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The capability of molecular density functional theory in its lowest, second-order approximation, equivalent to
the hypernetted chain approximation in integral equations, to predict accurately the hydration free-energies and
microscopic structure of molecular solutes is explored for a variety of systems: spherical hydrophobic solutes,
ions, water as a solute, and the Mobley’s dataset of organic molecules. The successes and the caveats of the
approach are carefully pinpointed. Compared to molecular simulations with the same force field and the same
fixed solute geometries, the theory describes accurately the solvation of cations, less so that of anions or generally
H-bond acceptors. Overall, the electrostatic contribution to solvation free-energies of neutral molecules is correctly
reproduced. On the other hand the cavity contribution is poorly described but can be corrected using scaled-
particle theory ideas. Addition of a physically-motivated, one-parameter cavity correction accounting for both
pressure and surface effects in the nonpolar solvation contribution yields a precision of 0.8 kcal/mol for the overall
hydration free energies of the whole Mobley’s dataset. Inclusion of another one-parameter cavity correction for
the electrostatics brings it to 0.6 kcal/mol, that is kBT . This is accomplished with a three-orders of magnitude
numerical speed-up with respect to molecular simulations.

I. INTRODUCTION

The solvation free energy gives the reversible work asso-
ciated with the transfer of a solute molecule from ideal gas
to a solvent at a certain temperature and pressure. Sol-
vation free energies in general, and especially hydration
free energies, are fundamental thermodynamic quantities
in themselves. Moreover there is a broad range of inter-
esting physical properties related to solvation free energies
such as solubilities, partition coefficients between inmisci-
ble solvents, infinite-dilution activity coefficients or binding
free energies and potentials of mean force in solutions.

Computing solvation free energies (SFE) or hydration
free energies (HFE) is difficult as it requires the sampling of
all the possible thermodynamic states that can be visited
during the transformation from the initial state (usually,
neat solvent) to the final one (solute in solvent). Multi-
ple approaches for solvation free energy calculation have
been developed since the dawn of times. These start from
’simple’ and fast implicit solvent and continuum mean-field
approaches where the solvent is treated as a dielectric con-
tinuum with a permittivity ε, plus a surface area correction
for cavitation free-energies. Implicit solvent models involve
methods based on the Poisson-Boltzmann equation1,2, the
simpler Generalized Born Approximation3,4, or more so-
phisticated free-energy functionals coupling hydrophobic-
ity, dispersion, and electrostatics5. As their name says, the
solvent molecules are presented implicitly in these models,
not explicitly as individual molecules, therefore they lack
any information on the microscopic solvent structure that
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can be indeed an important ingredient of the solvation pro-
cess.

Rigorous and exact simulation-based free-energy meth-
ods have been developed to take into account the solvent
molecules explicitly. They range from simple exponen-
tial averaging (EXP) introduced by Zwanzig6 60 years ago
to more sophisticated methods employing non-physical in-
termediate states such as the thermodynamic integration
(TI)7, the Bennett acceptance ratio (BAR)8, the weighted
histogram analysis method (WHAM)9 or the multistate
Bennett acceptance ratio (MBAR)10. All these methods re-
quire multiple ergodic molecular dynamics (MD) or Monte-
Carlo (MC) simulations for a single free energy estimate.
In other words, they require multiple simulations to be run,
typically few tens, possibly in parallel, with the associated
few tens of simulation time. These methods and the proto-
col associated for producing the free-energy estimate define
today’s standard in terms of free energy predictions.

Alternative so called “end-point” explicit methods exist,
ie. methods without alchemical intermediates, such as Wa-
termap11,12 where the water-density is obtained from an
explicit solvent MD simulation and is then injected into a
functional that estimates the binding free energy, or the
Energy-Representation method13,14, in which an energy-
based integral equation theory makes it possible to infer
the solvation free energy from the sampling of the solute-
solvent interaction energy distribution.

Other approaches accounting explicitly for the molec-
ular nature of the solvent have roots in the liquid state
theories. The so-called morphometric approach to solva-
tion elaborates on scaled-particle theory15 and fundamental
measure theory16 to provide fast estimations of the solva-
tion free-energy of complex molecules17–19. Field theory or
classical density functional theory (cDFT) with a simpli-
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fied dipolar solvent model leads to a local20 or non-local
Poisson–Boltzmann–Langevin formalisms21,22, that incor-
porate solvent and ions sizes. For more realistic molec-
ular models, such as SPC or TIPnP models for water,
integral equation or classical density function theory ap-
proaches have been developed. A first class of those relies
on a reference interaction site model (RISM) that is solved
through integral equations, as in 3D-RISM23–28 or through
a classical DFT (cDFT) formalism using a site-based func-
tional29,30. These methods are having large success and are
gaining momentum because of their good balance between
precision, simplicity and speed. They have been applied to
SFE predictions30–37 as well as to a number of structural
biology problems38–43. Nevertheless, they rely on site-site
correlations only, not on a full molecular description, and
hence they require some compromises with phenomenolog-
ical corrections.

The molecular integral equation theory44–46 and molec-
ular density functional theory (MDFT)47–50 are the only
methods based on liquid state theories that keep the
full molecular picture by solving the (angular-dependent)
molecular Ornstein-Zernike equation (MOZ)51,52. They are
known to be diagrammatically consistent and free of some
patches that are necessary in the RISM approach, for ex-
ample to get the dielectric constant correct. Since Ding et
al.53, MDFT can be solved efficiently at the hyper-netted
chain (HNC) level of approximation. In a cDFT langage,
the HNC approximation can be understood as a second-
order Taylor expansion of the (unkown) excess functional
around a reference homogeneous solvent density ρb (We
initially qualified it as the homogeneous reference fluid ap-
proximation (HRF)21,54). It can thus be considered as ex-
act up to second order in ∆ρ = ρ− ρb, and can be used as
a sound starting point be to systematically improved. This
can be done by developing so-called bridge functionals that
bring terms of order ∆ρ3 and more 55–61.

This paper is thus dedicated to MDFT in its “crudest”
HNC approximation. Its aim is three-fold. 1) To comple-
ment our reference paper, ref53, that was focused mainly on
the technical issues, by applications of the MDFT software
at its state-of-the-art to relevant solvation issues, namely
here its capacity to predict the solvation structure and free-
energy of small solutes, going from simple charged and un-
charged spherical solutes to a whole dataset of drug-like
organic molecules. 2) To assess carefully the accuracy of
MDFT at HNC level, acknowledge its successes, and more
importantly enlighten where it fails, in order to pinpoint
on which aspects the efforts for proper bridge functionals
should be put. To this end, the MDFT results will be
compared systematically throughout this paper to ’exact’
results generated by ourselves by Monte-Carlo. Direct com-
parison of MDFT to experimental results will come in its
time 3) To make available a series of results that can be
compared point-to-point to those of other ’simulation-free’
implicit or explicit methods, such as 3D-RISM, site-based
DFT, or field theories, so that the different approaches can
easily amend themselves and cross-fertilize.

The outline of the paper is as follows. In section II,
we recall briefly the MDFT framework and the quantities
that are computed. In section III, we apply MDFT to so-

lutes of increasing complexity: first spherical solutes, from
hydrophobic spheres to ions, then molecular solutes of ar-
bitrary 3D-shape and charge distribution. In particular,
We span the whole Mobley’s database composed of more
than 600 molecules for which experimental and simulations
solvation free-energies are available. To be fully consistent
with the current stage of MDFT, limited so far to solutes
with fixed geometries, we have recomputed on our own the
reference, simulation HFE values for the whole Mobley’s
dataset with a fixed, rigid geometry of each molecule. We
used for this an original 4D-MC algorithm developed re-
cently by one of us62. Conclusions and perspectives are
drawn in section IV.

II. MOLECULAR DENSITY FUNCTIONAL THEORY

A. Theory

The molecular density functional theory of classical,
molecular fluids computes rigorously and efficiently the sol-
vation free energy and equilibrium solvent density around
a solute. MDFT is a cousin of the well-known Kohn-
Sham density functional theory for electrons, extended
to finite temperature in the grand canonical ensemble by
Mermin63–65 and further developed for classical fluids by
Evans66,67. In the classical density functional theory for-
malism, the solvation free energy ∆Gsolv (SFE) is defined as
the difference between the grand potential Ω of the solvated
system and the grand potential Ωb of the bulk solvent:

∆Gsolv = Ω− Ωb = min {F [ρ]} = F [ρeq], (1)

where F [ρ] is the functional to be minimized, ρ = ρ(r, ω)
the molecular solvent density function with r a three di-
mensional position vector and ω the Euler angles (θ, φ, ψ),
characterizing the position and the orientation of the rigid
solvent molecule, typically the SPC/E or TIP3P models for
water68. ρeq is the equilibrium solvent density

The MDFT functional F , to be minimized, is made of
three parts:

F = Fid + Fext + Fexc, (2)

where Fid is the ideal term of a fluid of non-interacting
particles, Fext is the external term induced by the solute
(the molecule, protein, ligand or their complex, ... em-
bedded in water), and Fexc is the excess term that in-
cludes structural interaction and correlations between sol-
vent molecules. The ideal term, coming solely from the
entropy of mixing of the solvent molecules, reads

Fid = kBT

∫
drdω

[
ρ(r, ω) ln

(
ρ(r, ω)

ρb

)
−∆ρ(r, ω)

]
,

(3)
where kBT is the thermal energy, dr ≡ dxdydz,
dω ≡dcos θdφdψ. ∆ρ(r, ω) = ρ(r, ω) − ρb is the excess
density over the bulk homogeneous density ρb = nb/8π².
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nb is typically 0.033 molecule per Å3 for water at room
conditions (1 kg/l). 8π2 is the angular normalization con-
stant. The external contribution comes from the interac-
tion potential vext between the solute molecule and a sol-
vent molecule. It reads

Fext =

∫
drdωρ (r, ω) vext (r, ω) , (4)

where vext is the interaction energy between a solute and a
solvent molecule that is made of a van-der-Waals term, typ-
ically Lennard-Jones, and electrostatic interactions. Those
are the same non-bonded force-field parameters as in a
molecular dynamics simulation. For now and in what fol-
lows, the MDFT does not use the intramolecular force-field
parameters as the solute and the solvent are considered
rigid. For the solvent, we will be using SPC/E or the
TIP3P water models according to the reference results that
are available or generated. TIP3P is the one that is most
commonly found in biological applications and which was
used in our reference simulations detailed below. The final,
excess term describes the effective solvent-solvent interac-
tions. It may be written as a density expansion around the
homogeneous bulk density ρb:

Fexc =− kBT

2

∫
dr1dω1

∫
dr2dω2∆ρ (r1, ω1)

c(2) (r12, ω1, ω2) ∆ρ (r2, ω2) + FB

=− kBT

2

∫
dr1dω1∆ρ (r1, ω1) γ (r1, ω1) + FB

=FHNC + FB,

(5)

where c(2) (r12, ω1, ω2) is the homogeneous solvent-solvent
molecular direct correlation function, FB the bridge func-
tional containing all the (unknown) terms of order ∆ρ3 and
beyond. γ ≡ c(2) ∗∆ρ is the indirect solute-solvent correla-
tion defined as the spatial and angular convolution of the
excess density with c(2). If one cuts the expansion to order
two in excess density, that is, if one cancels the bridge func-
tional69, one finds that the MDFT functional produces at
its variational minimum the well-known HNC relation for
the solute-solvent distribution function:

ln(g(r, ω)) = −βvext(r, ω) + γ(r, ω), (6)

where g(r, ω) = ρeq(r, ω)/ρb and β = 1/kBT . For this
reason, we call the first term in eq. 5 the HNC excess func-
tional. The function c(2), i.e. the second-order direct cor-
relation function of the bulk solvent for a given tempera-
ture and pressure, is an input of the present theory and is
provided by previous Monte Carlo simulations coupled to
integral equations calculations70,71, carefully corrected for
finite-size effects72, performed for the neat liquid. The rest
of the excess term, the so-called bridge functional can be ap-
proximated empirically55–58 or rigorously through higher-
order direct correlation functions, although this remains a
difficult technical challenge. The aim of this paper, how-
ever, is to benchmark MDFT at its lowest level of accuracy,
the MDFT-HNC, i.e. with a vanishing bridge functional,

FB ≡ 0. This HNC level can only be improved by adding
subsequent well-funded, bridge functionals. MDFT-HNC
can be considered as a rigorous basis that one can only
improve.

This theory and corresponding algorithms are imple-
mented into a in-house high performance code that pre-
dicts the solvation free energy of arbitrary solutes in few
seconds to minutes, depending on the simulation cell size
and spacial and angular resolutions. All technical details
are presented in Ref.53. The efficient computation of the
excess free-energy term in eq. 5 requires a generalised spher-
ical harmonic expansion up to an order mmax. The chosen
value for mmax fixes the number of discretised orientations
to be considered on each spatial grid point. For water, we
find in general that mmax = 3, corresponding to 84 orienta-
tions per grid point, gives sufficient accuracy compared to
higher order expansions, e.g. mmax = 5 corresponding to
330 orientations. Many of the calculations presented below
were performed with mmax = 5 just for safety; this is com-
pletely affordable for the relatively small molecular solutes
(up to 40 atoms) that were considered.

B. Solvent equilibrium structure, polarization and beyond

Equation 1 states that at the same time as MDFT
produces the solvation free energy of arbitrarily complex
molecule (the value of the functional at its minimum),
it produces the equilibrium solvent structure around this
solute (the density that minimizes the functional) in its
full molecular description; the molecular solvent distri-
bution function (reduced density) is given by g(r, ω) =
ρ(r, ω)/ρb. From this full molecular distribution, one can
extract more readable information. For instance, the first
moment of g(r, ω) is the three dimensional scalar field
g(r) ≡ 1

8π2

∫
g(r, ω)dω from which one can derive the

usual spherically symmetric radial distribution function
gi(r) between solute sites and water oxygens or hydrogens.
n(r) = nbg(r) is the number density. Another impor-
tant quantity embedded in g(r, ω) is the polarization field
P (r) = µnb

8π2

∫
ω̂g(r, ω)dω where µ is the solvent molecule

dipole value, ω̂ is the unitary vector along the dipole axis
depending on (θ, φ) only. One can also obtain so called wa-
ter maps from g(r, ω), catching the most probable water
molecules position and orientation around the solute.

It should be noted that the equilibrium molecular solvent
density g(r, ω) is a direct output of MDFT. In the case of
molecular simulations, one would have to accumulate such
data during a long trajectory, averaging in spatial voxels of
typical size 0.25-0.5 Å for a series of orientations. For just
positions, this can be tackled nowadays, especially with the
recent approach using an estimator based on forces rather
than simple binning to decrease the variance of the estimate
of g73–75. Nevertheless, accumulating data in the full six-
dimensional orientation and position space is a daunting
task, even more difficult than computing SFE’s. MDFT
produces this 6-dimensional map in the same few minutes
as it needs to predict the SFE.
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III. REFERENCE CALCULATIONS FROM SIMULATION

To assess the quality of the hydration free energies (HFE)
and solvation profiles predicted by MDFT-HNC for differ-
ent systems presented in the next sections, we have calcu-
lated rigid-solutes reference data using the same force-field
parameters as in MDFT with an original MC/4D-hydrid
method and associated code developed by one of us62. This
code does in parallel a (i) MC simulation of bulk water
with N water molecules and (ii) a simulation of the solute
in N water molecules. Every ith step the rigid solute is
inserted slowly into the simulation box in (i), or removed
slowly in (ii) via a fictitious 4th dimension and through
a non-equilibrium process. The work ∆H of each inser-
tion/deletion is calculated and the systems are returned
their initial state to continue the equilibrium MC simu-
lations. The Jarzynski equation76,77 e−β∆G = 〈e−β∆H〉
states the solvation free energy can be obtained from these
out-of-equilibrium insertion/deletion process. To improve
the statistics the insertion and deletion profiles are com-
bined with the BAR method8. One can also obtain the
solvents molecular density around the solute from the (ii)
simulations. Each hydration free energy calculation takes
60 cpu.h to obtain a well controlled of 0.02-0.03 kcal/mol.

In all our simulations the TIP3P water model was used as
solvent. In the case of the FreeSolv database78,79 containing
small drug-like molecules the force field is GAFF (v1.7)80
with AM1-BCC partial charges81,82.

IV. RESULTS FOR SIMPLE SPHERICAL SOLUTES

A. hydrophobic solutes

In Fig. 1 we compare the solvation profile that we ob-
tained either by MC simulations or MDFT for a one-
site united-atom representation of methane (σ = 3.73 Å,
ε = 0.294 kcal/mol) and of neopentane, C(CH3)4 (σ = 6.15
Å, ε = 0.835 kcal/mol). As already evidenced in the past49,
the HNC approximation predicts correctly the cavity vol-
ume and the rising of the first peak. Its characteristic fea-
ture for small hydrophobic solutes is to slightly displace the
first peak and overestimate its height. The peak location
is better for the larger solute but the height overestimation
remains. Overall, however, the approximation is doing fine
on the structure. When one goes to solvation free-energies
comes a disaster, that is shared with 3D-RISM83,84. For
the two preceding example the computed MDFT-HNC free-
energies are 6.2 and 18.1 kcal/mol, instead of 2.0 and -0.3
kcal/mol, respectively. The discrepancy worsens with so-
lute size. This deficiency of the HNC approximation is, in
part, well understood: for large spheres (or general cavi-
ties), the solvation free-energy should tend to P V , where
P is the experimental or simulation pressure, thus virtu-
ally zero at a normal pressure of 1 atm unless micrometric
sizes are reached. Instead the HNC approximation leads to
Phnc V , with a pressure given by

Phnc = kBTnb

(
1− 1

2
nbĉ

000(0)

)
(7)

where ĉ000(0) is the q = 0 Fourier component of the spher-
ically averaged direct correlation function in eq. 5. Phnc
has largely overestimated values: 11260 atm for SPC/E
and 9400 atm for TIP3P ! The first patch that we pro-
posed previously was to correct the HNC free energy by a
factor −PhncVpm, where Vpm is the measured partial molar
volume (PMV), i.e. computed as Vpm = −

∫
V
dr∆n(r)/nb,

where ∆n(r) = n(r) − nb. Correction terms of the type
aVpm + b with empirically adjusted constants a and b
had been already proposed for 3D-RISM calculations84,85,
which we have connected to our pressure correction (PC)
formulation86,87.
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Figure 1. Solvation profiles obtained with MDFT-HNC (red)
or MC simulations (black) for two hydrophobic Lennard-Jones
solutes.

To go deeper into this problem, we examine here the sol-
vation of a hydrophobic sphere which is the paradigmatic
problem for either the standard scaled particle theory15,88
or more recent advances in the theory of hydrophobicity
and hydrophobic interactions89,90. We already showed in
previous works that the HNC approximation suffers from
the original sin of being a quadratic theory around the liq-
uid bulk density. The homogeneous free energy as a func-
tion of density presents a single instead of a double well; it
cannot accommodate for the liquid-gas transition. In par-
ticular the density profile around the hydrophobic sphere
tends to a constant finite value for large radii instead of
turning to depletion57,58, as expected and as simulations
show90,91. We focus here on the solvation free-energy and
rely on the simulation results of Hummer et al.92 and Huang
and Chandler89 generated for either the SPC or SPC/E
models. In Fig. 2-a, we plot the hydration free energy of a
hard sphere of increasing radius R computed by MDFT and
compared to the simulation results. We also plot the ana-
lytical limit for cavity volumes that can only accommodate
0 or 1 water molecule, namely92

∆G = −kBT ln(1− nbV ), (8)

where V = 4πR3/3 is the hard-sphere volume. It is seen
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that MDFT-HNC and simulation fulfil this exact small-
radii limit up for R < 2 Å; MDFT-HNC even matches the
simulation results slightly beyond that radius and diverges
from them afterwards. In Fig. 2, we compare the solva-
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Figure 2. Top: Solvation free energy of a hard sphere of radius
R obtained by MDFT-HNC (blue line) or by Monte-Carlo sim-
ulations by Hummer et al for the SPC model92, or Huang and
Chandler for SPC/E89 (red bullets and red line, respectively).
The line in cyan is the analytical result of eq. 8. Bottom: Hy-
dration free energy per unit area, ∆G/4πR2, as function of HS
radius computed by MC or by MDFT after pressure correction.

tion free energy per unit area, computed either by MC
by Huang-Chandler as ∆G(R)/4πR2, or by MDFT after
pressure correction as (∆G(R) − PhncVpm)/4πR2. Both
curves present an horizontal asymptote pointing to the
surface tension γ. Simulations yields γsim = 72N/m2, a
value close to the experimental one but somewhat larger
than the reported gas-liquid surface tension of SPC/E93,
whereas MDFT-HNC yields the much smaller values γhnc =
16N/m2: thus not only the HNC pressure has to be cor-
rected but also the surface tension.

If one refers to scaled particle theory, an important ques-
tion is the definition of the solute volume and surface to
be considered, usually derived from either the solute Van-
der-Waals surface (VdW), or the solvent-accessible surface
(SAS); the two of them differ roughly by the extension of a
water molecule radius Rw. Here the question is rather the
relationship between the measured partial molar volume
Vpm or the hard-sphere volume V . In Fig. 3-a we clarify
that relationship; we observe that Vpm is optimally fitted
by Vpm = 4πR∗3/3 with a shifted radius R∗ = R−Rw and
Rw = 0.972 Å. R∗ can be identified to the Van-der-Waals
radius generating a VdW surface of area S = 4πR∗2 rather
than the solvent accessible surface of area S = 4πR2. Sup-
posing a (truncated) scaled-particle theory expression for
the solvation free-energy with the same Rw for both simu-

lation and MDFT-HNC88

∆G = P
4π

3
R∗3 + γ4πR∗2

(
1− δ

R∗

)
(9)

with R∗ = (3Vpm/4π)1/3, and accounting for the fact that
Psim ' 0, one can write a correction to the HNC approxi-
mation as

∆Ghnc −∆Gsim = a(R∗)PhncVpm (10)

with

a(R∗) = 1 +
3∆γ

PhncR∗

(
1− d

R∗

)
(11)

and ∆γ = γhnc − γsim = −56N/m2. The first term in
a(R∗) yields the pure pressure correction and the next one
a surface correction to it; the length parameter d relates
to the so-called curvature correction to the surface tension
–here in fact the surface tension difference. It can be deter-
mined by imposing the condition that ∆Ghnc = ∆Gsim for
small radii, e.g. for R∗ = 1 Å (R ' 2 Å; see Fig. 2-a). This
condition yields d = 1 + Phnc/3∆γ = 0.32 Å. The approx-
imation of eq. 11 is compared to the simulation results in
Fig. 3 and fits quite well. Note that it is a parameter-free
expression and only ∆γ enters. The simpler approximation
with d = 0 applies only above ∼ 500 Å3 .

The conclusion of this section is that a pressure correc-
tion proportional to the PMV as we proposed previously is
strictly valid for very large solutes of micro-metric size. For
microscopic to nanoscale solutes, at least a surface correc-
tion ∆γ, preferably the next correction term in a scaled-
particle theory parametrisation, should be accounted for.
On this simple paradigmatic example, one observes that
there is no way that a simple correction strictly propor-
tional to the PMV can be applied, unless limited to a small
range of PMV. This remark will be extremely useful in
Sec. V, when we will discuss the hydration free energy of
molecular solutes whose PMV range typically between 50
and 500 Å3.

B. Ions

Here we study the solvation of simple monovalent ions :
4 anions, F−,Cl−,Br−,I−, and 4 cations, Li+,Na+,K+,Cs+,
described with force field parameters given by Horinek and
Netz94. Those are recapitulated in Table I . The MDFT-
HNC results, that is, the output of the minimization of
the functional given in eq. 1, were obtained within a cubic
supercell of side 32 Å, with periodic boundary conditions,
a spacial resolution of 0.25 Å (= 128 grid nodes in each
direction) and an angular resolution of 330 orientations per
spatial grid node.

1. Solvation profiles

A primary output of MDFT is the full molecular equi-
librium solvent structure g(r, ω) from which one can derive
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Figure 3. Top: Partial molar volume Vpm versus hard-sphere
radius R obtained by MDFT-HNC. It is best fitted by Vpm =
4πR∗3/3 with R∗ = R − 0.972. Bottom: Correction to the
HNC solvation free energy normalized by the first order pressure
correction (thus the quantity a(R∗) defined in eqn. 10) as a
function of the partial molar volume: exact computation (solid
blue line), or estimation using eq. 11, with the value of d given
in the text (cyan dash-dots) or with d = 0 (red dash-dots).

easy radial g(r) and polarization P (r) distribution func-
tions or any other angular-dependent density distribution.
Fig. 4 presents the radial density and polarization distri-
butions for all the ions. Concerning the g(r)’s, MDFT-
HNC clearly performs better for the cations than anions.
For the cations MDFT correctly predicts the position of
the first two maxima and first minimum. For the smallest
cation, Li+, MDFT sightly overestimates the intensities of
the maxima and for the larger cations MDFT slightly un-
derestimates the relative intensities of the maxima and the
minimum. This effect increases with the cation size. In the
case of the anions the g(r) predicted with MDFT deviates
much more from the simulation results. The position of the
first peak and its width are correct. As for the second peak,
it is displaced to larger distances. Since the position of the
second peak in water is a sign of tetrahedral order, the
cation here taking the place of one water molecule, we con-
cluded before that the HNC approximation is missing here
some tetrahedral order. For the polarization radial distri-
butions P (r) the correspondence between MD and MDFT
is much better both for cations and anions, with some dif-
ferences in the intensities of the minima and maxima, but
globally an excellent agreement.

Beyond the traditional computation of the atomic pair
distribution functions, MDFT has the great advantage of
providing in addition a complete information on the ori-
entations of the water molecules around the solute. Here,
in spherical symmetry, this translates to the knowledge of
the angular-dependent density maps g(r, cos θ′, ψ′), where

2 4 60

2

4

6 F

2 4 6

0

2

4

6 Cl

2 4 6

0

2

4

6 Br

2 4 6

0

2

4

6 I

2 4 6
r (Å)

0

3

6

9

12

g(
r)

Li +

2 4 6

0

3

6

9

12 Na +

2 4 6

0

3

6

9

12 K +

2 4 6

0

3

6

9

12 Cs +

2 4 60

2

4 F

2 4 6

0

2

4

Cl

2 4 6

0

2

4

Br

2 4 6

0

2

4

I

2 4 6
r (Å)

0

3

6

9
P(

r)
Li +

2 4 6

0

3

6

9

Na +

2 4 6

0

3

6

9

K +

2 4 6

0

3

6

9

Cs +

Figure 4. Radial density (top) and polarization density (bot-
tom) for the ions obtained with simulations (blue) and MDFT-
HNC (red).

θ′ is the angle between the dipole direction of one water
molecule at position r from the ion and r itself, ψ′ is the
rotation angle around the dipole direction. g(r, cos θ′, ψ′)
is easily deduced from the full distribution in laboratory
frame, g(r, ω), by spherical average over all r-orientations.
In Fig. 5, we have concatenated all this information into
the 2D-plots of (i) g(r, cos θ′) = 1

2π

∫
dψ′ g(r, cos θ′, ψ′), in-

dicating the preferred orientation of the solvent dipoles
as function of the radial distance, and (ii) g(ψ′, cos θ′) ≡
g(rmax, cos θ′, ψ′) where rmax is the distance correspond-
ing to the maximum of the radial density distribution g(r);
this indicates the preferred orientation of the hydrogens as
a function of the dipole orientation. The plots are given for
both Cl− and Na+ and compare MDFT to simulations. As
can be seen, the agreement is again excellent for the cation.
At the peak of g(r) the water dipole is directed radially
away form the cation (cos θ′ = 1), i.e. with the oxygen clos-
est to the cation and the hydrogens pointing away symmet-
rically, with no angular dependency in ψ′ close to cos θ′ = 1:
the hydrogens rotate freely around the dipole axis. For val-
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Figure 5. Two-dimensional maps of g(r, cos θ′) on the left and g(ψ′, cos θ′) on the right (see definitions in the text), computed by
simulations or by MDFT for Cl− (Top) or Na+ (Bottom).

ues of cos θ′ departing from 1, a distribution in ψ′ appears
around ψ′ = π

2 . In our conventions, ψ′ = 0 or π corre-
sponds to the water molecule in the plane formed by the
dipole direction and ion-oxygen direction. The value π/2
corresponds to a configuration in which the two hydrogens
become equidistant from the cation, thus maximising the
sum of the two distances. As for the anion, the g(cos θ′, ψ′)
maps look quite similar for MDFT and MC and display a
peak centred around cos θ′ ' −0.58 = cos(π− θ0/2), where
θ0 is the HOH angle of the TIP3P model, and ψ′ = 0 or π
in order to have the optimal H-bond to the anion. So far so
good but as seen before it cannot be perfect: a difference
does appear in the g(r, cos θ′) map in which the peak in sim-
ulation appears consistently at the cos θ′ = −0.58 as before
and extends roughly between −0.4 and −0.8, whereas in
MDFT it extends more floppily from −0.4 and −1, with its
maximum at −1. The strength and directionality of the O-
H–X− bond is clearly underestimated. The second peak is
displaced and is somewhat more narrow in angle and more
pronounced.

2. Hydration free energies

Table I reports the solvation free energies obtained with
the reference MC simulations and with MDFT-HNC. In
both cases, since the calculation are done for a periodic sys-
tem, two type of correction have been applied, of so-called
B and C type53,95,96. The first one in q2/L is a finite size,
Madelung-like correction incorporating the contribution of
all the periodic images. The second one proportional to q
refers to the so-called Galvani potential in periodic bound-
ary conditions.

Fig. 6 shows the correlation between MDFT and sim-
ulation for the absolute solvation free energies ∆G and

the relative solvation free energies as defined in Ref.94,
∆∆G = ∆G + z∆G(Cl−), with z = ±1 according to the
ion valence and ∆G(Cl−) the value obtained for Cl−. The
latter were the reference free energies that Horinek’s and
Netz’s used to fit their ions force-field parameters, since
it cancels the somehow uncontrolled surface charge correc-
tions that should be added when comparing to experimen-
tal values.
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Figure 6. Correlation between a. absolute hydration free ener-
gies ∆G and b. relative hydration free energies ∆∆G defined in
the text, obtained with MC simulations or MDFT, for the halide
and alcali ions series listed in Table I. The circles correspond to
the bare HNC results, whereas the diamonds include the two-
parameter correction derived independently in Sec. VB2.

Not surprisingly, the bare HNC results are quite good for
the cations, with a maximum relative error for 3− 4 % for
the smallest ions in the series, i.e. Li+ and Na+, but it is
not so for the anions, with an maximum error of ∼ 20 %
for, again, the smallest ones. This corroborates the caveats
in structure that were discussed above. If any effort should
be put in finding the appropriate angular dependent bridge
functional, it should focus on solute negative charges, giv-
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σ(A) ε ∆GSimulation ∆GMDFT ∆Gcor
MDFT ∆∆GSimulation ∆∆GMDFT ∆∆Gcor

MDFT

F− 3.434 0.1110 - 95.40 ± 0.03 - 76.7 -95.0 - 27.13 -19.09 -24.6
Cl− 4.394 0.0994 - 68.27 ± 0.03 - 57.6 -70.3 0.0 0.0 0.0
Br− 4.834 0.0503 - 61.79 ± 0.03 - 53.3 -65.4 6.48 4.32 4.9
I− 5.334 0.0763 - 53.78 ± 0.03 - 47.7 -58.9 14.49 9.86 11.4

Li+ 2.874 1.47.10−4 - 133.38 ± 0.03 - 128.5 -132.5 - 201.65 - 186.08 -202.9
Na+ 3.874 id. - 108.63 ± 0.03 - 104.1 - 104.8 - 176.89 - 161.71 -175.1
K+ 4.534 id. - 93.04 ± 0.02 - 91.9 -91.3 - 161.31 - 149.47 -161.6
Cs+ 5.174 id. - 81.71 ± 0.02 - 83.6 -81.9 - 149.99 - 141.15 -152.2

Table I. Force-field parameters and absolute and relative solvation free energies (all energies in kcal/mol) for a series of halide and
alcali ions, obtained with reference simulations or with MDFT, either in the bare HNC approximation or including the two-parameter
correction derived independently in Sec. VB2. The results correspond to those displayed in Fig. 6.

ing rise to H-bond acceptor sites. For the time being, we
show both in Table I and Fig. 6 that an a-posteriori two-
parameter correction developed independently in Sec. VB2
for neutral molecules considerably improves the HNC re-
sults for the charged solutes too.

V. MOLECULAR SOLUTES

A. Water as solute

We begin by the case of a TIP3P water molecule in
TIP3P, a paradigm for both a H-bond acceptor and donor.
The MDFT-HNC result, that is, the output of the min-
imization of the functional given in eq. 1, was obtained
within a cubic supercell of side 24 Å, with periodic bound-
ary conditions, a spacial resolution of 0.25 Å (= 96 grid
nodes in each direction) and mmax = 5 (330 orientations
per spatial grid node).

Fig. 7a. shows the radial site-site pair distribution func-
tions between the solute oxygen and hydrogens sites and the
solvent oxygen and hydrogen sites obtained from the MC
simulation and MDFT-HNC. Here we recover the equiva-
lent results obtained already 20 years ago by Richardi et
al.44 and Lombardero et al.45 using 1D-MOZ-HNC inte-
gral equations for both TIP3P and SPC/E water. Indeed
the same deficiencies of HNC appear: it does miss some of
the (subtle) tetrahedral symmetry in water. The first O-O
peak is correctly placed but too wide on its right side; the
second peak is misplaced and appear at a position perti-
nent to the second neighbour in a general dipolar fluid,
and not at the 4.6 Å value imposed by the tetrahedral
symmetry. The first O-H or H-O peak is also at correct
position but underestimated. The H-H pair distribution
function appears almost structureless in MDFT-HNC. One
can extract also the three-dimensional solvent charge densi-
ties, easily with MDFT, more painfully by simulation since
one needs to explore three-dimensional space with suffi-
cient statistics. This is illustrated in Fig. 7-b and c. There
is represented iso-surfaces of the 3D-polarization density
Py(r), where y is the axis perpendicular to the molecu-
lar plane. Panel b shows the isosurfaces Py(r) = ±0.035
Debye/A3 obtained by MDFT with a grid size of 0.25 Å,
whereas Panel c shows the same quantity obtained by col-

lecting histograms of identical voxel size along a 50-ns-long
MD trajectory (25000 independent configurations). These
3D plots look familiar compared to previous simulations75
with a change of sign when crossing the symmetry plane.
The two rather loose, upper caps correspond to the solvent
donor molecules presenting their hydrogens to the solute
oxygen negative partial charge. The two lowest ones repre-
sent the solvent water molecule presenting its oxygen to the
hydrogen site pointing in the figure, and whose orientation
can depart from the average, symmetric one with the two
hydrogen pointing away and a vanishing Py. Beyond the
satisfactory agreement between MDFT and simulation, the
noise appearing in the MD results illustrates the statistical
difficulty of accumulating 3D-densities by simulation, not
to speak of position and orientation densities, which are
the direct output of MDFT. Finally we present in Fig. 7-e
a feature that in not accessible to RISM-based approaches
and would require intense statistics in simulations: we plot
the probability of finding a water molecule in a fixed orien-
tation at distance z from another, here the most probable
orientation for a O-H–O bond on the positive side, z > 0,
which becomes a H-bond mismatch on the other side of the
donating molecule, for z > 0.

As for the hydration energy of an additional water
molecule in water (namely the chemical potential of TIP3P
water), MDFT-HNC predicts −4.69 kcal/mol when includ-
ing a simple pressure correction, −PhncVpm whereas MC
gives −6.04 ± 0.07 kcal/mol. The more elaborate correc-
tion developed in the next section yields −6.1 kcal/mol.

B. Small organic molecules

In this section, we assess the quality of the solvation
structures and HFEs of small organic molecules predicted
by MDFT-HNC. For that we use the FreeSolv database78,79
that contains 642 small neutral organic drug-like molecules,
for which the experimental values have been concatenated
and theoretical values have been computed systematically
by MD using a free-energy-perturbation method with a
standard, flexible force field. As mentioned before, we
have regenerated ourselves the reference values for the
whole dataset at fixed solute geometries, those given in the
database.
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Figure 7. a. Site-site radial distribution functions for site-site densities. Simulation and MDFT results in blue and red respectively.
b. Isosurface for the polarization density Py(r) (red and blue for positive and negative, respectively) computed by MDFT with a
voxel size of 0.25 Å. c. Same computed from a 50 ns long MD simulation with identical voxel size. d. Representation of a solute
water fixed in the center of the box and a second solvent one at its most probable location (rw−w = 2.45 Å) and in its optimal
angular configuration for H-bonding. e. Probability distribution for a water molecule keeping the same fixed orientation as in d.
and gliding along the z-axis.

1. Solvation profiles

We begin by showing the capacity of MDFT to predict
solvation profiles around a molecule. It is illusory to span
the whole database. We have chosen for illustration the
case of quinoline (FreeSolv ID: mobley_5857, a typical
molecule of the FreeSolv database, whose chemical struc-
ture presented in fig. 8c). The 3D-solvation structure ob-
tained by MDFT is represented in Fig. 8. Panel a displays
the number density in the plane of the molecule, with the
associated alternation of maxima and minima. Panel b
concerns another important quantity embedded in g(r, ω),
that is the polarization field P (r). There is displayed the
norm of the polarization field, i.e., ‖P (r)‖, in the plane of
the quinoline molecule obtained with MDFT-HNC. As ex-
pected we find high polarization close to the sites wearing
localized charges, and the expected polarization with OH
pointing toward N.

A direct comparison to simulation results is made for the
site radial distribution functions in Fig. 8c. The agreement
appears very reasonable. For all solute atoms, the rise of
the first peak follows exactly that of the simulation: the
shape of cavity is perfectly reproduced. The maximum of
the first peak, if any, is correctly located, meaning that the
first solvation shell lies where it should. For the carbon

sites exposed to the solvent (e.g. C1, C6, C8, C9) one does
recover the overestimation of the height that was found in
Fig. 1. The g(r) for the nitrogen site misses the important
H-bond first peak. Since the nitrogen atom wears a high
partial charge of−0.65e, one is back to the problem encoun-
tered before for strong negative charges, e.g. for anions or
the oxygen of water.

At last, from g(r, ω) one can also obtain so-called wa-
ter maps catching the most probable water molecules po-
sition and orientation around the solute. Fig. 8d shows
the four most probable position and the orientation of wa-
ter molecules around the quinoline. Expectedly, they are
found close to the nitrogen atom.

2. Hydration free energies

Fig. 9 shows different correlations between HFE’s of the
Freesolv database, for both the uncharged (pure LJ) and
charged molecules, obtained by a MDFT-HNC calculations
and reference simulations. The MDFT-HNC results were
obtained within a cubic supercell of side 32 Å, with peri-
odic boundary conditions, a spacial resolution of 0.33 Å (=
96 grid nodes in each direction) and an angular resolution
of 84 orientations per spatial grid node (mmax = 3). The
MDFT calculations were performed on the initial configura-
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Figure 8. a. Water density map (red : ρ < ρb, white : ρ = ρb
and blue : ρ > ρb) and b. norm of the polarization vector field
(blue : high polarization, black arrows representing the orienta-
tion) in the plane of the molecule obtained with MDFT-HNC. c.
Chemical structure of the quinoline and the radial distribution
function g(r) between the heavy atoms of the quinoline and wa-
ter oxygens (blue lines correspond to MDFT-HNC as obtained
in few minutes, and red lines to MD simulations as obtained in
few hours). d. Representation of the quinoline molecule with
four most probable water molecules.

tion given in the FreeSolv database. They did not converge
for 22 molecules (3 % of the database). All results presented
below are for the 620 molecules that led to convergence.
The computational cost, or average computation time per
molecule on a single CPU was 8 min –we usually use 8 cpu-
threads. Note, we could have done the calculation in a box

of 21 Å, and hence have had only 64 nodes in each direc-
tion, for the vast majority of the molecules in the database,
decreasing the simulation time to under a minute on aver-
age. As we mentioned, the reference MC/4D-hydrid calcu-
lations take 60 cpu hours/molecule. We checked that MD
simulations with gromacs97 and its implemented MBAR
free-energy protocol require an equivalent cpu time. This
yields a 3 orders of magnitude factor between MDFT and
molecular simulations for equal computer ressources.

As recognised earlier for both RISM and DFT, and as dis-
cussed thoughrouly in Sec. IVA, MDFT-HNC fails for what
seems the simplest case, i.e. estimating the free-energy cost
of creating cavities. This failure extends to non-polar so-
lutes composed of LJ sites with no partial charges. We
thus start by discussing that case. In Fig. 9-a, we begin
by correlating the MDFT and MC results for the solvation
free energies ∆GLJ of the uncharged solutes, when a simple
pressure correction is added, −PhncVpm, as we prescribed in
previous papers86,87. This correction does improve greatly
the bare results which would appear far higher in the fig-
ure, but it cannot be considered as satisfactory yet, with
a RMSE around 3 kcal/mol and a correlation coefficient
around 0.5. Following the discussion of Sec. IVA and Fig. 3
, we have plotted in Fig. 10 the "exact" correction factor
of eq. 11, (∆Ghnc−∆Gsim)/PhncVpm and we have fitted it
with the analytical form of eq. 11, with R∗ = (3Vpm/4π)1/3,
thus as for an hypothetical, equivalent spherical solute.
Only the parameter ∆γ has to be adjusted since it stands
here for an effective value accounting for a mean Lennard-
Jones attraction which was not present in our derivation of
Sec IVA. We find an optimal value ∆γ = −6.9N/m2. For
a purely repulsive hard-sphere in TIP3P water, one would
expect ∆γ = −39.2N/m2 with a computed HNC value of
13.1N/m2 and γsim = 53.2N/m2 from Ref.93; the corre-
sponding curve is presented in Fig. 10. We have also repre-
sented there the horizontal line corresponding to a simpler
correction of the form a ∗ PVpm, compatible with previous
suggestions84, with an optimal value a = 0.86. This type of
correction only applies because the range of Vpm values that
are spanned is relatively small. In contrast to the formula
in eq. 11 this correction gives an incorrect limit when Vpm
becomes larger. In the panels b and c of Fig. 9, we report
the new correlations between the MDFT-HNC and simula-
tion HSE’s with just a pressure correction renormalized by
the constant factor 0.86, or applying the more elaborated
analytical form of eq. 11, which gives a better description
of the surface effects and yields the correct large volume
limit. From panels a to c, one goes initially from a RMSE
of 3 kcal/mol and a correlation of 0.56, to 0.55 kcal/mol
and 0.8, and finally to 0.5 kcal/mol and 0.9. Note that this
agreement is obtained with a very rude, spherical approx-
imation for the Van der Waals surface area, which could
certainly be improved. In Particular, the slope of the cor-
relation should to be corrected. We note in passing that in
Refs.86,87 we have proposed a so-called PC+ correction in
which the pressure in eq. 7 should be replaced by the excess
pressure, i.e., Pexc = Phnc − Pid = Phnc − kBTnb. This
PC+ correction did improve the numerical results com-
pared to the bare PC correction, and it has been uptaken
in the RISM community34. For TIP3P, it turns out that
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Figure 9. Comparison between MDFT-HNC and simulation for the FreeSolv database. The top line corresponds to the bare
MDFT outputs for the non-polar part (LJ) plus a. a parameter-free pressure correction, −PhncVpm , b. a renormalized pressure
correction −0.86PhncVpm and c. The volume/surface correction of eq. 11. The panels in the bottom line correspond to d. the bare
MDTF outputs for the electrostatic solvation free energy, e. the same plus an empirical pressure-like correction +0.6Phnc∆Vpm
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Pexc/Phnc = 0.86, that is exactly what we now suggest by
introducing surface contributions. With our current un-
derstanding, we consider this agreement as satisfying, but
fortuitous.

In Fig 9-d, we have correlated MDFT-HNC and simu-
lations for the electrostatic contribution of the HFE, i.e.
∆Gelec = ∆G − ∆GLJ , where ∆G is computed for the
fully charged solutes. Without any correction, we observe
already a very good agreement with a RMSE of roughly
half a kcal/mol and a correlation of 1, but nevertheless a
mean slope of 0.9 instead of 1. We find that the agree-
ment can even be improved to a RMSE of 0.3 kcal/mol
and a slope of nearly 1 by adding a pressure-like correction
+0.6P∆Vpm, involving the difference of the partial molar
volumes with and without charges; see Fig 9-e. ∆Vpm is al-
ways negative, and this new correction goes with an oppo-
site sign with respect to the standard one. It means that the
regular pressure/surface tension correction above, roughly
−0.86P∆Vpm, is overcompensated by electrostatic effects
that we do not yet fully understand; this correction remains
empirical at this stage. As discussed in Sec. IVB, it also
improves greatly the free-energy predictions for the charged
entities, including the anions. The improved RMSE proves
at least that a physically relevant descriptor has been iden-
tified.

Overall, Fig 9-f displays the final correlation results
adding both the Lennard-Jones and electrostatic contri-
butions. For each solute, this requires two independent
minimisations, with and without the solute partial charges.
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One important contribution of this work was to show that
HNC should be corrected, at least, by both volume and
surface effects when solvating micro- to nano-solutes. Thus
reducing the parametrisation to its minimum to capture the
correct physics, i.e. a single parameter ∆γ correcting the
pressure correction by surface effects, and no empirical cor-
rection of the electrostatics, yields a RMSE of 0.8 kcal/mol.
Accounting for the full story reported above, i.e. incorpo-
rating in addition to the well justified one-parameter cor-
rection for the LJ contribution, another one-parameter cor-
rection for the electrostatic contribution yields a RMSE of
0.6 kcal/mol, a correlation of 0.99 and a correlation slope
very close to 1. This is accomplished with a speed-up of,
at least, 3 orders of magnitude compared to direct simula-
tions. It takes less than an hour to compute HFEs for the
whole Freesolv database by MDFT-HNC.

VI. CONCLUSION

In this paper we have explored the capability of MDFT
at its lowest degree of approximation, i.e. with a functional
developed at order ∆ρ2 with respect to the uniform fluid, to
predict the hydration free-energies and microscopic struc-
ture of a variety of molecular solutes. To assess the method,
a detailed comparison was done with respect to our own
MC simulations performed under the very same conditions,
identical force field and rigid solute geometries. We found
many features that can be considered successful. In partic-
ular the shape of the cavities (vanishing densities and rising
first peak) are perfectly reproduced, the structure around
neutral, or moderately charged negative sites is perfectible
but correct. The fine structure around positive charges is
excellent, as exemplified by the monovalent cation series; so
are the associated solvation free-energies. Overall, the elec-
trostatic contribution to solvation free-energies of neutral
molecules is correctly reproduced. The first obvious caveat
concerns what should be the simplest case in view of the ex-
isting theories, in particular scaled-particle theory: the cost
of creating cavities. Here the shortcuts of the second order
approximation carried by HNC are well identified56,57,98. In
this paper we have proposed a new, one-parameter correc-
tion inspired by scaled-particle theory and accounting for
both volume and surface effects, that makes it possible to
improve a-posteriori the HFE prediction for the uncharged
(Lennard-Jones only) solutes. This correction could cer-
tainly be improved by a better definition of the solute Van-
der-Waals surface and, beyond, by making use of the mor-
phometric approach of Roth and collaborators17–19. The
other important deficiency concerns the microscopic struc-
ture around cations and more generally H-bond acceptors
which evidently lacks some tetrahedral order, as was noted
before50. This affects their solvation free energies. One
lesson of this work, already noted by others, is that for
future improvement it is certainly wise to proceed in two
steps, as is done usually in simulations: first introducing
the nude LJ interaction, then adding the charges in a sec-
ond step. For the first part, one can reasonably hope that
spherical bridge corrections, be it a hard-sphere bridge55
or even simpler weighted density variants58 will do the job.

New closures requiring pressure and free energy consistency
have been proposed recently and could be tried also99. Re-
assembling those ideas in a consistent way and validating
them for the systems studied in this paper will be the fo-
cus of a forthcoming work. Finding an appropriate bridge
functional to correct the problem for anions will be more
difficult, since it will require to tackle the angular depen-
dence; we think that this is not out of reach. A proposal for
reinforcing tetrahedral order was already made in Ref.50; it
is not a solute-independent bridge functional as we would
like to aim for.

For the time being, including the appropriate cavity cor-
rections described above, the method does yield already a
precision of 0.8 kcal/mol for the hydration free energies of
the whole Mobley’s dataset compared to simulations. In-
clusion of a second cavity term slightly correcting the elec-
trostatic part brings it to 0.6 kcal/mol. Such precisions are
already smaller than that obtained by straight MD simu-
lations comparison to experiments (roughly 1 kcal/mol) so
that a direct comparison of MDFT to experiment, and di-
rect improvement of the force fields, begins to make sense.
This is accomplished with a three-orders of magnitude nu-
merical speed-up with respect to molecular simulations.
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