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1.  Introduction
Clumped-isotope geochemistry is the study of statistical anomalies in the abundance of multiply substitut-
ed isotopologues in natural materials (Eiler, 2013; Eiler & Schauble, 2004;). Mass spectrometric measure-
ments of Δ47, quantifying the excess abundance of 13C -18O bonds in CO2 and, by extension, in carbonate 
minerals (Ghosh et al., 2006; Schauble et al., 2006), constitute the most widely used branch of this relatively 
young but rapidly evolving field of research. The appeal of carbonate Δ47 measurements is largely based on 
the fact that the clumped-isotope compositions of natural carbonates directly or indirectly constrain their 
crystallization temperatures and/or thermal histories, with a broad range of Earth science applications. 
Establishing a robust calibration of the carbonate Δ47 thermometer, however, has long remained a vexing 
challenge, with inter-laboratory discrepancies equivalent to large uncertainties in reconstructed tempera-
tures, sometimes exceeding 10°C (e.g., Bonifacie et al., 2017; Petersen et al., 2019).

Keeping in mind that “true” calibration differences between certain types of carbonates are not to be exclud-
ed a priori, various potential causes for these discrepancies have been put forward, such as (a) inconsistent 
or inaccurate 17O  correction parameters (Daëron et al., 2016; Olack & Colman, 2019; Schauer et al., 2016), 
(b) systematic effects arising from different data processing methods, and (c) poorly corrected analyti-
cal biases resulting from instrumental and/or methodological differences between laboratories. Petersen 
et al. (2019) tested the first two of these hypotheses and found that using unified methods for 17O correction 
and subsequent data processing reduced inter-laboratory discrepancies without eliminating them. Testing 
the third hypothesis is one of the goals of the recently completed inter-laboratory comparison exercise “In-
terCarb”, whose results are reported in a companion study (Bernasconi, Daëron, et al., 2021).

Abstract  Clumped-isotope measurements in CO2 and carbonates (Δ47) present a number of technical 
challenges and require correcting for various sources of analytical nonlinearity. For now, we lack a formal 
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more, these models imply that the inter-laboratory scatter (N = 5,329) observed in the InterCarb exercise 
(Bernasconi, Daëron, et al., 2021) can be entirely explained as the effects of current standardization 
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How to accurately estimate the analytical uncertainties affecting Δ47 measurements constitutes a distinct 
but related issue. Compared to most other isotopic or elemental tracers, carbonate clumped isotopes stand 
out in that analytical uncertainties remain large relative to the range of Δ47 values typical of natural sam-
ples. Although Fernandez et al. (2017) pointed out that non-robust statistics based on small numbers of 
observations frequently yield underestimated uncertainties, there is no consensus today as to whether this 
is the primary cause of inter-laboratory discrepancies. He et al. (2012), Daëron & Blamart (2016) and Kock-
en et al. (2019) all called attention to the uncertainties associated with Δ47 standardization (i.e., conversion 
of “raw” Δ47 measurements to “absolute” values), but for now, we lack an explicit, formal description of 
this source of analytical error, which most data processing methods do not currently account for. This is-
sue is critical in the context of the InterCarb exercise, which aims to test whether different laboratories, 
when analyzing a common set of four unknown and three reference carbonate samples, obtain analytically 
consistent results, i.e., results displaying no more inter-laboratory scatter than expected based on intra-lab-
oratory analytical errors. The present work aims to formulate a comprehensive model of analytical errors 
in Δ47 measurements, including those arising from standardization using carbonate and/or carbon dioxide 
standards; to describe various standardization strategies along with the assumptions they rely on; and to 
provide user-friendly data processing tools implementing these error models.

2.  Methods
2.1.  A Brief Summary of Mass Spectrometric Measurements of Δ47 in Carbonates

Clumped-isotope analyses of carbonates are typically performed using dual-inlet gas-source isotope-ratio 
mass spectrometry. In each analysis, a certain amount of carbonate mineral reacts with pure phosphoric 
acid at a fixed temperature (usually 25°C, 70°C or 90°C). Each such reaction typically produces between 
1 and 100 μmol of CO2, which is collected in a series of cryogenic traps and carefully purified to eliminate 
isobaric contaminants (i.e., species with a molecular mass of 47 Da, or compounds liable to produce such 
species through fragmentation/recombination reactions). Although our primary focus is on measurements 
of Δ47 in carbonate minerals, most aspects of the present study apply just as well to Δ47 in CO2 samples 
which were not produced by acid digestion of carbonates.

The purified CO2 is then introduced to the “sample” side of a dual-inlet system and, from there, into a 
Nier-type ion source. In most systems currently in use, analyte CO2 is compared with a “working gas” ref-
erence CO2 through the frequent, regular toggling of a change-over valve. The bulk isotopic composition 
(δ13C, δ18O) and mass-47 to mass-44 abundance ratio of each analyte are determined by comparing ion 
currents for the analyte and the working gas, averaged over long integration times, typically tens of minutes 
or longer. These integration times are necessary because counting statistics are one of the primary factors 
limiting precision when observing rare isotopologues such as 16O13C18O, which makes up only 46 ppm of 
natural CO2 (Huntington et al., 2009).

For the past decade Δ47 measurements have been standardized by comparison with specially prepared CO2 
standards with known clumped-isotope compositions and variable bulk isotope compositions (Dennis 
et  al.,  2011). Carbonate reference materials have increasingly been also used for standardization, either 
in addition to or as a replacement for CO2 standards (Bernasconi, Müller, et al., 2018; Meckler et al., 2014; 
Schmid & Bernasconi, 2010). Although here we primarily consider standardization using carbonate refer-
ence materials, the mathematical framework presented below generally applies as well to CO2 standards.

2.2.  Terminology

We define below, in the context of this work, a number of terms. A sample is an amount of presumably 
homogeneous carbonate material subjected to one or more analyses (otherwise known as replicate meas-
urements/observations). Each analysis corresponds to a single acid reaction followed by purification of the 
evolved CO2 and by a series of dual-inlet IRMS measurements, yielding working-gas delta values (δ45 
to δ49). These working-gas deltas are then converted to “raw” (non-standardized) values of δ13C, δ18O, and 

raw
47Δ . The specifics of this conversion have been extensively covered elsewhere (e.g., Daëron et al., 2016; 

Huntington et al., 2009), and are not directly relevant to the topics discussed here. Analyses are generally 
grouped into sessions, each of them usually corresponding to a given time span over which analytical 
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conditions are presumed to have remained stable. One key assumption is that the various analytical/in-
strumental nonlinearities which affect raw

47Δ  observations remain constant over the duration of each ses-
sion. These nonlinearities include a scrambling effect likely reflecting recombination of isotopologues 
in the ion source or elsewhere in the sample preparation apparatus (Dennis et al., 2011); a compositional 
slope reflecting small biases in the electrical background of the ion beam measurements (Bernasconi, Hu, 
Wacker, et al., 2013; He et al., 2012); and a working gas offset resulting from the (knowingly inaccurate) 
assumption that the dual-inlet working gas is stochastic. Within each session, the samples/analyses are di-
vided into two groups: anchors, whose Δ47 values are assigned a priori, and unknowns, whose Δ47 values 
are to be determined. Here we define a standardization model as any mathematical procedure aiming to 
estimate these unknown Δ47 values by comparing the anchor and unknown analyses, explicitly or implicitly 
constraining analytical nonlinearities within each session.

2.3.  Objectives and Strategy

Our aim is to model how random, zero-centered, presumably Gaussian measurement errors on δ47 or raw
47Δ  

propagate into final, “absolute” Δ47 values averaged over a number of analyses/sessions. We do not attempt 
to account for non-random biases such as those potentially arising, for instance, from errors in the isotopic 
composition of the working gas, or from assigning inaccurate Δ47 values to one or more anchors. The mod-
els described here will hopefully provide a framework to report more accurate estimates of the uncertainty 
associated with clumped-isotope measurements, and inform the choices we make in the laboratory.

We start by describing a general formulation of the standardization function used to compute the “absolute” 
Δ47 value of each analysis. Quantifying the parameters defining this function within a given session is equiv-
alent to constraining the analytical/instrumental nonlinearities mentioned above, and may be treated as a 
classical least squares minimization problem.

We follow up by estimating the analytical precision of “raw” measurements (before standardization) based, 
following oft-repeated recommendations, on the pooled external repeatability of a group of standards and/
or unknown samples. The general formulation used here then makes it straightforward to propagate the raw 
measurement errors into the “autogenic” uncertainty of each analysis (that directly arising from the raw 
errors of this particular analysis) and an independent component of “allogenic” uncertainties arising from 
the least squares model errors, i.e., from the standardization itself.

We finish by describing the general properties of these two components of error, and briefly discuss sev-
eral practical standardization approaches applicable to real-world data sets. With non-specialist readers 
in mind, we attempted, as much as possible, to leave mathematical details out of the main text, but three 
appendices provide detailed, explicit examples of the calculations underlying our models.

2.4.  Standardization to an “Absolute” Δ47 Reference Frame Within a Single Session

Computing “absolute” Δ47 values traditionally involves two consecutive affine transformations designed to 
correct for known instrumental nonlinearities (Equations 5 and 6 of Dennis et al. (2011), using the original 
notation):

  47
47 [SGvsWG]0 47 [SGvsWG] [SGvsWG] EGLΔ Δ Slope‐ ‐� (1)

  47 RF 47 [SGvsWG]0 ETF ETFΔ Δ Slope Intercept‐ ‐� (2)

This is mathematically equivalent to the following formulation:

  raw
47 47 47Δ Δ δa b c� (3)

In this equation, the parameters (a, b, c) respectively account for scrambling effects, the compositional 
slope, and the working gas offset. To estimate these parameters, a natural approach is to use classical least 
squares minimization methods, treating raw

47Δ  as the response/dependent variable and (Δ47, δ47) as explana-
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tory variables. Despite uncertainties on δ47 usually being as large as those on raw
47Δ , the former may safely be 

treated as an explanatory variable because b is typically small enough (10−2 or less) for errors on δ47 to have 
a negligible impact. As an aside, even in cases where |b| is so small as to be indistinguishable from zero, it 
remains important, as argued below, to quantify the precision of this estimate. The models discussed here 
are thus fully consistent with background correction procedures such as the “pressure baseline correction” 
of He et al. (2012), and neither approach should preclude the other.

Without compelling reasons to do otherwise, we assign equal weights to all measurements belonging to the 
same session. The best fit standardization parameters (a, b, c) for any given session are thus those minimiz-
ing the following χ2 statistic, summed over all anchor analyses within that session (unknown analyses are 
not considered here because their Δ47 values are not known a priori):

      
22 raw

47 47 47Δ Δ δa b c� (4)

This computation, whose underlying mathematical steps and details are summarized in Appendix A, yields 
a triplet of best fit values for (a, b, c), thus defining the standardization function of Equation 3 for this 
session. It also yields a covariance matrix V0 for the best fit values of (a, b, c). At this stage, the covariance 
matrix is unscaled, meaning that it only constrains the relative scaling between model standard errors and 
covariances in (a, b, c). The additional piece of information needed to scale these model errors is the uncer-
tainty assigned to each observation, i.e., the analytical precision of individual raw

47Δ  measurements.

2.5.  Estimating the Analytical Precision of Raw Measurements

The uncertainty assigned to individual raw
47Δ  measurements, noted raw

47σ , may be quantified in various ways, 
but always keeping in mind that over-reliance on the statistics of small numbers is problematic (Fernandez 
et al., 2017). We propose that in most cases a robust estimate of raw

47σ  can be obtained by considering car-
bonate samples deemed free of contaminants and isotopically homogeneous, be them anchors, unknown 
samples, or carbonate standards treated as unknowns, and computing the pooled Δ47 repeatability of anal-
yses within this group:


47

2

47 47

21



  

N N
a S

 � (5)

where 
47

 is the average Δ47 value for the sample considered, Na the total number of analyses considered, 
and NS the number of different samples considered. The raw

47Δ  repeatability of analyses is then:

  
47

2

47

2

47 47 47

21raw

a S
N N

     


    a a b c
raw � (6)

It bears noting that if the group of samples used to estimate raw
47σ  within a single session only comprises three 

anchors, then  2raw
47σ  is equal to the reduced chi-square statistic χ2/(Na − 3) for that session. In such case, 

scaling the standardization errors by raw
47σ  is equivalent to the common practice of estimating least squares 

model errors based on the scatter/variance of residuals. Taking additional samples into account increases 
confidence in our estimate by virtue of increasing the statistical degrees of freedom (Nf = Na − NS), on the 
condition that the replicability of these additional samples is equal to (or indistinguishable from) that of 
carbonate standards. In our experience, this condition is frequently met when samples are well-mixed, fine-
ly ground, relatively pure carbonate powders.

2.6.  Propagation of Standardization Errors Within a Single Session

Regardless of its estimation method, raw
47σ  may now be used to quantify the standard model errors (σa, σb, σc) 

on the best fit standardization parameters and their covariances (cab, cbc, cbc):
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 
 
 
  
 
  

2

22 raw
47 0

2

σ c c

c σ c σ V

c c σ

a ab ac

ab b bc

ac bc c

� (7)

Here, the σ values quantify the precision of the constraints obtained on each of the best fit model parame-
ters considered independently, while the covariances indicate the statistical correlation between these mod-
el errors (e.g., cab is the product of σaσb and the dimensionless correlation coefficient between best fit values 
of a and b). These model errors and covariances fully describe the standardization uncertainty associated 
with anchor measurement errors, and can now be propagated explicitly using classic propagation methods 
(e.g., Tellinghuisen, 2001) to the session average Δ47 value of a given unknown sample, noted 

47
:

  
47 47 47 47

21
        

a

b

a

c

a

raw

  J C J
T� (8)

with 
47

raw  and 
47

 being the session average values of raw
47Δ  and δ47, respectively; J the Jacobian matrix of 


47

 (i.e., the matrix of all partial derivatives of 47); JT the transpose of J; and C the covariance matrix of 


47

raw
, , ,a b c







:

J
raw




























   





  
47

47

47 47 47

47 47

1
1, , , , , ,

a b c a
 11



� (9)

C c c

c c

c c

raw
































47

2

2

2

2

0 0 0

0

0

0

a ab ac

ab b bc

ac bc c















 











47

2

2

2

2

0 0 0

0

0

0

raw

a
N

c c

c c

c c

/

a ab ac

ab b bc

ac bc c



















� (10)

The structure of the above covariance matrix makes it clear that  
47

2   for an unknown sample is the sum 
of two statistically independent sources of error: an “autogenic” component σu reflecting uncertainties in 

raw
47Δ  measurements for that sample, and an “allogenic” component σs reflecting uncertainties in the stand-

ardization model used to convert raw
47Δ  to final Δ47 values:

  
47

2
2 2   
u s

� (11)

2 2
u 47 aσ σ / N� (12)

      
s

c c c
2

2 47

2
2

47

2
2 2

47 47 47 47

1
2      





a

a b c ab ac bc
   � (13)

2.7.  Combining Data From Several Independent Sessions

As long as the standardization of each session only takes into accounts analyses from that session, the val-
ues of 

47
 computed as above within each session are statistically independent from each other. The final 

Δ47 value for a given unknown sample may thus be simply computed as the weighted average of 
47

 from 
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different sessions (with weights noted ω). Using a weighted average for this last step is necessary to account 
for inter-session differences in the number of analyses of that sample, and also potentially in raw analytical 
repeatability (unless, for instance, a deliberate choice is made to use a single estimate of raw

47σ  constrained 
by all sessions):

 
47 47

final
with sessions noted as  

i

i
i

i� (14)

  
i

i i i

     

 
47

2

47

2

/� (15)

     
47

2
2

47

2

47

2

1
final        



i

i
i i i

/� (16)

3.  Discussion
3.1.  Properties of Standardization Errors

The standardization model of Section  2.4 is mathematically equivalent to the least squares fitting of a 
two-dimensional plane described by Equation 3 in a three-dimensional space (δ47, Δ47, raw

47Δ ). Most proper-
ties described below arise naturally from this geometry.

Standardization uncertainties depend greatly on the bulk (δ47) and clumped-isotope (Δ47) composition of 
unknown samples relative to the anchor samples (Daëron & Blamart, 2016; Kocken et al., 2019). It is thus 
useful to describe this uncertainty in terms of an “error field” which can be mapped in (δ47, Δ47) space, as 
shown in Figure 1. The minimum standardization error coincides, in (δ47, Δ47) space, with the barycenter of 
the anchor analyses, and its value is equal to 47σ / N , with N being the total number of anchor analyses.

Outside of a polygon defined by the anchor samples, standardization errors increase steeply. As illustrated 
in Figure 1, this increase is comparatively slower if analyses are evenly distributed between anchor samples, 
which tightens constraints on parameters a and b.

Figure 1 also illustrates the benefits of using anchors with extreme isotopic compositions, which increase 
the area of the anchor polygon. One potential drawback of relying on isotopically extreme anchors, how-
ever, is that our “planar” model approximation might then break down. For instance, a small quadratic 
component to the compositional nonlinearity (term b δ47 in Equation 3), whose effect would be negligible 
over a δ47 range of 30‰, might introduce a significant bias over a range of 60 or 100‰ (e.g., Figure 7 from 
He et al., (2012)).

The properties outlined above are fully consistent with the Monte Carlo simulations of Kocken et al. (2019). 
In particular, they explain all of the main patterns displayed in their Figure 5. The primary difference be-
tween our approach and that of Kocken et al., beyond the difference in mathematical methods, is that their 
simulations focus on the empirical transfer function (Equation 2), which corresponds to parameters a and 
c. Here we show that the uncertainty from compositional nonlinearities (Equation 1) behaves in a similar 
way, and that all of these corrections can be propagated explicitly in a unified manner, side-stepping the 
need for Monte Carlo simulations.

3.2.  Impact of Standardization Errors

Because the relative contributions of the autogenic and allogenic error components defined above (Equa-
tions 11–13) are sensitive to the distribution of analyses among anchor and unknown samples and on the 
isotopic composition of unknowns relative to the anchor polygon, they are expected to vary greatly between 
laboratories and/or sessions. The InterCarb data set, comprising over five thousand analyses from 22 dif-
ferent laboratories (Bernasconi, Daëron, et al., 2021), offers an excellent opportunity to quantify these two 
components in a wide range of realistic settings.

A compilation of σs versus σu for the average Δ47 value of unknown samples obtained in each of the 77 
InterCarb sessions is shown in Figure 2. As expected, standardization errors for IAEA-C1, a marble sample 
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which plots within the anchor polygon defined in (δ47, Δ47) space by ETH-1/2/3, are generally slightly small-
er than autogenic errors, resulting in a modest increase of the total Δ47 error (σ47) relative to the autogenic 
error. Samples IAEA-C2 (natural travertine) and ETH-4 (synthetic calcite), both of them located outside of 
the anchor polygon, display larger standardization errors, thereby increasing σ47 by an average factor of 1.5 
and up to a factor of 2. Finally, in the case of the MERCK sample, a synthetic carbonate with extremely de-
pleted  13C and  18O values, standardization errors generally dominate. As a result, propagating them into 
the total Δ47 error increases σ47 by an average factor of 2.5 and up to a factor of 4.

3.3.  Correlations Between Samples

Standardization errors contribute a sizable portion of analytical uncertainties, but it is notable that they do 
so in a way that is strongly correlated between samples, as illustrated by the joint 95% confidence ellipses 
for the average Δ47 values of unknown samples shown in Figure 3. As a result, Δ47 measurements of sam-
ples analyzed in one or more common sessions are not independent measurements. In many cases, this 
precludes using simple statistics such as the widely used formula for calculating the standard error of the 
average of replicate measurements, which assumes independent measurement errors.

Appendix B provides full computational details for the covariance between the session-averaged Δ47 values 
of two unknowns samples (B.1); the uncertainties characterizing Δ47 differences between samples (B.2); and 
weighted mean Δ47 values averaged over several samples (B.3). The key point to keep in mind is that full an-
alytical errors are not independent between samples of the same session, with the following consequences: 
(1) when averaging many Δ47 measurements within a single session, analytical errors will not tend to zero 
but to the standardization error for this sample; (2) the error on Δ47 differences between samples of similar 
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Figure 1.  Properties of standardization errors. Upper left panel shows the unknown and anchor analyses (black and 
red crosses, respectively) and contours of the standardization error field (red lines) for Session #2 of Lab #12 in the 
InterCarb data set. Upper right and lower left panels modify the original data by changing the distribution of anchor 
analyses between ETH-1, ETH-2, and ETH-3, keeping the total number of anchor analyses constant, illustrating 
that the error minimum coincides in (δ47, Δ47) space with the barycenter of anchor analyses. The lower right panel 
corresponds to the original data but treats ETH-2 as an unknown and MERCK as an anchor, illustrating the benefits of 
using isotopically extreme anchors.
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compositions (as is often the case in paleoclimate records) is largely unaffected by standardization errors, 
but only if they are analyzed within the same session.

3.4.  Gaussian Approximation of Standardization Errors

The error propagation formula of Equation 8 is a first-order Taylor approximation. Because Δ47 is not a 
linear combination of ( raw

47Δ , δ47, a, b, c), propagated errors in Δ47 are not strictly Gaussian. However, after 
quantifying the non-Gaussian effects of these approximations using Monte Carlo simulations of the full 
InterCarb data set (Appendix C), we find that these deviations from normality remain entirely negligible in 
practice, with Gaussian estimates of mean Δ47 values and their corresponding standard errors being typical-
ly off, respectively, by only 0.02σ and 0.01σ (with σ denoting Gaussian estimates), considering all sessions 
and all unknown samples in the InterCarb data set.

As an extreme example, Figure 4 shows the Monte Carlo distribution of full analytical errors for the average 
Δ47 value of IAEA-C2 in one of the InterCarb sessions, chosen because it is the “least Gaussian” distribution 
of the whole data set, i.e., the least likely to be Gaussian based on a Kolmogorov-Smirnov test (p = 0.0003). 
Even in this worst-case example, differences between the Monte Carlo cumulative distribution function 
(CDF) and the Gaussian CDF computed from Equation 8 remain minuscule: the Monte Carlo average of 
Δ47 for this sample in this session is 0.6734 ‰ (vs. 0.6713‰ for the Gaussian estimate), and the correspond-
ing Monte Carlo standard error is 0.0357‰ (vs. 0.0348‰ for the Gaussian approximation, noted σ), off 
by −0.06σ and −0.03σ respectively.

3.5.  Statistical Weighting Options

For the sake of simplicity, the error model described above rests on simple assumptions, for example by 
assigning equal statistical weights to all analyses. In the following sections, we briefly discuss various ways 
in which this error model could be modified to better reflect real-life analytical conditions.
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Figure 2.  Autogenic vs. standardization errors. Each square marker corresponds to the error components for the 
average Δ47 value of an unknown sample in each of the InterCarb sessions. Histograms characterize the ratios of total 
analytical error (σ47) to autogenic error (σu) for each of the unknown samples.
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3.5.1.  Equal Session Weights

In the general case where all sessions are considered equal, we recommend that each session should first 
be standardized using Equations 21 and 23. The overall raw

47Δ  repeatability should then be computed using 
a slightly modified version of Equation 6, with NA being the number of anchor samples, NU the number of 
unknown samples, and Na the total number of analyses:

 
47

2

47 47 47

21raw

a A U

raw

N N N
  

 
     a b c� (17)

This overall repeatability should then be used to scale the covariance matrix of each session according to 
Equation 7.

3.5.2.  Different Session Weights

It may be justified in some cases to assign different statistical weights to analyses from different sessions. 
We would not generally recommend doing so based only on observed differences in σ47 (which will inevi-
tably vary slightly between sessions), unless these differences are statistically significant with a high level 
of confidence. On the other hand, data produced under different analytical conditions may in some cases 
reasonably be expected to be more or less precise: for example, measurements obtained using greater ion 
currents should be more precise due to counting statistics alone.

In such cases, we may first divide sessions into groups expected to share similar analytical precision levels. 
Pooled raw

47Δ  repeatabilities for each group may then be computed according to Equation 17, and subsequent-
ly applied to covariance matrix scaling according to Equation 7.
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Figure 3.  Covariance of errors in session-averaged Δ47 values for unknowns samples. Thick red lines correspond to 
joint 95% confidence ellipses for the average Δ47 values of each unknown sample in Session02 of Lab12 (cf. upper left 
panel of Figure 1). Thin red lines and dashed red lines correspond to joint 95% confidence ellipses only taking into 
account standardization and autogenic errors, respectively.
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3.6.  Pooled Standardization Model Taking Unknown Samples 
into Account

3.6.1.  Principle

By only considering anchor samples to constrain the standardization pa-
rameters (a, b, c) of each session, the models described so far neglect some 
useful information. As a matter of fact, even without prior knowledge of 
the Δ47 values of unknown samples, we expect the relative mapping of an-
chors and unknowns in (δ47, Δ47) space to be preserved between sessions. 
This approach is only useful when some of the sessions have unknown 
samples in common, but in that case it is likely to substantially increase the 
number of observations constraining the standardization model, making 
it more robust (less sensitive to outliers in the anchor analyses) and slight-
ly more precise (by virtue of increasing the model's degrees of freedom).

In practice, instead of treating each session as a separate least squares 
problem, we now aim to minimize a “pooled” version of the χ2 statis-
tic defined in Equation 4, this time summed over all analyses (including 
both anchors and unknowns) in all sessions considered:

      
22 raw

47 47 47Δ Δ δi i ia b c� (18)

where raw
47Δ  and δ47 are the observations from each analysis, (ai, bi, ci) are 

the standardization parameters for session (i), and Δ47 is either a nom-
inal value assigned a priori (for anchor analyses) or an additional, free 
model parameter corresponding to the Δ47 value of the relevant unknown 
sample. The pooled regression model now rests on a number of obser-
vations equal to the total number of analyses, with a number of model 
parameters equal to the number of unknown samples plus three times 
the number of sessions.

Because some of the χ2 terms include the product of two model param-
eters, this is not a linear least squares problem and the direct solution of 
Appendix A no longer applies. One may, however, call upon well-estab-
lished numerical approaches designed to optimize nonlinear problems. 
In our experience, the classical Levenberg-Marquardt method (Leven-
berg,  1944; Marquardt,  1963), as implemented by the LMFIT Python 

package (Newville et al., 2014), is well suited to this task. Even for large data sets of several thousand analy-
ses, it is able to quickly and reliably output a vector of best fit values for all model parameters (including Δ47 
values for all unknown samples) along with the corresponding covariance matrix, thus directly providing 
standard errors and covariances between unknown sample Δ47 values.

3.6.2.  Benefits

The benefits of a pooled standardization model may not be immediately obvious, but this approach should 
yield systematic improvements in the robustness and accuracy of the standardization procedure. For in-
stance, considering the samples shown in Figure 1, it may be clear that forcing the Δ47 value of MERCK to 
remain consistent between sessions should greatly contribute to constrain variations in the compositional 
slope (b) between sessions, even without knowing MERCK's true composition. The same argument could 
be made if one were to analyze heated and equilibrated gases along with carbonate standards, treating them 
as entirely unknown samples: even without any knowledge of CO2 equilibrium values nor of acid fraction-
ation effects, the large spread of Δ47 between heated and equilibrated gases would strongly constrain varia-
tions of the scrambling factor (a) between sessions, thereby reducing standardization errors for all samples.

Figure 5 illustrates this reduction in standardization errors by showing (δ47, Δ47) plots for the four sessions 
from Lab #12 in the InterCarb data set, comparing the error fields resulting either from the pooled standard-
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Figure 4.  Error distribution for the “least Gaussian” average Δ47 value in 
the InterCarb data set. Upper panel: red area corresponds to the Monte 
Carlo histogram of the average Δ47 value of IAEA-C2 in Session #5 of 
Lab #8, black line is the Gaussian probability distribution computed from 
Equations 11–13. Lower panel: Monte Carlo (red line) and Gaussian 
(black line) cumulative distributions functions for this average Δ47 value. 
In the upper left corner, p is the Kolmogorov-Smirnov p-value for the null 
hypothesis that these two distributions are identical.
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ization approach (one model with 153 degrees of freedom) or from the earlier approach ignoring unknown 
samples (four independent models with 20, 16, 24, and 16 degrees of freedom, respectively). These statistical 
improvements are not a result of over-fitting, despite the increase from 12 to 16 model parameters, because 
the number of observations used to compute the χ2 statistic increases even more, from 88 to 169. Although 
the locations and values of the error field minima remain largely unaffected by the choice of standardiza-
tion method, in this case the pooled model strongly reduces standardization errors for analyses plotting 
outside of the anchor polygon (from 10–11 ppm down to 6 ppm for MERCK), despite the fact that no as-
sumption was made regarding the true Δ47 values of unknown samples. It should be noted, however, that 
uncertainties on final, average Δ47 values tend not to be as greatly reduced as those on (a, b, c), reflecting the 
fact that the pooled regression approach is primarily designed to improve accuracy rather than precision.

3.6.3.  Caveat

The pooled approach depends critically on our earlier assumption that samples are homogeneous, which 
we acknowledge to be generally but not universally true. It is however simple enough, in the presence of 
samples suspected to be heterogeneous (i.e., whose Δ47 repeatability is demonstrably worse than for car-
bonate standards with a statistically high level of confidence), to treat each of the corresponding analyses 
as belonging to separate samples.

4.  ClumpyCrunch and D47crunch
The calculations discussed above may be tedious to implement from scratch. The simplest way to take ad-
vantage of these error models is to use the latest version of the open-source ClumpyCrunch web application 
(https://clumpycrunch.pythonanywhere.com), which implements both the independent-sessions method 
of Section 2.6 and the pooled standardization approach of Section 3.6. Those wishing to experiment at a 
deeper lever may install the underlying, open-source D47crunch library for Python (https://doi.org/10.5281/
zenodo.4314550), which also supports computing different repeatabilities for different groups of sessions 
(Section 3.5.2); explicitly treating some samples as potentially inhomogeneous (Section 3.6); modeling tem-
poral drifts in parameters a, b, c (Appendix A.2); computing standard errors for Δ47 differences and/or means 
accounting for analytical covariance between samples (Appendices B.2–B.3); and assessing whether the Δ47 
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Figure 5.  Benefits of a pooled standardization model. Unknown and anchor analyses (black and red crosses, 
respectively) and contours of the standardization error fields (red lines) for the four sessions of Lab #12 in the 
InterCarb data set. Upper row: using four independent models only taking anchor analyses into account, with 20, 16, 
24, and 16 degrees of freedom, respectively. Lower row: using a pooled standardization model with 153 degrees of 
freedom taking anchors and unknowns into account as described in Section 3.6.

https://clumpycrunch.pythonanywhere.com
https://doi.org/10.5281/zenodo.4314550
https://doi.org/10.5281/zenodo.4314550
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repeatabilities of two samples differ significantly. Both D47crunch and 
ClumpyCrunch also output robust 95% confidence limits for final Δ47 val-
ues based on the number of degrees of freedom in the standardization 
models. Links to the source code and documentation for D47crunch and 
ClumpyCrunch are provided below (see “Data and Code” section).

5.  Recommendations
Based on the findings above we may offer the following recommenda-
tions, several of which are reiterations or reformulations of oft-repeated 
best practices.

Allocate anchors wisely. As illustrated by Figure  1, the standardization 
error field in (δ47, Δ47) space is primarily controlled by the Δ47 repeatabil-
ity (σ47), by the compositional distribution of anchor samples, and by the 
number of analyses performed for each anchor. The predicted properties 
of this error field are entirely consistent with the Monte Carlo simula-
tions of Kocken et al. (2019), who called attention to the importance of 
optimizing the distribution of anchor replicates. When unknown samples 
of interest are close, in (δ47, Δ47) space, to one of the anchors, we again 
recommend analyzing many replicates of that anchor and just enough 
replicates of other anchors to constrain the standardization parameters. 
“Just enough replicates” is not entirely subjective, because we are now 
able to model quantitatively, as in Figure 1, how the standardization er-
ror field responds to different allocations of replicates among the anchor 
samples. In other cases, where unknown samples plot outside of the an-
chor polygon in (δ47, Δ47) space, the optimal choice of anchor analyses 
is less obvious, making this simulation approach even more useful (see 
below for a practical method to perform such simulations). Finally, anal-
yses of specific types of natural samples with exotic isotopic compositions 
(e.g., methane seep carbonates) should greatly benefit from defining new, 
bespoke carbonate standards expressly chosen for this purpose.

When in doubt, simulate standardization uncertainties. As mentioned 
above, it may be useful to predict the error fields resulting from arbitrary 
combinations of anchor/unknown analyses. D47crunch implements 
such simulations using the D47data.simulate() function, for any com-
bination of user-defined samples, number of replicate analyses, and Δ47 
repeatability (σ47).

Analyze related samples together. As discussed above, Δ47 measurements of 
samples analyzed in one or more common sessions are not independent 
measurements (Section 3.3). As a result, Δ47 differences between unknown 
samples which were analyzed together are often more precisely constrained 
than their absolute Δ47 values. Figures 6a and 6b provide such an example, 
in which a simulated series of samples with identical bulk compositions but 
different Δ47 values are analyzed together. Similarly, when testing whether 
two samples with similar compositions in (δ47, Δ47) space have different Δ47 

values (e.g., when testing different carbonate aliquots for homogeneity), standardization errors largely cancel 
out and autogenic errors dominate. In such cases, we recommend the unorthodox approach of short sessions 
with many unknown analyses and few anchor analyses (Figure 6c).

Report full uncertainties. Accurate comparisons of clumped-isotope data produced by different laborato-
ries have long remained a challenge (Petersen et al., 2019, and references therein). A striking result of the 
InterCarb comparison exercise (Bernasconi, Daëron, et al., 2021) is that despite data sets from different labs 
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Figure 6.  (a–b): Simulated series of 20 samples with similar bulk 
compositions, analyzed within a single session (four replicates for 
each anchor and unknown sample, σ47 = 0.01‰). Because of shared 
standardization errors, the uncertainties on the absolute Δ47 values of 
each sample (panel a, 95% confidence limits) are much larger than the 
uncertainties on the Δ47 differences (panel b, 95% confidence limits) 
between each sample and the first one (black marker). Note that panels a 
and b have identical vertical scales. (c): Simulated comparison of Δ47 values 
measured for two samples with identical compositions in (δ47, Δ47) space. 
Precisely comparing two unknowns samples with similar compositions 
only requires a few anchor analyses: increasing the number of replicate 
analyses per anchor from 2 to 16 reduces the uncertainties on the absolute 
Δ47 values of each unknown sample but does not improve constraints on 
the Δ47 difference between them. Both simulations were produced using 
the D47crunch library (cf. Section 4).

https://urldefense.com/v3/__https:/mdaeron.github.io/D47crunch/*D47crunch.D47data.simulate__;Iw!!N11eV2iwtfs!9X2XKJykhFyqQEs_PN4ibv2Zy2UjIsETCCggVPUT5Wxn0qX79LGsJCs85HQKR2A$%20
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having extremely diverse analytical errors, the overall scatter between all laboratories is accurately predict-
ed (i.e., neither too large nor too small) by the error propagation models described here, implying that car-
bonate-standardized Δ47 measurements are free of unrecognized systematic inter-laboratory discrepancies. 
It is thus reasonable to expect that we are now capable of quantitative comparisons between results from 
different laboratories, but this requires that future studies report full analytical uncertainties. At present, 
two options for estimating these uncertainties are available. One is to use the software described in Section 4 
(ClumpyCrunch or D47crunch); the other is to implement Monte Carlo simulations similar to those de-
scribed by Kocken et al. (2019). We recommend that existing, widely used software such as Easotope (John 
& Bowen, 2016) should eventually report full analytical error estimates by default.

Experiment with session length. There has been little discussion so far in the literature regarding the choice of 
analytical session length. Shorter sessions may obviously suffer from less robust statistics due to fewer observa-
tions. Conversely, longer sessions risk overestimating Δ47 repeatabilities in case of slow, non-motononic instru-
mental drifts on the same order as σ47. Although this increase in apparent σ47 is counter-acted by a larger num-
ber of observations (Na in Equation 5), apparently keeping modeled standardization errors small, the overall 
accuracy of the error model may suffer because slow drifts are by definition not random and do not necessarily 
cancel out over time. We recommend checking for such slow drifts by testing whether σ47 at short time scales 
(e.g., a few tens of analyses) is substantially smaller than at longer time scales (a few hundred analyses). This 
can easily be performed in post-processing by redefining session bounds (or session names in ClumpyCrunch).

Use pooled regression by default. Although the pooled approach described in Section  3.6 is not without 
limitations, it has been tested on over a year's worth of real-world data from several laboratories, and so 
far appears to offer greater statistical robustness at very little cost. Beyond rare pathological cases where 
some unknown samples are believed to have changed in composition over time, we recommend using this 
approach by default, or at least testing whether its output differs significantly from that of other methods.

6.  Conclusion
The framework presented here provides a quantitative/predictive description of Δ47 error propagation, fully 
taking into account standardization errors and their properties. It corroborates and extends earlier inves-
tigations based on Monte Carlo simulations (Kocken et al., 2019). This mathematical formulation is found 
not to introduce large deviations from normality: in other words, if raw

47Δ  errors are Gaussian, the fully prop-

DAËRON

10.1029/2020GC009592

13 of 19

Figure 7.  Monte Carlo simulation results All three panels display the cumulative distribution function of the p-values 
obtained from 104 Monte Carlo simulations of the full InterCarb data set (see Appendix C for computational details). 
When the random offsets used by the simulation are scaled according to the original data (a), autogenic errors behave 
in a Gaussian manner, but the standardization (“allogenic”) errors do not, due to the limits of the first-order Taylor 
approximations used here for error propagation. As expected, greatly increasing (b) or decreasing (c) the random offsets 
used by the simulation results modulates the non-Gaussianity of standardization errors, while autogenic errors, despite 
being respectively increased or decreased (not shown here), remain Gaussian.
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agated Δ47 errors may also be treated as Gaussian for all practical purposes. What is more, as reported by 
Bernasconi, Daëron et al. (2021), using this framework yields a very reasonable (p = 0.19) prediction for the 
distribution of inter-laboratory scatter in Δ47 values within the InterCarb data set.

Based on this framework, we describe a new, “pooled” standardization method designed to make full use of 
the constraints available from both anchor and unknown analyses. This approach is expected to yield sub-
stantially improved standardization models, in terms of both robustness and accuracy. We also provide new 
online resources and a Python library aiming to make the use of such error models as simple as possible. 
This library being open-source and fully documented, implementing the methods described here in existing 
software such as Easotope (John & Bowen, 2016) should be straightforward.

Most published clumped-isotope studies so far have lacked a rigorous propagation of standardization errors. 
This, of course, is not a problem in itself, but the InterCarb results unambiguously demonstrate that these 
standardization uncertainties are both necessary and sufficient to explain the inter-laboratory scatter observed 
in this large data set (N = 5,329). Going one step further, it could be argued that the ongoing persistence of in-
ter-laboratory discrepancies in Δ47 calibrations (Petersen et al., 2019) is due, at least in part, to largely ignored 
standardization errors (Anderson et al., 2021). Whatever the case, it seems likely that future comparisons 
between results obtained in different laboratories would greatly benefit from more accurate error estimates.

Finally, although all statistical models are interpretative approximations, their ultimate value depends less 
on their exactness than on their practical usefulness. At the very least, the framework described here should 
help improve the manner in which we report analytical data and/or compare them across laboratories, and 
may inform our choice of standardization protocols (e.g., anchor/unknown ratios, compositional distribu-
tion of anchors, new reference materials).

Appendix A:  Least Squares Regression

A.1.  General Linear Case

Consider a linear model f defined as:
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where x is a scalar or vectorial explanatory variable; y the response variable; (f1… fp) a series of functions of 
x; and (a1… ap) a series of scalar factors which are the model parameters to be estimated.
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The best fit parameters (a1… an) and their unscaled variance-covariance matrix V0 are then:
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A.2.  Application to the Standardization Model

The standardization model of Equation 3 is equivalent to the above formulation if:
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In this case:
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To take into account an uncertainty, noted σ, assigned to the observations, A and Y should both be divided 
by σ, which will leave the best fit parameters unchanged and scale the variance-covariance matrix V0 by a 
factor of σ2 (as in Equation 7).

Alternatively, to assign individual uncertainties, noted (σ1…σn) to the n analyses, each line of A and each 
element of Y should be divided by the corresponding σ value:
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Extending this model with additional parameters should be rather straightforward. For instance, in order 
to account for a temporal drift in the compositional nonlinearity, one could reformulate the model, with t 
denoting time and an additional standardization parameter d, as:
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Which would correspond to:
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Appendix B:  Δ47 Covariance
B.1.  Covariance Between Unknown Samples

Consider two unknown samples A and B, whose session-averaged compositions (
47
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BΔ , ΔA, and ΔB. Defining X as the column vector [ΔA, ΔB], we can express its 

Jacobian JX relative to the system of variables ( raw
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BΔ , a, b, c) and the covariance C of this quintuplet as:
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The covariance matrix of X is then:

   T
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Because of the structure of J and C, the non-zero terms of CX are equal to:

   
               
    

2
B

2
A B A A B2

2

σ c c Δ
1cov(Δ ,Δ ) Δ δ 1 c σ c δ

1c c σ

a ab ac

ab b bc

ac bc c
a

� (29)


    

   

2 2 2
A B A B A B A B A B2

A B A B

1cov(Δ , Δ ) Δ Δ σ δ δ σ σ (Δ δ δ Δ )c

(Δ Δ )c (δ δ )c

a b c ab

ac bc

a� (30)

The covariance between mean Δ47 values of two samples averaged over several sessions is zero if the sam-
ples were never analyzed in the same session. Otherwise, with ωAi and ωAi weights defined as in 15:

 final
A A AΔ ω Δ with denoting all sessions including Ai i

i
i� (31)

 final
B B BΔ ω Δ with denoting all sessions including Bj j

j
j� (32)

    final final
A B A B A Bcov Δ ,Δ ω ω cov Δ ,Δ with denoting all sessions including both A and Bk k k k

k
k� (33)

B.2.  Standard Errors on Δ47 Differences Between Samples

Consider two unknown samples A and B, whose session-averages compositions (47 , 
47

raw, and 
47

) are 
respectively noted δA, δB, raw

AΔ , raw
BΔ , ΔA, and ΔB. Defining x as the difference (ΔA −ΔB), we can express its 

Jacobian Jx relative to the system of variables ( raw
AΔ , raw

BΔ , a, b, c) as:

     B A B A
1J 1 , 1 ,Δ Δ ,δ δ , 0x a

� (34)

and compute the variance of x using the same covariance matrix C as above:


x x x

2   J C J
T� (35)
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A
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ab

a
2

� (36)

B.3.  Standard Errors on Mean Δ47 Values Averaged Over Several Samples

As an example, we treat here the problem of a weighted average of three samples. Consider three unknown 

samples A, B, and C, whose session-averages compositions (
47

, 
47

raw , and 
47

) are respectively noted δA, δB, 
δC, raw

AΔ , raw
BΔ , raw

CΔ , ΔA, ΔB, and ΔC. Defining W as the weighted average (xAΔA + xBΔB + xCΔC) and w as the 
weighted average (xAδA + xBδB + xCδC), we can express the Jacobian of W relative to the system of variables 
( raw

AΔ , raw
BΔ , raw

CΔ , a, b, c) as:

     
1 1W A B CJ x x x W w
a

� (37)
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and compute the variance of W using the same method as above:

 
 

 

 
 
 
 
 
    
 
 
 
 
  

2raw
47 A

2raw
47 B

2raw2 T
47 C

2

2

2

σ / N 0 0 0 0 0

0 σ / N 0 0 0 0

0 0 σ / N 0 0 0σ J J

0 0 0 σ c c

0 0 0 c σ c

0 0 0 c c σ

W W W

a ab ac

ab b bc

ac bc c

� (38)

 
  

W

a b c abx x x W w wW W
2

47

2

2 2 2 2 2 2 2 2
2

  








 

   
A

A

B

B

C

C
N N N

c cc c
ac bc

w

a

 
2

� (39)

Note that the second term above is equal to the value of the standardization error field at the weighted bary-
center of the samples in (δ47, Δ47) space.

Appendix C:  Monte Carlo Assessment of the Normality of Δ47 Errors

Because Δ47 is not a linear function of ( raw
47Δ , δ47, a, b, c), the propagation of standardization errors described 

in Section 2.6 is an approximation. Here we used a Monte Carlo simulation based on the full InterCarb data 
set to investigate how much autogenic and allogenic errors deviate from a Gaussian approximation. In each 
step of the simulation, we offset the original raw

47Δ  values observed in each of the 5,329 analyses by random, 
independent, zero-centered Gaussian errors with a standard deviation equal to the session's raw

47σ  value. We 
then standardize all sessions of the modified data set and record the final, session-averaged Δ47 values of 
each unknown sample (N = 226) for a total of 104 iterations. Each of these session averages is submitted to 
a Kolmogorov-Smirnov (KS) test of normality (Massey, 1951), comparing the distribution of these 104 values 
to a normal distribution centered on the original session-averaged value and whose width depends of the 
original propagated errors. Each of the 226 KS tests yields a p-value corresponding to the null hypothesis that 
the two distributions are identical. By design, if the Gaussian approximation of the propagated errors holds 
true, these p-values should be evenly distributed in the [0–1] interval. We may quantify how well they do so 
by performing a final KS test comparing the distribution of p-values to the uniform distribution, yielding a 
new, final p-value for the hypothesis that the errors in the InterCarb data set follow Gaussian distributions.

We run this simulation in three different configurations, considering only autogenic errors, only standard-
ization errors, or both. Initially, the random errors introduced in each iteration are scaled according to the 
Δ47 repeatability of each session (Figure 7a). We then repeat the simulations twice, by scaling the random 
errors according to a constant Δ47 repeatability of 50 and 5 ppm, respectively (Figures 7b and 7c).

Predictably, based on Equations 12 and 13, we find that autogenic errors behave in a Gaussian manner 
(p = 0.81), but this is clearly not the case for standardization errors (p < 10−27). Because the error propagation 
formula of Equation 8 is equivalent to a first-order Taylor expansion, the non-normality of standardization 
errors is expected to worsen as Δ47 repeatability increases, as is the case in Figure 7b, and to become negli-
gible when Δ47 repeatability is small enough (Figure 7c).

Notations
a	 scrambling factor, one of the standardization parameters, quantifying the amount of molec-

ular recombination during the analytical procedure; its value should lie between 0 and 1.
b	 compositional slope, one of the standardization parameters, quantifying small systematic 

errors in the electrical background of the ion collectors; it may be positive or negative and its 
absolute value should ideally remain small (10−2 or less).
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c	 working gas offset, one of the standardization parameters, accounting for the fact that the 
working gas is not necessarily stochastic; in settings where the working gas is equilibrated at 
room temperature, c ≈ −a

Na	 Number of analyses.
Nf	 Degrees of freedom in a regression model.
NS	 Number of samples.
NA	 Number of anchor samples.
NU	 Number of unknown samples.
Δ47	 delta notation (in ‰) for the clumped-isotope anomaly associated with mass-47 CO2; either 

denotes the “true” value for a given sample, or the “absolute” value computed from one or 
more IRMS measurements after standardization.

raw
47Δ 	 “raw” Δ47 value from an IRMS measurement, before standardization.

δ47	 delta notation (in ‰) for the mass-47 to mass-44 abundance ratio of an analyte CO2, general-
ly defined relative to a working reference gas.

σ47	 analytical error/uncertainty assigned to individual measurements of Δ47 (Equation 5).
 raw

47 	 analytical error/uncertainty assigned to individual measurements of raw
47Δ  (Equation 6).

σs	 allogenic error, i.e., the analytical error/uncertainty on a Δ47 measurement arising from the 
standardization function (Equation 13).

σu	 autogenic error, i.e., the analytical error/uncertainty on a Δ47 measurement arising from the 
analyses of the unknown sample itself (Equation 12).

Data Availability Statement
The complete raw data and all associated code used in this work are available under a Modified BSD Li-
cense at https://doi.org/10.5281/zenodo.4314593. The preferred way to comment on the code or to suggest 
improvements is to raise an issue at https://github.com/mdaeron/D47_error_propagation. D47crunch is 
easily installed through the Python Package Index (“pip install D47crunch”). To download the latest ver-
sions of the code source, contribute improvements, report bugs, or suggest new features, see https://github.
com/mdaeron/D47crunch. Full documentation is available at https://mdaeron.github.io/D47crunch. The 
ClumpyCrunch source code is also available at https://github.com/mdaeron/clumpycrunch.
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