,P0
(yTimerk) := yellowk,

PrePk,P0
(rTimerk) := redk,

PrePk,P0
(gTimer′k) := greenk,

PostPk,P0(x)(p0) :=

{
> if p0 = y

⊥ otherwise

for all (x, y) ∈ {(gTimerk,yellowk), (yTimerk,redk), (rTimerk,greenk)}
and for all p0 ∈ P0.

– PreP0,Pk(greenk) := gTimerk ∨ gTimer′k,
PreP0,Pk(yellowk) := yTimerk,
PreP0,Pk(redk) := rTimerk,

PostP0,Pk(x)(pk) :=

{
> if pk = y

⊥ otherwise

for all (x, y) ∈ {(greenk,gTimerk), (yellowk,yTimerk), (redk,rTimerk)}
and for all pk ∈ Pk.

4 The Update Universe

The principles that we have elicited in Section 3 lead us to define what we call an
event structure and a generic product update. An event structure captures the
dependence relation between different types of events, based on their relative
pre/postconditions, while the generic product update deals with the dynamics
of knowledge and beliefs within the frame of a given event structure.

4.1 Event Structure

Because of Principle 2, the very nature of events plays a role in the dynamics
of knowledge and beliefs. Our idea is to define formally an ‘event’ model com-
pletely identically to the way we define an epistemic model. The propositional
letters for ‘event’ models will determine the factual nature of events, just as

11



they determine the factual nature of situations in epistemic models. Also, we
‘externalize’ the precondition and postcondition functions that were fused with
the event model in DEL. So, on the one hand, we have event types represented
by nodes in the dependence graph and on the other hand we have the different
pre/postconditions between these events. These relative pre/postconditions de-
termine in general the different edges of the dependence graph: an edge is set
from a node P′ to a node P when the preconditions for the occurrence of any
atomic event of P′ depends on the truth value of formulas of L (P) or when the
occurrence of the atomic events of P′ will affect in some way or another the
occurrence of the atomic events of P. This leads us to the following definition.

Definition 8 (Dependence graph, event structure). A dependence graph
is an irreflexive directed graph (P,S) such that P is a family of disjoint sets of
propositional letters. These sets are called event types and their elements atomic
events or facts. Let (P,S) be a dependence graph. If (P′,P) ∈ S,

– a (P′,P)–precondition function is a mapping PreP′,P : P′ → 2L(P). We de-
note by PREP′,P the set of all (P′,P)–precondition functions;

– a (P′,P)–postcondition function is a mapping PostP′,P : P′ →
(
P→ 2L(P)

)
.

We denote by POSTP′,P the set of all (P′,P)–postcondition functions.

An event structure (P,S,PRE,POST) is a dependence graph (P,S) to-
gether with two sets of precondition and postcondition functions PRE := {PreP′,P ∈
PREP′,P | (P′,P) ∈ S} and POST := {PostP′,P ∈ POSTP′,P | (P′,P) ∈ S}.

A dependence graph is a directed graph without specific constraint except
its irreflexivity. It seems natural to wonder whether it is in fact a specific kind
of graph: a tree, a chain, a clique,. . . The other principles can help us answering
this question. Indeed, we learn from Principle 1 that there can be more than
three event types. In fact, Principle 7 even indicates us that the number of
nodes in the dependence graph can be arbitrary. Moreover, from Principle 3,
we infer that there can be cycles in the dependence graph and it turns out that
our two examples illustrate this phenomenon. Hence, the dependence graph is in
general not a tree. Finally, we learn from Principle 8 that there can be multiple
outgoing edges from a given node of the dependence graph. Therefore, it is not
a chain either in general. So, from this analysis, we conclude that we cannot
impose any particular constraint on the definition of this dependence graph and
we state that it can be any kind of directed graph.

4.2 A Generic Product Update

In this section, (P,S,PRE,POST) is an event structure and (P′,P) ∈ S. Each
edge of an event structure induces a product update. To define it, we first need
to recover the pre/postconditions for each world of a P′–model from the (P′,P)–
pre/postcondition functions associated to an event structure.

Definition 9 ((P′,P)–precondition and postcondition functions of a P′–
model). Let M′ := (W ′, R′, V ′) be a P′–model.

12



– The (P′,P)–precondition function ofM′, PreM
′

P′,P : W ′ → 2L(P), is such that
for all w′ ∈W ′,

PreM
′

P′,P(w′) :=
⋃
p′∈P′

{PreP′,P(p′) | w′ ∈ V ′(p′)}

– The (P′,P)–postcondition function of M′, PostM
′

P′,P : W ′ →
(
P→ 2L(P)

)
, is

such that for all w′ ∈W ′, all p ∈ P,

PostM
′

P′,P(w′)(p) :=
⋃
p′∈P′

{PostP′,P(p′)(p) | w′ ∈ V ′(p′)} (1)

Note that the range of our precondition and postcondition functions are sets
of formulas, and not single formulas like for event models (see Definition 4). This
generalization of the DEL framework is meaningful. Indeed, there is no particular
reason that the occurrence of an event depends on a property definable in modal
logic by a single formula. The precondition of an event is implicitly determined
by the class of pointed epistemic models in which this event can occur.1 This
class of epistemic models is often infinite and there is no reason that it should
be definable by a single formula. In general, and especially in an infinite setting,
it is quite possible that an event occurs in a class of epistemic models which is
only definable by an infinite set of formulas [6, Sect. 2.6-3.3].

Definition 10 (Generic product update). LetM = (W,R, V ) be a P–model
and let M′ = (W ′, R′, V ′) be a P′–model. The (P′,P)–product update ofM and
M′ is the P–modelM�M′ = (W�, R�, V �) defined as follows (with the proviso
that W� is not empty): for all p ∈ P0 and all j ∈ A,

– W� :=
{

(w,w′) ∈W ×W ′ | M, w PreM
′

P′,P(w′)
}

;

– (v, v′) ∈ R�j (w,w′) iff v ∈ Rj(w) and v′ ∈ Rj(w′);

– (w,w′) ∈ V �(p) iff M, w ϕ for some ϕ ∈ PostM
′

P′,P(w′)(p).

The following example is a concrete example that the standard event update
cannot account for: if everything was put on the same level, we could not account
for the update of events by other events and then subsequently the update of
events by the situation. This example will be discussed once again in the next
section.

Example 4 (‘Barrel’ example). In Fig. 6 we represent the generic product update
that occurred in Scenario 1 of Section 3.1, whereby Ann and Bob’s perception
of the ongoing event was updated by their perception of another event (namely
the fully private announcement to Bob that barrel 1 is being filled). In Fig. 7, we
represent the Scenario 2 of Section 3.1. At each line, we represent the situations
and the events that occur at the corresponding time stamp as they are defined in

1 [5] defined independently from the DEL community a variant of the DEL framework
where preconditions are replaced by classes of pointed epistemic models.

13



w1 : p2 w2 : p3

>q2

(w1, w2) : p2

p2 q2

=�
A,B

A,B B

A,B

B

A,B A,B

A,B A A
A

A,B

Fig. 6: Barrel example: Scenario 1

Scenario 2. To simplify notations, edges are represented without arrows, so the
reader must assume that all arrows are bidirectional and that there are reflexive
arrows indexed by all agents at each node. When there are no arrows, this means
that edges are bidirectional and reflexive. We start at time t1 with two models,
one showing knowledge and beliefs concerning q0, p0, the other one concerning
p2 and q2 (which actually represent events). Then an announcement is added
(represented by w1 : p1) such that in the system state at time t2 we have three
models. Then two of the models “amalgamate” by a product update leading
to the next system state at time t3 with two models. At time t4, the situation
updates in a backward fashion the perception of the event, leading to the final
situation at time t5.

w2 : p2

v2 : q2

A,B

w : q0

v : p0

A,B

w2 : p2

v2 : q2

A,B

w : q0

w1 : p1

v : p0

A,B

w : q0

w1 : p1�
v : p0

A,B

w2 : p2

v2 : q2

A,B

w2 : p2

(w,w1) : q0 (w,w1) : q0�
v2 : q2

A,B

(w,w1) : q0 (w2, (w,w1)) : p2

t1:

t2:

t3:

t4:

t5:

Fig. 7: Barrel example: Scenario 2

14



5 Discussion

One may still argue that DEL can already handle our examples. Because we deal
with lasting events, what seems to be needed are propositions stating the status
of events in the epistemic models, such as “(the filling of barrel 1) has ended”,
“(the filling of barrel 2) is still happening” together with constraints such as
“(the filling of barrel 2) is still happening”→“barrel 2 is not full”. Then, the
standard DEL setting can also handle the updates of knowledge of events by the
perception of other events. In our approach, the uncertainty of the occurrences
of the events and the uncertainty of basic facts are captured in separate models
initially and the updates are on each model separately. However, they can be
put in the same model if the propositions about the events can be expressed
in the language. In a sense, our whole framework and the event structure that
we have elicited could simply be ‘flattened’ by adding some sort of predicates
about events that would be formalized by specific propositional letters. Even if
that would work out from a formal point of view, this ad hoc solution is very
far to be satisfactory from a conceptual and modeling point of view. Indeed,
the intuitive insights that we have elicited by means of our principles would
then be disguised under the form of (meta-)predicates and constraints between
propositional letters. These predicates in disguise and constraints would actually
encode our dependence graphs and event structures.

One may then argue that our examples could be dealt with by existing ex-
tensions of DEL such as temporal DEL with past. In particular, Scenario 2 of
the ‘barrel’ example could be reformulated in terms of uncertainty about which
actual event history the agents are in. This kind of modeling is however subject
to problems which are inherent to any state–based models such as all dynamic
and process logics [10, 12]. It is hardly possible to express in these logics that
“barrel 1 is being filled” and to model Scenario 1. One could express it in an
ad hoc way by adding the propositional letter “barrel 1 is being filled” in the
language, but we would need to also update its truth value when the filling ends
and we would need another specific update to formalize this ending of the filling
event. Likewise, Scenario 1 would be possible in temporal DEL with past only
if we had that propositional letter in our model and language. In fact, we would
need again to somehow encode our event structure. Moreover, the kind of mod-
ular reasoning with bounded rationality which occurs in Scenario 2 at time t4
would not be really captured with this type of state–based and history–based
logic.

One may then argue that it is not clear exactly how specific scenarios are sup-
posed to be modeled with dependence graphs and event structures. The answer
is that this problem is not inherent to our approach but applies to any mod-
eling approach of epistemic scenarios and in particular already with epistemic
and event models. There is no procedure or algorithm for constructing neither
epistemic or event models nor dependence graphs or event structure. So it is a
general problem of epistemic modeling. We have striven to give some guidelines
that would help modelers to build their models and dependency graphs, but the

15



general problem of how to model epistemic situations is still more at the stage
of an art than a science for the moment.

We have demonstrated that the current modeling approach of DEL is not
adequate enough to account for certain information dynamics. This defect should
not be ignored and dismissed, even if the examples that we have chosen to
illustrate it were, intentionally, extreme, borderline and different from the usual
examples encountered in DEL.

Extending [1], we identified various principles that events fulfill, by means of
examples. They led us to motivate the formal definitions of dependence graph
and event structure. These should be the main ingredients for a genuine logical
framework. Yet, before defining this general framework, the preliminary logical
analysis presented so far was necessary to be carried out in order to identify the
key features that needed to be formalized and included as well as highlight the
weaknesses of the current application of the DEL modeling approach, based on
event models and product updates.

Acknowledgments. I thank Johan van Benthem and two anonymous referees
for helpful comments. I thank Sabine Frittella for a discussion which enabled to
find out a defect.

References

1. Guillaume Aucher. BMS revisited. In Aviad Heifetz, editor, TARK, pages 24–33,
2009.

2. C. Baier and J.P. Katoen. Principles of model checking. MIT press, 2008.
3. Alexandru Baltag and Lawrence S. Moss. Logic for epistemic programs. Synthese,

139(2):165–224, 2004.
4. Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public

announcements and common knowledge and private suspicions. In Itzhak Gilboa,
editor, TARK, pages 43–56. Morgan Kaufmann, 1998.

5. Antoine Billot, Jean-Christophe Vergnaud, and Bernard Walliser. Multiagent belief
revision. Journal of Mathematical Economics, 59:47 – 57, 2015.

6. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Computer Science. Cambridge University Press, 2001.

7. Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning about
knowledge. MIT Press, 1995.

8. Paul Gochet and Pascal Gribomont. Epistemic logic. In Dov Gabbay and John
Woods, editors, Handbook of the History of Logic, volume 7, Twentieth Century
Modalities, pages 99–195. Elsevier, Amsterdam, 2006.

9. Joseph Y. Halpern and Riccardo Pucella. Dealing with logical omniscience: Ex-
pressiveness and pragmatics. Artificial intelligence, 175(1):220–235, 2011.

10. David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
11. Jaakko Hintikka. Knowledge and Belief, An Introduction to the Logic of the Two

Notions. Cornell University Press, Ithaca and London, 1962.
12. V. R. Pratt. Process logic. In Proceedings of the 6th ACM symposium on Principles

of Programming Languages, San Antonio, 1979.
13. Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. MIT Press, 2001.

16



14. Johan van Benthem. Logical Dynamics of Information and Interaction. Cambridge
University Press, 2011.

15. Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication
and change. Information and Computation, 204(11):1620–1662, 2006.

16. Hans van Ditmarsch and Barteld Kooi. Semantic results for ontic and epistemic
change. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors, Logic
and the Foundations of Game and Decision Theory (LOFT 7), Texts in Logic and
Games 3, pages 87–117. Amsterdam University Press, 2008.

17. George Wilson and Samuel Shpall. Action. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Summer 2012 edition, 2012.

17


