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Abstract1

Clumped-isotope measurements in CO2 and carbonates (Δ47) present a number of technical challenges2

and require correcting for various sources of analytical non-linearity. For now we lack a formal descrip-3

tion of the analytical errors associated with these correction steps, which are not accounted for in most4

data processing methods currently in use. Here we formulate a quantitative description of Δ47 error5

propagation, fully taking into account standardization errors and their properties. We describe various6

standardization strategies, along with the assumptions they rely on, in the context of this model, and7

propose a new, “pooled” standardization approach designed to yield more robust/accurate corrections.8

User-friendly online resources and an open-source Python library are also provided to facilitate the use9

of these error models. Among other uses, the mathematical framework described here may be helpful10

to improve standardization protocols (e.g., anchor/unknown ratios) and inform future efforts to define11

community reference materials.12

1 Introduction13

Clumped-isotope geochemistry is the study of statistical anomalies in the abundance of multiply14

substituted isotopologues in natural materials [Eiler & Schauble, 2004; Eiler, 2011]. Mass spectro-15

metric measurements of Δ47, quantifying the excess abundance of 13C –18O bonds in CO2 and, by16

extension, in carbonateminerals, constitute themost widely used branch of this relatively young but17

rapidly evolving field of research. The appeal of carbonate Δ47measurements is largely based on the18

fact that the clumped-isotope compositions of natural carbonates directly or indirectly constrain19

their crystallization temperatures and/or thermal histories, with a broad range of Earth science ap-20

plications. Establishing a robust calibration of the carbonate Δ47 thermometer, however, has long21

remained a vexing challenge, with inter-laboratory discrepancies equivalent to large uncertainties22

in reconstructed temperatures, sometimes exceeding 10 °C [e.g., Bonifacie et al., 2017; Petersen et al.,23

2019].24
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Despite keeping in mind that “true” calibration differences between certain types of carbonates25

are not to be excluded a priori, various potential causes for these discrepancies have been put for-26

ward, such as (a) inconsistent or inaccurate 17O correction parameters [Daëron et al., 2016; Schauer27

et al., 2016; Olack & Colman, 2019], (b) systematic effects arising from different data processing28

methods, and (c) poorly-corrected analytical biases resulting from instrumental and/or methodolog-29

ical differences between laboratories. Petersen et al. [2019] tested the first two of these hypotheses30

and found that using unified methods for 17O correction and subsequent data processing reduced31

inter-laboratory discrepancies without eliminating them. Testing the third hypothesis is one of the32

goals of the recently completed inter-laboratory comparison exercise “InterCarb”, whose results are33

reported in a companion study [Bernasconi et al., 2021].34

How to accurately estimate the analytical uncertainties affecting Δ47 measurements constitutes35

a distinct but related issue. Although Fernandez et al. [2017] pointed out that non-robust statis-36

tics based on small numbers of observations frequently yield underestimated uncertainties, there is37

no consensus today as to whether this is the primary cause of inter-laboratory discrepancies. Both38

Daë̈ron & Blamart [2016] and Kocken et al. [2019] called attention to the uncertainties associated39

with Δ47 standardization (i.e. conversion of “raw Δ47” measurements to “absolute” values), but for40

now we lack an explicit, formal description of this source of analytical error, which most data pro-41

cessing methods do not currently account for. This issue is critical in the context of the InterCarb42

exercise, which aims to test whether different laboratories, when analyzing a common set of four43

unknown and three reference carbonate samples, obtain analytically consistent results, i.e. results44

displaying nomore inter-laboratory scatter than expected based on intra-laboratory analytical errors.45

The present work aims to formulate a comprehensive model of analytical errors in Δ47 measure-46

ments, including those arising from standardization using carbonate and/or carbon dioxide stan-47

dards; to describe various standardization strategies along with the assumptions they rely on; and to48

provide user-friendly data processing tools implementing these error models.49

2 Methods50

2.1 A brief summary of mass spectrometric measurements of Δ47 in carbonates51

Clumped-isotope analyses of carbonates are typically performed using dual-inlet gas-source isotope-52

ratio mass spectrometry. In each analysis, a certain amount of carbonate mineral reacts with pure53

phosphoric acid at a fixed temperature (usually 25, 70 or 90 °C). Each such reaction typically pro-54

duces between 1 and 100 μmol of CO2, which is collected in a series of cryogenic traps and carefully55

purified to eliminate isobaric contaminants (i.e. species with a molecular mass of 47 amu, or com-56

pounds liable to produce such species through fragmentation/recombination reactions). Although57

our primary focus is onmeasurements of Δ47 in carbonateminerals,most aspects of the present study58

apply just as well to Δ47 in CO2 samples which were not produced by acid digestion of carbonates.59

The purified CO2 is then introduced to the “sample” side of a dual-inlet system and, from there,60

into a Nier-type ion source. Inmost systems currently in use, analyte CO2 is compared with a “work-61

ing gas” reference CO2 through the frequent, regular toggling of a change-over valve. The bulk62

isotopic composition (δ13C, δ18O) andmass-47 to mass-44 abundance ratio of each analyte are deter-63
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mined by comparing ion currents for the analyte and theworking gas, averaged over long integration64

times, typically tens of minutes or longer. These integration times are necessary because counting65

statistics are one of the primary factors limiting precision when observing rare isotopologues such66

as 16O13C18O, which makes up only 45 ppm of natural CO2 [Huntington et al., 2009].67

For the past decade Δ47 measurements have been standardized by comparison with specially68

prepared CO2 standards with known clumped-isotope compositions and variable bulk isotope com-69

positions [Dennis et al., 2011]. Carbonate reference materials have increasingly been also used for70

standardization, either in addition to or as a replacement for CO2 standards [Meckler et al., 2014;71

Bernasconi et al., 2018]. Although here we primarily consider standardization using carbonate ref-72

erence materials, the mathematical framework presented below generally applies as well to CO273

standards.74

2.2 Terminology75

We define below, in the context of this work, a number of terms. A sample is an amount of pre-76

sumably homogeneous carbonate material subjected to one or more analyses (otherwise known77

as replicate measurements/observations). Each analysis corresponds to a single acid reaction fol-78

lowed by purification of the evolved CO2 and by a series of dual-inlet IRMSmeasurements, yielding79

working-gas delta values (δ45 to δ49). These working-gas deltas are then converted to “raw” (non-80

standardized) values of δ13C, δ18O, and Δ47raw. The specifics of this conversion have been extensively81

covered elsewhere [e.g.,Huntington et al., 2009; Daëron et al., 2016], and are not directly relevant to82

the topics discussed here. Analyses are generally grouped into sessions, each of them usually cor-83

responding to a given time span over which analytical conditions are presumed to have remained84

stable. One key assumption is that the various analytical/instrumental non-linearities which affect85

Δ47raw observations remain constant over the duration of each session. These non-linearities include86

a scrambling effect likely reflecting recombination of isotopologues in the IRMS gas source or else-87

where in the sample preparation apparatus [Dennis et al., 2011]; a compositional slope reflecting88

small biases in the electrical background of the ion beammeasurements [He et al., 2012; Bernasconi89

et al., 2013]; and aworking gas offset resulting from the (knowlingly inaccurate) assumption that90

the dual-inlet working gas is stochastic. Within each session, the samples/analyses are divided into91

two groups: anchors, whose Δ47 values are assigned a priori, and unknowns, whose Δ47 values are92

to be determined. Herewe define a standardizationmodel as anymathematical procedure aiming93

to estimate these unknown Δ47 values by comparing the anchor and unknown analyses, explicitly94

or implicitly constraining analytical non-linearities within each session.95
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2.3 Objectives and strategy96

Our aim is to model how random, zero-centered, presumably Gaussian measurement errors propa-97

gate into final, “absolute”Δ47 values averaged over a number of analyses/sessions. Wedo not attempt98

to account for non-random biases such as those potentially arising, for instance, from errors in the99

isotopic composition of the working gas, or from assigning inaccurate Δ47 values to one or more100

anchors. The models described here will hopefully provide a framework to report more accurate es-101

timates of the uncertainty associated with clumped-isotope measurements, and inform the choices102

we make in the laboratory.103

We start by describing a general formulation of the standardization function used to compute104

the “absolute” Δ47 value of each analysis. Quantifying the parameters defining this function within105

a given session is equivalent to constraining the analytical/instrumental non-linearities mentioned106

above, and may be treated as a classical least-squares minimization problem.107

We follow up by estimating the analytical precision of “raw” measurements (before standard-108

ization) based, following oft-repeated recommendations, on the pooled external repeatability of a109

group of standards and/or unknown samples. The general formulation used here then makes it110

straightforward to propagate the raw measurement errors into the “autogenic” uncertainty of each111

analysis (that directly arising from the raw errors of this particular analysis) and an independent112

component of “allogenic” uncertainties arising from the least-squares model errors, i.e. from the113

standardization itself.114

We finish by describing the general properties of these two components of error, and briefly115

discuss several practical standardization approaches applicable to real-world data sets.116

2.4 Standardization to an “absolute” Δ47 reference frame within a single session117

Computing “absolute” Δ47 values traditionally involves two chained affine transformations designed118

to correct for known instrumental non-linearities (eqs. 5-6 of Dennis et al. [2011], using the original119

notation):120

Δ47-[SGvsWG]0 = Δ47-[SGvsWG] − δ47[SGvsWG] × SlopeEGL (1)

Δ47-RF = Δ47-[SGvsWG]0 × SlopeETF + InterceptETF (2)

This is mathematically equivalent to the following formulation:121

Δ47raw = a Δ47 + b δ47 + c (3)

In this equation, the parameters (a, b, c) respectively account for scrambling effects, the compo-122

sitional slope, and the working gas offset. To estimate these parameters, a natural approach is to use123

classical least-squares minimizationmethods, treating Δ47raw as the response/dependent variable and124

(Δ47, δ47) as explanatory variables. Despite uncertainties on δ47 usually being as large as those on125

Δ47raw, the former may safely be treated as an explanatory variable because b is typically small enough126

(10–2 or less) for errors on δ47 to have a negligible impact.127
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Without compelling reasons to do otherwise, we assign equal weights to all measurements be-128

longing to the same session. The best-fit standardization parameters (a, b, c) for any given session129

are thus those minimizing the following χ2 statistic, summed over all anchor analyses within that130

session (unknown analyses are not considered here because their Δ47 values are not known a priori):131

χ2 = ∑(Δ47raw − a Δ47 − b δ47 − c)2 (4)

This computation, whose mathematical details are summarized in appendix A, yields a triplet132

of best-fit values for (a, b, c), thus defining the standardization function of eq. (3) for this session.133

It also yields a covariance matrix V0 for the best-fit values of (a, b, c). At this stage, the covariance134

matrix is unscaled, meaning that it only constrains the relative scaling between model standard er-135

rors and covariances in (a, b, c). The additional piece of information needed to scale these model136

errors is the uncertainty assigned to each observation, i.e. the analytical precision of individual Δ47raw137

measurements.138

2.5 Estimating the analytical precision of raw measurements139

The uncertainty assigned to individual Δ47rawmeasurements, noted σ47raw, may be quantified in various140

ways, but always keeping inmind that over-reliance on the statistics of small numbers is problematic141

[Fernandez et al., 2017]. We propose that in most cases a robust estimate of σ47raw can be obtained142

by considering carbonate samples deemed free of contaminants and isotopically homogeneous, be143

them anchors, unknown samples, or carbonate standards treated as unknowns, and computing the144

pooled Δ47 repeatability of analyses within this group:145

σ247 =
1

Na − Ns
∑(Δ47 − Δ47)

2
(5)

where Δ47 is the average Δ47 value for the sample considered, Na the total number of analyses146

considered, and Ns the number of different samples considered. The Δ47raw repeatability of analyses147

is then:148

(σ47raw)
2 = (a σ47)

2 = 1
Na − Ns

∑(Δ47raw − a Δ47 − b δ47 − c)
2

(6)

It bears noting that if the group of samples used to estimate σ47raw within a single session only149

comprises three anchors, then (σ47raw)
2 is equal to the reduced chi-squared statistic χ2/(Na − 3) for150

that session. In such case, scaling the standardization errors by σ47raw is equivalent to the common151

practice of estimating least-square model errors based on the scatter/variance of residuals. Taking152

additional samples into account increases confidence in our estimate by virtue of increasing the sta-153

tistical degrees of freedom (Nf = Na−Ns), on the condition that the replicability of these additional154

samples is equal to (or indistinguishable from) that of carbonate standards. In our experience this155

condition is frequently met when samples are well-mixed, finely ground, relatively pure carbonate156

powders.157
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2.6 Propagation of standardization errors within a single session158

Regardless of its estimation method, σ47raw may now be used to quantify the standard model errors159

(σa, σb, σc) on the best-fit standardization parameters and their covariances (cab, cbc, cbc):160

⎡
⎢
⎢
⎣

σ2a cab cac
cab σ2b cbc
cac cbc σ2c

⎤
⎥
⎥
⎦
= (σ47raw)

2 V0 (7)

These model errors and covariances fully describe the standardization uncertainty associated161

with anchor measurement errors, and can now be propagated explicitly to the session average Δ47162

value of a given unknown sample, noted Δ47:163

Δ47 = (Δ47raw − b δ47 − c)/a ⇒ σ(Δ47)
2
= J × C × JT (8)

with Δ47raw and δ47 being the session average values of Δ47raw and δ47, respectively; J the Jacobian164

matrix of Δ47; and C the covariance matrix of (Δ47raw, a, b, c):165

J = [ ∂Δ47
∂Δ47raw

, ∂Δ47∂a , ∂Δ47∂b , ∂Δ47∂c ] = 1
a[ 1 , − Δ47 , − δ47 , − 1 ] (9)

C =

⎡⎢⎢⎢⎢⎢
⎣

σ(Δ47raw)
2

0 0 0
0 σ2a cab cac
0 cab σ2b cbc
0 cac cbc σ2c

⎤⎥⎥⎥⎥⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/Na 0 0 0

0 σ2a cab cac
0 cab σ2b cbc
0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎦

(10)

The structure of the above covariancematrix makes it clear that σ(Δ47)
2
for an unknown sample166

is the sum of two statistically independent sources of error: an “autogenic” component σu reflecting167

uncertainties in Δ47raw measurements for that sample, and an “allogenic” component σs reflecting168

uncertainties in the standardization model:169

σ(Δ47)
2
= σ2u + σ2s (11)

σ2u = σ247/Na (12)

σ2s =
1
a2
(Δ47

2
σ2a + δ47

2
σ2b + σ2c + 2(Δ47 δ47 cab + Δ47 cac + δ47 cbc)) (13)
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2.7 Combining data from several independent sessions170

As long as the standardization of each session only takes into accounts analyses from that session, the171

values of Δ47 computed as above within each session are statistically independent from each other.172

The final Δ47 value for a given unknown sample may thus be simply computed as the weighted173

average of Δ47 from different sessions. Using a weighted average for this last step is necessary to174

account for inter-session differences in the number of analyses of that sample, and also potentially in175

raw analytical repeatability (unless, for instance, a conscious choice is made to use a single estimate176

of σ47raw constrained by all sessions):177

Δ47final = ∑
i
ωi (Δ47)i with sessions noted as i (14)

ωi = σ(Δ47)
−2

i /∑
i
σ(Δ47)

−2

i
(15)

σ(Δ47final)
2
= ∑

i
ω2i σ(Δ47)

2

i
= 1/∑

i
σ(Δ47)

−2

i
(16)

3 Discussion178

3.1 Properties of standardization errors179

The standardization model of section 2.4 is mathematically equivalent to the least-squares fitting of180

a two-dimensional plane described by eq. (3) in a three-dimensional space (δ47, Δ47raw, Δ47). Most181

properties described below arise naturally from this geometry.182

Standardization uncertainties depend greatly on the bulk (δ47) and clumped-isotope (Δ47) com-183

position of the unknown samples to be standardized. It is thus useful to describe this uncertainty in184

terms of an “error field” which can be mapped in (δ47, Δ47) space, as shown in fig. 1. The minimum185

standardization error coincides, in (δ47, Δ47) space, with the barycenter of the anchor analyses, and186

its value is equal to σ47/N1/2, with N being the total number of anchor analyses.187

Outside of a polygon defined by the anchor samples, standardization errors increase steeply. As188

illustrated in fig. 1, this increase is comparatively slower if analyses are evenly distributed between189

anchor samples, which tightens constraints on parameters a and b.190

Fig. 1 also illustrates the benefits of using anchors with extreme isotopic compositions, which191

increases the area of the anchor polygon. One potential drawback of relying on isotopically extreme192

anchors, however, is that our “planar” model approximation might then break down. For instance,193

a small quadratic component to the compositional nonlinearity (term b δ47 in eq. 3), whose effect194

would be negigible over a δ47 range of 30 ‰, might introduce a significant bias over a range of 60 or195

100 ‰ (e.g., fig. 7 from He et al. [2012]).196

The properties outlined above are fully consistent with the Monte Carlo simulations of Kocken197

et al. [2019]. In particular, they explain all of the main patterns displayed in their fig. 5. The primary198

difference between our approach and that of Kocken et al., beyond the difference in mathematical199

methods, is that their simulations focus on the empirical transfer function (eq. 2), which corresponds200
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to parameters a and c. Here we show that the uncertainty from compositional non-linearities (eq. 1)201

behaves in a similar way, and that all of these corrections can be propagated explicitly in a unified202

manner, side-stepping the need for Monte Carlo simulations.203

3.2 Impact of standardization errors204

Because the relative contributions of the autogenic and allogenic error components defined above205

(eqs. 11–13) are sensitive to the distribution of analyses among anchor and unknown samples and206

on the isotopic composition of unknowns relative to the anchor polygon, they are expected to vary207

greatly between laboratories and/or sessions. The InterCarb dataset, comprising over five thousand208

analyses from 22 different laboratories [Bernasconi et al., 2021], offers an excellent opportunity to209

quantify these two components in a wide range of realistic settings.210

A compilation of σs versus σu for the average Δ47 value of unknown samples obtained in each211

of the 77 InterCarb sessions is shown in figure 2. As expected, standardization errors for IAEA-212

C1, a marble sample which plots within the anchor polygon defined in (δ47, Δ47) space by ETH-213

1/2/3, are generally slightly smaller than autogenic errors, resulting in a modest increase of the total214

Δ47 error (σ47) relative to the autogenic error. Samples IAEA-C2 (natural travertine) and ETH-4215

(synthetic calcite), both of them located outside of the anchor polygon, display larger standardization216

errors, thereby increasing σ47 by an average factor of 1.5 and up to a factor of 2. Finally, in the217

case of the MERCK sample, a synthetic carbonate with extremely depleted δ13C and δ18O values,218

standardization errors generally dominate. As a result, propagating them into the total Δ47 error219

increases σ47 by an average factor of 2.5 and up to a factor of 4.220

3.3 Correlations between samples221

Compared to most other isotopic or elemental tracers, carbonate clumped isotopes stand out in that222

analytical uncertainties remain large relative to the range of Δ47 values typical of natural samples.223

Standardization errors contribute a sizable portion of these uncertainties, but it is notable that they224

do so in a way that is strongly correlated between samples, as illustrated by the joint 95 % confidence225

ellipses for the average Δ47 values of unknown samples shown in figure 3.226

Appendix B provides full computational details for the covariance between the session-averaged227

Δ47 values of two unknowns samples (B.1); the uncertainties characterizing Δ47 differences between228

samples (B.2); and weighted mean Δ47 values averaged over several samples (B.3). The key point to229

keep in mind is that full analytical errors are not independent between samples of the same session,230

with the following consequences: (1) when averaging many Δ47 measurements within a single ses-231

sion, analytical errors will not tend to zero but to the standardization error for this sample; (2) the232

error on Δ47 differences between samples of similar compositions (as is often the case in paleocli-233

mate records) is largely unaffected by standardization errors, but only if they are analyzed within234

the same session.235
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3.4 Gaussian approximation of standardization errors236

The error propagation formulas presented in section 2.6 are first-order Taylor approximations. Be-237

cause Δ47 is not a linear combination of (Δ47raw, δ47, a, b, c), propagated errors in Δ47 are not strictly238

Gaussian. However, after quantifying the non-Gaussian effects of these approximations usingMonte239

Carlo simulations of the full InterCarb dataset (Appendix C), we find that these deviations from nor-240

mality remain entirely negligible in practice.241

As an extreme example, figure 4 shows the Monte Carlo distribution of standardization errors242

for the average Δ47 value of IAEA-C2 in one of the InterCarb sessions, chosen because it is the “least243

Gaussian” distribution of the whole dataset, i.e. the least likely to be Gaussian (p= 2×10–7) based on244

a Kolmogorov-Smirnov test. Even in this worst-case example, differences between the Monte Carlo245

cumulative distribution function (CDF) and the Gaussian CDF computed from eqs. (11–13) remain246

minuscule: the Monte Carlo average of Δ47 for this particular sample is 0.6659 ‰ (versus 0.6640 ‰247

for the propagated value), and the width of the 95 % spread of values in the Monte Carlo dataset is248

±0.0494 ‰ (versus ± 0.0491 ‰ for the Gaussian approximation).249

3.5 Statistical weighting options250

For the sake of simplicity, the error model described above rests on simple assumptions, for example251

by assigning equal statistical weights to all analyses. In the following sections we briefly discuss vari-252

ous ways in which this error model could be modified to better reflect real-life analytical conditions.253

3.5.1 Equal session weights254

In the general case where all sessions are considered equal, we recommend that each session should255

first be standardized using eqs. (21) and (23). The overallΔ47raw repeatability should then be computed256

using a slightly modified version of eq. (6), with NA being the number of anchor samples, NU the257

number of unknown samples, and N the total number of analyses:258

(σ47raw)
2 = 1

N − NA − NU
∑(Δ47raw − a Δ47 − b δ47 − c)

2
(17)

This overall repeatability should then be used to scale the covariance matrix of each session259

according to eq. (7).260

3.5.2 Different session weights261

It may be justified in some cases to assign different statistical weights to analyses from different262

sessions. We would not generally recommend doing so based only on observed differences in σ47263

(which will inevitably vary slightly between sessions), unless these differences are statistically sig-264

nificant with a high level of confidence. On the other hand, data produced under different analytical265

conditions may in some cases reasonably be expected to be more or less precise: for example, mea-266

surements obtained using greater ion currents should be more precise due to counting statistics267

alone.268
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In such cases, we may first divide sessions into groups expected to share similar analytical preci-269

sion levels. Pooled Δ47raw repeatabilities for each group may then be computed according to eq. (17),270

and subsequently applied to covariance matrix scaling according to eq. (7).271

3.6 Pooled standardization model taking unknown samples into account272

3.6.1 Principle273

By only considering anchor samples to constrain the standardization parameters (a, b, c) of each274

session, the models described so far neglect some useful information. As a matter of fact, even275

without prior knowledge of the Δ47 values of unknown samples, we expect the relative mapping276

of anchors and unknowns in (δ47, Δ47) space to be preserved between sessions. This approach is277

only useful when some of the sessions have unknown samples in common, but in that case it is278

likely to substantially increase the number of observations constraining the standardization model,279

making it more robust (less sensitive to outliers in the anchor analyses) and more precise (by virtue280

of increasing the model’s degrees of freedom).281

In practice, instead of treating each session as a separate least-squares problem, we now aim282

to minimize an “pooled” version of the χ2 defined in eq. (4), this time summed over all analyses283

(including both anchors and unknowns) in all sessions considered:284

χ2 = ∑(Δ47raw − ai Δ47 − bi δ47 − ci)
2 (18)

where Δ47raw and δ47 are the observations from each analysis, (ai, bi, ci) are the standardization285

parameters for session (i), and Δ47 is either a nominal value assigned a priori (for anchor analyses)286

or an additional, free model parameter equal to the Δ47 value of the relevant unknown sample. The287

pooled regressionmodel now rests on a number of observations equal to the total number of analyses,288

with a number of model parameters equal to the number of unknown samples plus three times the289

number of sessions.290

Because some of the χ2 terms include the product of two model parameters, this is not a linear291

least-squares problem and the direct solution of Appendix A no longer applies. One may, however,292

call upon well-established numerical approaches designed to optimize non-linear problems. In our293

experience, the classical Levenberg-Marquardt method [Levenberg, 1944; Marquardt, 1963], as im-294

plemented by the LMFIT Python package [Newville et al., 2014], is well suited to this task. Even for295

large datasets of several thousand analyses, it is able to quickly and reliably output a vector of best-296

fit values for all model parameters (including Δ47 values for all unknown samples) along with the297

corresponding covariance matrix, thus directly providing standard errors and covariances between298

unknown sample Δ47 values.299
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3.6.2 Benefits300

The benefits of a pooled standardization model may not be immediately obvious, but this approach301

should yield systematic improvements in the robustness and accuracy of the standardization pro-302

cedure. For instance, considering the samples shown in figure 1, it may be clear that forcing the303

Δ47 value of MERCK to remain consistent between sessions should greatly contribute to constrain304

variations in the compositional slope (b) between sessions, even without knowing MERCK’s true305

composition. The same argument could be made if one were to analyze heated and equilibrated306

gases along with carbonate standards, treating them as entirely unknown samples: even without307

any knowledge of CO2 equilibrium values nor of acid fractionation effects, the large spread of Δ47308

between heated and equilibrated gases would strongly constrain variations of the scrambling effect309

(a) between sessions, thereby reducing standardization errors for all samples.310

Figure 5 illustrates this reduction in standardization errors by showing (δ47, Δ47) plots for the311

four sessions from Lab #12 in the InterCarb dataset, comparing the error fields resulting either from312

the pooled standardization approach (one model with 153 degrees of freedom) or from the earlier313

approach ignoring unknown samples (four independent models with 20, 16, 24, and 16 degrees of314

freedom, respectively). Although the locations and values of the error field minima remain largely315

unaffected by the choice of standardization method, in this case the pooled model strongly reduces316

standardization errors for analyses plotting outside of the anchor polygon (from 10–11 ppm down317

to 6 ppm for MERCK), despite the fact that no assumption was made regarding the true Δ47 values318

of unknown samples.319

3.6.3 Caveat320

The pooled approach depends critically on our earlier assumption that samples are homogeneous,321

which we acknowledge to be generally but not universally true. It is however simple enough, in322

the presence of samples suspected to be heterogeneous (i.e. whose Δ47 repeatability is demonstrably323

worse than for carbonate standards with a statistically high level of confidence), to treat each of the324

corresponding analyses as belonging to separate samples.325
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3.7 ClumpyCrunch and D47crunch326

The calculations discussed above may be tedious to implement from scratch. The simplest way to327

take advantage of these errormodels is to use the latest version of the open-source ClumpyCrunchweb328

application (https://clumpycrunch.pythonanywhere.com), which implements both the independent-329

sessions method of section 2.6 and the pooled standardization approach of section 3.6. Those wish-330

ing to experiment at a deeper lever may install the underlying, open-source D47crunch library for331

Python (https://doi.org/10.5281/zenodo.4314550), which also supports computing different repeata-332

bilities for different groups of sessions (section 3.5.2); explictly treating some samples as potentially333

inhomogeneous (section 3.6); modeling temporal drifts in parameters a, b, c (appendix A.2); comput-334

ing standard errors for Δ47 differences and/or means accounting for analytical covariance between335

samples (appendix B.2-B.3); and assessing whether the Δ47 repeatabilities of two samples differ sig-336

nificantly. Both D47crunch and ClumpyCrunch also output robust 95 % confidence limits for final Δ47337

values based on the number of degrees of freedom in the standardization models.338

4 Conclusion339

The framework presented here provides a quantitative/predictive description of Δ47 error propaga-340

tion, fully taking into account standardization errors and their properties. It corroborates and ex-341

tends earlier investigations based onMonte Carlo simulations [Kocken et al., 2019]. This mathemat-342

ical formulation is found not to introduce large deviations from normality: in other words, if Δ47raw343

errors are Gaussian, the fully propagated Δ47 errors may also be treated as Gaussian for all practical344

purposes. What’s more, as reported by Bernasconi et al. [2021], using this framework yields a very345

reasonable (p= 0.19) prediction for the distribution of inter-laboratory scatter in Δ47 values within346

the InterCarb dataset.347

Based on this framework, we describe a new, “pooled” standardizationmethod designed tomake348

full use of the constraints available from both anchor and unknown analyses. This approach is349

expected to yield substantially improved standardization models, both in terms of precision and350

robustness. We also provide new online resources and a Python library aiming to make the use351

of such error models as simple as possible. This library being open-source and fully documented,352

implementing the methods described here in existing software such as Easotope [John & Bowen,353

2016] should be straightforward.354

Most published clumped-isotope studies so far have lacked a rigorous propagation of standard-355

ization errors. This, of course, is not a problem in itself, but the InterCarb results unambiguously356

demonstrate that these standardization uncertainties are both necessary and sufficient to explain the357

inter-laboratory scatter observed in this large dataset (N=5329). Going one step further, it could be358

argued that the ongoing persistance of inter-laboratory discrepancies in Δ47 calibrations [Petersen359

et al., 2019] is due, at least in part, to largely ignored standardization errors. Whatever the case, it360

seems likely that future comparisons between results obtained in different laboratorieswould greatly361

benefit from more accurate error estimates.362
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Finally, although all statistical models are interpretative approximations, their ultimate value363

depends less on their exactness than on their practical usefulness. At the very least, the framework364

described here may help improve standardization protocols (e.g., anchor/unknown ratios, composi-365

tional distribution of anchors) and inform our collective effort to establish inter-laboratory reference366

materials.367

Data and code368

The complete raw data and all associated code used in this work are available under a Modified BSD369

License at https://doi.org/10.5281/zenodo.4314593.370

Notations371

a : scrambling factor, one of the standardization parameters, quantifying the amount of molecular372

recombination during the analytical procedure; its value should lie between 0 and 1.373

b : compositional slope, one of the standardization parameters, quantifying small systematic errors374

in the electrical background of the ion collectors; it may be positive or negative and its absolute375

value should ideally remain small (10–2 or less).376

c : working gas offset, one of the standardization parameters, accounting for the fact that the work-377

ing gas is not necessarily stochastic; in settings where the working gas is equilibrated at room378

temperature, c ≈ −a379

Na : Number of analyses.380

Nf : Degrees of freedom in a regression model.381

NA : Number of anchor samples.382

NU : Number of unknown samples.383

Δ47 : delta notation (in ‰) for the clumped-isotope anomaly associated with mass-47 CO2; either384

denotes the “true” value for a given sample, or the “absolute” value computed from one or385

more IRMS measurements after standardization.386

Δ47
raw : “raw” Δ47 value from an IRMS measurement, before standardization.387

δ47 : delta notation (in‰) for the mass-47 to mass-44 abundance ratio of an analyte CO2, generally388

defined relative to a working reference gas.389

σ47 : analytical error/uncertainty assigned to individual measurements of Δ47 (eq. 5).390

σ47raw : analytical error/uncertainty assigned to individual measurements of Δ47raw (eq. 6).391

σs : allogenic error, i.e. the analytical error/uncertainty on a Δ47 measurement arising from the392

standardization function (eq. 13).393

σu : autogenic error, i.e. the analytical error/uncertainty on a Δ47 measurement arising from the394

analyses of the unknown sample itself (eq. 12).395
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Appendix A : Least squares regression396

A.1 General linear case397

Consider a linear model f defined as:398

y = f (x, a1, a2 …ap) =
p
∑
i=1

ai fi(x) (19)

where x is a scalar or vectorial explanatory variable; y the response variable; ( f1 … fp) a series of functions399
of x; and (a1 … ap) a series of scalar factors which are the model parameters to be estimated.400

Given n observations ((x1, y1) … (xn, yn)) to fit, we construct the following matrices:401

A =
⎡⎢⎢⎢⎢
⎣

f1(x1) f2(x1) ⋯ fp(x1)
f1(x2) f2(x2) ⋯ fp(x2)
⋮ ⋮ ⋮

f1(xn) f2(xn) ⋯ fp(xn)

⎤⎥⎥⎥⎥
⎦

Y =
⎡⎢⎢⎢⎢
⎣

y1
y2
⋮
yn

⎤⎥⎥⎥⎥
⎦

(20)

The best-fit parameters (a1 … an) and their unscaled variance-covariance matrix V0 are then:402

⎡⎢⎢⎢⎢
⎣

a1
a2
⋮
ap

⎤⎥⎥⎥⎥
⎦

= V0 × AT × Y V0 = (AT × A)−1 (21)

A.2 Application to the standardization model403

The standardization model of eq. (3) is equivalent to the above formulation if:404

y = Δ47raw f1(x) = Δ47
x = (δ47, Δ47) f2(x) = δ47
(a1, a2, a3) = (a, b, c) f3(x) = 1

(22)

In this case:405

A =
⎡⎢⎢⎢⎢
⎣

Δ47 δ47 1
Δ47 δ47 1
⋮ ⋮ ⋮
Δ47 δ47 1

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw
Δ47raw
⋮

Δ47raw

⎤⎥⎥⎥⎥
⎦

= Y (23)

To take into account an uncertainty, noted σ, assigned to the observations, A and Y should both be divided406
by σ, which will leave the best-fit parameters unchanged and scale the variance-covariance matrix V0 by a407
factor of σ2 (as in eq. 7).408

Alternatively, to assign individual uncertainties, noted (σ1 … σn) to the n analyses, each line of A and each409
element of Y should be divided by the corresponding σ value:410

A =
⎡⎢⎢⎢⎢
⎣

Δ47/σ1 δ47/σ1 1/σ1
Δ47/σ2 δ47/σ2 1/σ2
⋮ ⋮ ⋮

Δ47/σn δ47/σn 1/σn

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw/σ1
Δ47raw/σ2

⋮
Δ47raw/σn

⎤⎥⎥⎥⎥
⎦

= Y (24)
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Extending this model with additional parameters should be rather straightforward. For instance, in order411
to account for a temporal drift in the compositional non-linearity, one could reformulate the model, with t412
denoting time and an additional standardization parameter d, as:413

Δ47raw = a Δ47 + (b + td) δ47 + c (25)

Which would correspond to:414

A =
⎡⎢⎢⎢⎢
⎣

Δ47 δ47 1 t δ47
Δ47 δ47 1 t δ47
⋮ ⋮ ⋮ ⋮
Δ47 δ47 1 t δ47

⎤⎥⎥⎥⎥
⎦

← analysis #1→
← analysis #2→

← analysis #n→

⎡⎢⎢⎢⎢
⎣

Δ47raw
Δ47raw
⋮

Δ47raw

⎤⎥⎥⎥⎥
⎦

= Y (26)

Appendix B : Δ47 covariance415

B.1 Covariance between unknown samples416

Consider two unknwon samples A and B, whose session-averages compositions (δ47, Δ47raw, and Δ47) are re-417
spectively noted δA, δB, ΔAraw, ΔBraw, ΔA, and ΔB. Defining X as the column vector [ΔA, ΔB], we can express its418
Jacobian JX relative to the system of variables (ΔAraw, ΔBraw, a, b, c) and the covariance C of this quintuplet as:419

JX =
1
a[

1 0 −ΔA −δA −1
0 1 −ΔB −δB −1 ] C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/NA 0 0 0 0

0 (σ47raw)
2
/NB 0 0 0

0 0 σ2a cab cac
0 0 cab σ2b cbc
0 0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)

The covariance matrix of X is then:420

CX = JX × C × JTX (28)

Because of the structure of J and C, the non-zero terms of CX are equal to:421

cov(ΔA, ΔB) =
1
a2 [ ΔA δA 1 ] ×

⎡
⎢
⎢
⎣

σ2a cab cac
cab σ2b cbc
cac cbc σ2c

⎤
⎥
⎥
⎦
×
⎡
⎢
⎢
⎣

ΔB
δB
1

⎤
⎥
⎥
⎦

(29)

cov(ΔA, ΔB) =
1
a2 (ΔAΔBσ

2
a + δAδBσ2b + σ2c + (ΔAδB + δAΔB)cab + (ΔA + ΔB)cac + (δA + δB)cbc) (30)

The covariance between mean Δ47 values of two samples averaged over several sessions is zero if the422
samples were never analyzed in the same session. Otherwise, with ωAi and ωAi weights defined as in (15):423

ΔAfinal = ∑
i
ωAi ΔAi with i denoting all sessions including A (31)

ΔBfinal = ∑
j
ωBj ΔBj with j denoting all sessions including B (32)

cov(ΔAfinal, ΔBfinal) = ∑
k
ωAk ωBk cov(ΔAk, ΔBk) with k denoting all sessions including both A and B (33)
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B.2 Standard errors on Δ47 differences between samples424

Consider two unknwon samples A and B, whose session-averages compositions (δ47, Δ47raw, and Δ47) are re-425
spectively noted δA, δB, ΔAraw, ΔBraw, ΔA, and ΔB. Defining x as the difference (ΔA − ΔB), we can express its426
Jacobian Jx relative to the system of variables (ΔAraw, ΔBraw, a, b, c) as:427

Jx =
1
a[1 , − 1 , ΔB − ΔA , δB − δA , 0] (34)

and compute the variance of x using the same covariance matrix C as above:428

σ2x = Jx × C × JTx (35)

σ2x = σ247 (
1
NA

+ 1
NB

) + (ΔB − ΔA)2σ2a + (δB − δA)2σ2b + 2(ΔB − ΔA)(δB − δA)cab
a2

(36)

B.3 Standard errors on mean Δ47 values averaged over several samples429

As an example, we treat here the problem of a weighted average of three samples. Consider three unknwon430
samples A, B, and C, whose session-averages compositions (δ47, Δ47raw, and Δ47) are respectively noted δA, δB,431
δC, ΔAraw, ΔCraw, ΔA, ΔB, and ΔC. Defining W as the weighted average (xAΔA + xBΔB + xCΔC) and w as the432
weighted average (xAδA + xBδB + xCδC), we can express the Jacobian ofW relative to the system of variables433
(ΔAraw, ΔBraw, ΔCraw, a, b, c) as:434

JW = 1
a [ xA xB xC −W −w −1 ] (37)

and compute the variance ofW using the same method as above:435

σ2W = JW ×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(σ47raw)
2
/NA 0 0 0 0 0

0 (σ47raw)
2
/NB 0 0 0 0

0 0 (σ47raw)
2
/NC 0 0 0

0 0 0 σ2a cab cac
0 0 0 cab σ2b cbc
0 0 0 cac cbc σ2c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

× JTW (38)

σ2W = σ247 (
x2A
NA

+ x2B
NB

+ x2C
NC

) + W2σ2a + w2σ2b + σ2c + 2 (wWcab +Wcac + wcbc)
a2

(39)

Note that the second term above is equal to the value of the standardization error field at the weighted436
barycenter of the samples in (δ47, Δ47) space.437
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Appendix C : Monte Carlo assessment of the normality of Δ47 errors438

Because Δ47 is not a linear function of (Δ47raw, δ47, a, b, c), the propagation of standardization errors described in439
section 2.6 is an approximation. Here we used a Monte Carlo simulation based on the full InterCarb dataset440
to investigate how much autogenic and allogenic errors deviate from a Gaussian approximation. In each441
step of the simulation, we offset the original Δ47raw values observed in each of the 5329 analyses by random,442
independent, zero-centered Gaussian errors with a standard deviaton equal to the session’s σ47raw value. We443
then standardize all sessions of the modified dataset and record the final, session-averaged Δ47 values of each444
unknown sample (N = 226) for a total of 104 iterations. Each of these session averages is submitted to a445
Kolmogorov-Smirnov (KS) test of normality [Massey, 1951], comparing the distribution of these 104 values446
to a normal distribution centered on the original session-averaged value and whose width depends of the447
original propagated errors. Each of the 226 KS tests yields a p-value corresponding to the null hypothesis that448
the two distributions are identical. By design, if the Gaussian approximation of the propagated errors holds449
true, these p-values should be evenly distributed in the [0–1] interval. We may quantify how well they do so450
by performing a new KS test comparing the distribution of p-values to the uniform distribution, yielding a451
new, final p-value for the hypothesis that the errors in the InterCarb dataset follow Gaussian distributions.452

We run this simulation in three different configurations, considering only autogenic errors, only standard-453
ization errors, or both. Initially, the random errors introduced in each iteration are scaled according to the454
Δ47 repeatability of each session (fig. 6A). We then repeat the simulations twice, by scaling the random errors455
according to a constant Δ47 repeatabibilty of 50 ppm and 5 ppm, respectively (figs. 6B, 6C).456

Predictably, based on eqs. (12-13), we find that autogenic errors behave in a Gaussian manner (p = 0.81),457
but this is clearly not the case for standardization errors (p = 1×10–28). Because the error propagation formula458
of eq. (8) is equivalent to a first-order Taylor expansion, the non-normality of standardization errors is expected459
worsen as Δ47 repeatability increases, as is the case in fig. 6B, and to become negligible when Δ47 repeatability460
is small enough (fig. 6C).461
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Figure 1: Properties of standardization errors. Upper left panel shows the unknown and anchor analyses (black
and red crosses, respectively) and contours of the standardization error field (red lines) for Session #2 of Lab #12
in the InterCarb dataset. Upper right and lower left panels modify the original data by changing the distribution
of anchor analyses between ETH-1, ETH-2, and ETH-3, keeping the total number of anchor analyses constant,
illustrating that the error minimum coincides in (δ47, Δ47) space with the barycenter of anchor analyses. The lower
right panel corresponds to the original data but treats ETH-2 as an unknown and MERCK as an anchor, highlighting

the benefits of using isotopically extreme anchors.
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Figure 2: Autogenic versus standardization errors. Each square marker corresponds to the error components for
the average Δ47 value of an unknown sample in each of the InterCarb sessions. Histograms characterize the ratios

of total analytical error (σ47) to autogenic errors (σu) for each of the unknown samples.
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Figure 3: Covariance of errors in session-averaged Δ47 values for unknowns samples. Thick
red lines correspond to joint 95 % confidence ellipses for the average Δ47 values of each
unknown sample in Session02 of Lab12 (cf upper left panel of fig. 1). Thin red lines and
dashed red lines correspond to joint 95 % confidence ellipses only taking into account

standardization and autogenic errors, respectively.
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Figure 4: Error distribution for the “least Gaussian” average Δ47 value in the InterCarb dataset.
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IAEA-C2 in Session #7 of Lab #8, black line is the Gaussian probability distribution computed
from eqs. (11–13). Lower panel: Monte Carlo (red line) and Gaussian (black line) cumulative
distributions functions for this average Δ47 value. In the lower left corder, p is the Kolmogorov-

Smirnov p-value for the null hypothesis that these two distributions are identical.
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Figure 5: Benefits of a pooled standardization model. Unknown and anchor analyses (black and red crosses, respec-
tively) and contours of the standardization error fields (red lines) for the four sessions of Lab #12 in the InterCarb dataset.
Upper row: using four independent models only taking anchor analyses into account, with 20, 16, 24, and 16 degrees of
freedom, respectively. Lower row: using a pooled standardization model with 153 degrees of freedom taking anchors and

unknowns into account as described in section 3.6.
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Figure 6: Monte Carlo simulation results All three panels display the cumulative distribu-
tion function of the p-values obtained from 104 Mont Carlo simulations of the full InterCarb
dataset (see Appendix C for computational details). When the random offsets used by the
simulation are scaled according to the original data (A), autogenic errors behave in a Gaus-
sian manner, but the standardization (“allogenic”) errors do not, due to the limits of the
first-order Taylor approximations used here for error propagation. As expected, greatly
increasing (B) or decreasing (C) the random offsets used by the simulation results modu-
lates the non-Gaussianity of standardization errors, while autogenic errors, despite being

respectively increased or decreased (not shown here), remain Gaussian.
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