
HAL Id: hal-03094007
https://hal.science/hal-03094007

Submitted on 18 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Effects of thermal neutron radiation on a
hardware-implemented machine learning algorithm
Matheus Garay Trindade, Fabio Benevenuti, M. Letiche, J. Beaucour,

Fernanda Lima Kastensmidt, Rodrigo Possamai Bastos

To cite this version:
Matheus Garay Trindade, Fabio Benevenuti, M. Letiche, J. Beaucour, Fernanda Lima Kastensmidt,
et al.. Effects of thermal neutron radiation on a hardware-implemented machine learning algorithm.
Microelectronics Reliability, 2021, 116 (114022), �10.1016/j.microrel.2020.114022�. �hal-03094007�

https://hal.science/hal-03094007
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Effects of Thermal Neutron Radiation on a
Hardware-Implemented Machine Learning Algorithm

M. Garay Trindadea , F. Benevenutib , M. Letichec , J. Beaucourc , F. Kastensmidtb , R. Possamai Bastosa

aUniv. Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France * Institute of Engineering Univ. Grenoble Alpes

bUniversidade Federal do Rio Grande do Sul, 90040-060, Porto Alegre, Brazil

cInstitut Laue-Langevin, 38000, Grenoble, France

Abstract

Hardware-implemented machine learning algorithms are finding their way in various domains, including safety-critical
applications. This has demanded these algorithms to perform correctly even in harsh environmental conditions, such as
in avionics altitudes. Support Vector Machine (SVM) is an important Machine Learning that has been target of hardware
implementation in recent years. This is the first work to asses both Binary and Multiclass SVMs under thermal neutron
radiation, a type of particle noticeably present in high altitudes. A fault injection campaign along with a radiation test
with the D50 thermal neutron source, at the Intitut Laue-Languevin, has been performed. The results show a high
intrinsic fault tolerance for both varieties of the SVM algorithm, especially for the Multiclass SVM.

1. Introduction

Machine learning algorithms have been regarded by
both the academic and industrial domains as performant
tools for learning how to predict future outcomes from ex-
isting data. As these algorithms are capable to provide
very accurate classifiers, they are making their way in a
myriad of domains, such as medic [1], robotics [2] and
even on geoscience/aerospace [3]. In all these fields, an
algorithm is needed to identify a pattern in raw data and,
based on what has been identified, perform an action.

Support Vector Machines (SVM) [4] is popular a ma-
chine learning algorithm used in data mining and pattern
recognition. SVM is capable of performing both classi-
fication and regression with high generalization capacity.
The SVM algorithm works by deriving a linear separator
from a set of labeled data during a training phase and
then using this classifier to label a new unknown data,
which makes SVMs commonly used in classification tasks.
With the ever-increasing amount of data, an open issue is
finding alternative platforms and implementations for the
algorithm to improve its execution time so it is able to
cope with rising performance requirements.

Field-Programmable Gate Arrays are common plat-
forms for algorithm acceleration, which has made the ar-
chitecture a target for SVM implementation [5]. On the
other hand, FPGAs are known to be sensitive to radia-
tion effects [6], notoriously Static Random-Access Memory
(SRAM)-based FPGAs. As the name suggests, the con-
figuration bitstream is stored in a SRAM, which may be
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corrupted by particle-induced transients, an effect known
as Singe Event Upset (SEUs). Notably, transient faults
in the configuration memory of an FPGA may change the
circuit routing, the values of the Lookup Table (LUT) and
the data inside the Block RAM memory (BRAM). In these
cases, the FPGA must be reconfigured as the effects will
remain unless they are overwritten. Other effect that may
arise is a bit inversion of a Flip-Flop (FF) of a Config-
uration Logic Block (CLB) of the user’s sequential logic.
These faults are corrected by the next load to the FF.

The effects of radiation induced transients have been
studied in multiple hardware implementations of machine
learning algorithms. Artificial Neural Networks (ANNs)
and Convolutional Neural Networks have been analyzed
in [7, 8, 9], while [10] focused on Bayesian Machines and
[11] on Binary SVM. To the best of our knowledge, no work
has been conducted on the effects of thermal neutrons on
hardware implemented SVMs nor the effects of radiation
in Multiclass SVMs. In this work, we first-handedly inves-
tigate these effects by conducting a thermal neutron radi-
ation campaign and an extensive fault injecting campaign
on a Binary and a Multiclass SVM to better understand
how the radiation affects them. Furthermore, we compare
the results of a Multiclass SVM to the ones of a Binary
SVM. The radiation test campaign has been performed us-
ing the D50 thermal neutron source at the Institut Laue-
Languevin [12]. The fault injection campaign was based on
partial configuration of the FPGA bitstream. Both cam-
paigns made use of a Zynq-7000 System-on-a-Chip (SoC)
as test vehicle.
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2. SVM Algorithm

This section describes the SVM algorithm and its use
cases. Moreover, aspects to be considered for a hardware
implementation are presented.

2.1. SVM Fundamentals

SVM is a supervised machine learning algorithm [4]
that is used to perform both classification and regression.
The technique has been originally designed to solve binary
classification problems, i. e. classifying an observation
(herein an input sample) as one of the two possible classes.
Being a supervised learning algorithm, its execution is in
two phases: training and classification.

Mathematically, an input sample is an n-dimensional
vector ~x ∈ IRn, that is to be classified in one of two possi-
ble classes, modeled as {1,−1}. During the training phase,
the algorithm finds the multidimensional plane, i. e. hy-
perplane, that better describes the difference between the
classes based on a set of labeled samples, i. e. samples
whose class is known beforehand or also referred to as
training set. The hyperplane equation is shown in Equa-
tion 1.

score(~x) =

n∑
i=1

αiyi(~xi · ~x) + b (1)

The support vectors ~xi ∈ IRn, weights αi ∈ IR, support
vector label yi ∈ {1,−1}, and bias b ∈ IR are found during
the training phase. When evaluating an input sample ~x in
Equation 1, the output is a score. If the score is positive,
the class assigned is 1, -1 otherwise.

2.2. Multiclass SVM

Originally, SVM was created to perform binary clas-
sification. However, it may be extended to fit multiclass
problems. This is achieved by dividing the dataset into
subsets so it is possible to use binary classification. The
two most popular techniques are One-vs-One and One-vs-
All. In this work, we made use of One-vs-One, which is
explained in the sequence. One-vs-All was left out for the
sake of brevity.

In the One-vs-One approach, a binary classifier is trained
for each pair of classes. For instance, if there are three pos-
sible classes, e.g. {A,B,C}, a classifier is trained only with
samples from classes {A,B} in order to classify unknown
samples between classes A and B. Another one is trained
with samples from classes {A,C} to classify an unknown
simple into either A or C. A classifier for {B,C} is also
trained. To infer a class for an unknown sample, it is eval-
uated on the three trained SVMs, each one inferring one
class. The class that is the most inferred is chosen as the
final class. For example, if SVM {A,B} outputs A, SVM
{A,C} outputs A and SVM {B,C} outputs B, as A has
been inferred twice whereas B was only inferred once and
C has not been inferred, the final class is A

2.3. Hardware-Implemented SVM Algorithm

In some applications, the SVM has a high throughput
requirement, needing to constantly classify input samples,
leading to energy and resource consumption. Implement-
ing the SVM in hardware is a powerful alternative to en-
hance the algorithm performance and potentially saving
energy.

Both the training and classification phases of the algo-
rithm have been target of hardware implementation as an
Application Specific Integrated Circuit (ASIC) in [13, 14]
an in FPGA [15, 5] aiming towards better performance.
Other works have focused only on the classification phase
[14] [5], conducting the training phase in software plat-
forms as MATLAB and LibSVM [16].

3. Case-Study SVM Architectures

In this Section, we present the SVM architecture im-
plemented for this work. We focused on the classification
part.

3.1. State-of-the-Art SVM in Hardware

Various authors have proposed solutions for hardware
acceleration of the SVM classification phase [5, 13, 14]. In
[14] the dot product between Support Vectors and the in-
put sample are executed in parallel to achieve maximum
performance required by their application (voltage-droop
prediction). The limitation of this approach is being able
to generate only linear and second-order polynomial clas-
sifiers. In [5] and [13], the authors implement non-linear
classifiers by making use of CORDIC (COordinate Rota-
tion DIgital Computer) for approximating non-linear func-
tion through hardware-friendly functions (e.g., shift and
sum operations). Following the idea in [14], the opera-
tions with the Support Vectors and input samples is also
performed in parallel in [5] and [13]. Moreover, implemen-
tations based on CORDIC algorithms have higher memory
requirements when compared with [14] due to the need of
storing lookup tables along with requiring multiple clock
cycles to output the result.

3.2. Binary SVM Architecture Design

As both datasets used in this work are linearly separa-
ble, to be described in Subsection 3.4, we decided to follow
the implementation of [14] due to its performance benefits.
Figure 1 shows the case-study SVM architecture. Further-
more, the products αiyi have been calculated off-line and
only the result has been stored on the FPGA, reducing one
multiplication per SV ~xi. The designed circuit is fully com-
binatorial. The circuit is composed by three main parts:
The Multipliers, the Adders and the Output, as illustrated
in Figure 1.

In terms of data representation, a 16-bit fixed point
with 8 bits for the real part was chosen, as suggested in
[14, 5, 13]. This representation was confirmed to fit the
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Figure 1: Overview of the hardware-implemented SVM architecture
design.

datasets, avoiding overflows and maintaining sufficient pre-
cision through simulations. As the input samples in both
datasets are 2-dimensional, input vectors are 32-bit wide.
The primary output is composed of 49 bits to maintain
calculation precision.

3.3. Multiclass SVM Architecture Design

As discussed in Subsection 2.2, a Multiclass SVM is
composed by a collection of Binary SVMs aggregated by
a voter. In this work, each Binary SVM was implemented
following the description in Subsection 3.2, using the same
value representation. The voter was not implemented in
the FPGA, outputting the score of all the SVMs. It is up to
the client application to evaluate the score and perform the
voting. The designed circuit is also fully combinational.

3.4. Set of Input Vectors for the Binary SVM

The target set of input vectors (dataset) has been ob-
tained from Monte-Carlo simulations representing current
peaks and global delays obtained from golden integrated
circuits (ICs) and faulty ICs [17]. The input vector is 2-
dimensional, and 150 input vectors have been obtained
from golden IC samples and 150 input vectors from faulty
IC samples. The dimensions are thus:

• Dimension 1: global delay

• Dimension 2: current peak

This set of input vectors is sufficient to distinguish
faulty asynchronous IC samples from fault-free asynchronous
IC samples [17]. The set of input vectors has been parti-
tioned into 2 subsets of the same size, one for training and
another one for classification, each one with 75 golden IC
samples and 75 faulty IC samples. A SVM model has been
generated by using MATLAB. From this model, we have
obtained the α’s and their respective support vectors ~xi.
In total, 50 support vectors ~xi have been generated at the
training phase. To better exercise the circuit, 116 random
samples were added to the dataset.

3.5. Set of Input Vectors for the Multiclass SVM

For the Multiclass SVM, the dataset chosen was the
Iris flowers [18]. It is originally a 4-dimensional dataset
that contains 150 samples of three different species of Iris
flowers (50 of each): setosa, virginica and versicolor. Only
two dimensions have been kept for this experiment as they
hold enough information for training a performant SVM
classifier. The dimensions are:

• Dimension 1: Petal length

• Dimension 2: Petal width

This dataset has been partitioned in a training set and
a classification set, with 75 samples (25 of each species)
each. The training set has been used to train a One-vs-
One Multiclass SVM, yielding three Binary SVMs, 2 SVMs
with 2 Support Vectors ~xi and one with 16 Support Vectors
~xi. Following the idea used in Subsection 3.4, 116 samples
were added to better cover the architecture designed.

4. SVM Reliability Assessment Through
Emulated Fault Injection

Emulated fault injection was used in this work to cross-
validate results from radiation experiments and further in-
vestigate areas of improvement in the DUT.

Compared to emulated fault injection, accelerated ir-
radiation experiments provide a better approximation to
the use of the DUT in real environment and can provide
a more comprehensive test coverage reaching all relevant
structures of the integrated circuit. However, radiation ex-
periments are less powerful in pinpointing the DUT sub-
modules more susceptible to SEUs that could be candidate
to mitigation strategies leveraging DUT reliability.

This section describes the fault injection methodology
and the results obtained.

4.1. Fault Injection Set-up

The test vehicle used in fault injection is a ZedBoard
development board which is equipped with a Xilinx Zynq-
7000 MPSoC hosting the DUT. The Zynq-7000 device is
divided in two main parts that are a dual core processor
system (PS) based on Arm

R© Cortex
R©-A9 and a SRAM-

based FPGA programmable logic (PL) that, for this de-
vice part number, uses technology equivalent to a Xilinx 7
Series Artix-7 FPGA.

The SVM computation core, implemented in VHDL, is
wholly hosted in the FPGA (PL) side of the Zynq-7000. A
small part of the application, implemented as software in C
language, is hosted in the ARM (PS) side of the device and
is responsible mostly by coordination and reporting tasks,
not playing relevant role in the computation effort. How-
ever, between these two parts of software and SVM core,
there is a communication infrastructure, based on AMBA
AXI interface, with some modules also implemented in the
FPGA side through the use of parameterizable IP design
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blocks provided by the FPGA manufacturer. The resource
utilization and frequency of operation for both the Binary
and Multiclass SVMs are shown in Table 1.

Binary Multiclass
Frequency 133 MHz 133 MHz
LUT 7% 5%
LUTRAM 1% 1%
FF 2% 2%
BRAM 1% 1%
DSP 40% 28%
IO 1% 1%

Table 1: Resource utilization of Zynq-7000 for the Binary and Mul-
ticlass SVMs.

That accessory communication infrastructure using pre-
built IP blocks is relevant to fault injection because, while
implemented in FPGA, it is also susceptible to SEUs, and,
while implemented by third party vendors, it is not prone
to modifications or improvements by mitigation techniques
that could be used in the SVM core.

To tackle this difference, a slightly different bitstream
was used in fault injection where the communication in-
frastructure and the SVM core where placed in different
regions of the FPGA allowing to study the contribution
of these two parts to the overall DUT reliability. With
this approach, faults could be injected in either part, sep-
arately, to analyze the individual contributions for DUT
reliability, or in both parts simultaneously, for comparabil-
ity with radiation results. It is worth noting that the AXI
communication infrastructure was present in radiation ex-
periments, being evidenced here only for the convenience
of the analysis of fault injection results.

To further accelerate fault injection campaigns, part
of the diagnostic logic was embedded in the ARM pro-
cessor. The ARM application and FPGA bitstream were
loaded from the Flash memory present at the ZedBoard
development board. The board reset was implemented by
power cycling using an automated power switch controlled
by the fault injection campaign script running at the host
computer.

Finally, an additional module was implemented in the
FPGA to support fault injection. This module is based
on Xilinx Internal Configuration Access Port (ICAP) and
allows communication with the host computer that also
runs the fault injection campaign script. This fault injec-
tion module, coded in VHDL, was not present in radiation
experiments. This setup used for fault injection is depicted
in Figure 2.

4.2. Assessment Metrics

In this paper, bit-flips in the Configuration Random-
Access Memory (CRAM) caused by radiation are referred
to as fault. FF bit-flips are not possible as our design is
fully combinational. Faults may halt the system execution
or corrupt its outputs. When it halts the execution, it is

Zynq-7000®

PS (ARM® Cortex A9) PL (Xilinx® Artix-7)

Sample
Number

SVM
Result

ZedBoard

FPGA board

FPGAProcessor

Error

Bitstream

Power Switch
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AMBA AXI
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SVM

Controller
(Input Vectors)

Output
ProcessorHard reset
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interface adapter
interconnect and

Input
Generator

Host
Computer

Figure 2: Zynq-7000 set-up under fault injection

defined herein as a Crash Failure. When it continues to
output values, each output is classified as follows:

• Masked Fault: the output does not differ from the
golden reference;

• Tolerable Failure: there is a mismatch between
the expected value and the golden reference but the
class assignment is still the correct, i.e. the sign bit
is the same;

• Critical Failure: the fault resulted in misclassifi-
cation of a sample.

Whenever a fault that has not crashed the system is de-
tected, the entire dataset is run over the classifier. Each of
the input samples score is logged for further classification
into either Critical Failure, a Tolerable Failure or Masked
Fault.

4.3. Fault Injection Methodology

The total volatile memory available at Zynq-7000 de-
vice used in these experiments, including cache and RAM
memory used by the processor system and the data and
configuration memory used by the FPGA, amounts to ap-
proximately 32 mebibits.

The Xilinx Vivado design synthesis tool reports a total
of 24.5 mebibits in the FPGA side for the device in use,
of which approximately 4,9 mebibits (20%) corresponds
to memory available to user data in the form of BRAM.
Conversely, the remaining 19.6 mebibits (80%) is mostly
CRAM that holds configuration for BRAM blocks, DSP
blocks, CLB blocks and configuration for all possible sig-
nal routing throughout the FPGA switch boxes. The fault
injection tool used in this work is targeted specifically to
that 80% of FPGA memory relative to the CRAM mem-
ory.

In Xilinx 7 Series FPGAs the memory is organized in
frames of 101 words of 32 bits. A frame is the minimal
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unit of CRAM memory that can be read or written to
the FPGA using the Xilinx Internal Configuration Access
Port (ICAP) hardware block available at Xilinx 7 Series
FPGAs. This is the same hardware block shared with the
initial configuration of the FPGA or the partial dynamic
reconfiguration of the FPGA, but now used to read or
write a single frame instead of loading or reading back the
whole memory or a block of memory that holds a retar-
getable module.

The emulated fault injection can be implemented, there-
fore, by reading a single CRAM memory frame, changing
its value and writing the frame back into the CRAM mem-
ory.

The injection flow used in this work [19] is presented
in the sequence. The approach followed, named random-
accumulated, consists in injecting faults in randomized po-
sitions in the CRAM memory region occupied by the DUT.
After each fault injected the DUT is exercised with the
completed set of input samples. The outputs are then
logged according to 4.2. Those faults are accumulated in
memory until a Crash failure is detected and then all faults
are cleaned up by reprogramming the FPGA. This process
is repeated until a significant number of events is collected.
Then, a reliability curve is derived from the data. This
curve is generated in order to visualize how the reliability
falls when faults start to accumulate, i.e., the percentage
of the dataset that was misclassified by the number of ac-
cumulated faults. This approach aims in emulating the
accumulation of SEUs on the CRAM memory during the
DUT operation, where one emulated fault injected would
be equivalent to the number of particles given by the static
cross section of the underlying device.

All the DUT modules targeted by fault injection were
constrained to a rectangular CRAM memory region of
2,070 frames of 3,232 bits amounting to 6,690,240 bits. As
an FPGA is a general-purpose device that is being pro-
grammed to a particular application, not all these CRAM
bits are effectively used by the DUT as many CLB, BRAM,
DSP blocks and most of the signal routing paths through-
out the FPGA fabric remains unused. Those memory bits
effectively required to program the FPGA to a particular
application can be called essential bits [20]. In the case of
the DUT in our experiments, the Xilinx Vivado synthesis
tool reported a number of 1,059,559 essential bits in the
case of the Binary SVM (Section 3.2) and 728,455 bits in
the case of the Multiclass SVM (Section 3.3).

The diagnostic collected from DUT allowed the classifi-
cation of each CRAM bit according to the criteria already
defined in Section 4.2.

4.4. Results

During random-accumulated fault injection campaigns,
the two DUT for Binary and Multiclass SVM were tested
in three different physical floorplans on the FPGA, allow-
ing faults to be injected separately on the SVM core, on
the accessory communication modules and on all modules
together.

Several fault injection campaigns were executed to ex-
plore the DUT reliability under accumulated faults amount-
ing to more than 106 faults injected.

Although the rate of fault injection and the SEUs pro-
duced by thermal neutron irradiation shall differ at least
by a factor relative to the device static cross section, the
relative rank of the reliability curves is consistent among
the experiments, as can be observed comparing Figure
3(a).

For the fault injection campaigns, whose results are
presented on Figure 3(a), any failure, either tolerable or
critical, were considered as a functional failure. Additional
fault injection campaigns were executed with a relatively
lax criteria where only critical failures, that is when the
SVM produced an incorrect classification, was considered
as a functional failure. These results are presented on Fig-
ure 3(b). This is a sound criterion when the SVM is used
as a classifier because only the final SVM classification and
its semantic meaning are relevant. It is worth noting that,
in this implementation of SVM, the classification depends
only on the signal bit of the numbers at the SVM primary
output and not on the magnitude of those numbers.

In Figure 3(a) and (b), it is noticeable that the Binary
SVM is less reliable than the Multiclass version, as the
reliability curve falls quicker. In [11], the authors have
showed that the Binary SVM has a level of intrinsic fault
tolerance. A more in-depth discussion on the reasons in
presented later in Subsection 5.5. In our experiment, we
have shown that the Multiclass SVM may be even more
reliable. It is worth noting that more experiments should
be conducted, as other factors may have played a role, such
as the different datasets used.

Another aspect explored using fault injection was the
impact of the microprocessor interface logic compared to
the main SVM computation core. For this, fault injec-
tion campaigns were executed injecting faults only over the
SVM core and only over the interface modules. The results
are also presented on Figure 3(a) and 3(b), where we can
observe that the overall DUT reliability is dominated by
the SVM core with a significantly higher reliability at the
interface logic. This suggests that, despite the use of the
third-party interface modules, there is still room for ma-
jor improvements in the DUT reliability by implementing
fault tolerance techniques to mitigate SEUs on the SVM
core. It is to be noted that the BRAM was used by the
interface modules in order to store the input samples. In
a real-world situation, this would probably not be needed,
as input samples would be generated by the environment,
thus making the reliability numbers of the BRAM in our
study not relevant.

5. Radiation Test Experiment and Results

This section describes the radiation experiments of both
the Binary and Multiclass SVMs conducted with a thermal
neutron source and an analysis of the obtained results.
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Figure 3: SVM Reliability.

5.1. Radiation Test Set-Up

The thermal neutron test has been conducted at the
Platform for Advanced Characterisation (PAC-G), hosted
by Institut Laue-Languevin (ILL), using the D50 thermal
neutron source. Previous papers [12] have demonstrated
the relevance of the usage of this equipment to perform re-
liability testing. It provides a thermal neutron beam with
a spectrum ranging from few microelectronvolts to around
100 meV, with a peak around 13 meV. The captured flux
(i.e. equivalent flux of 25 meV) is adjustable from 0 to
1010 neutrons / (s·cm2). To keep parts of the board other
than circuit, the board has been protected by a polyethy-
lene sheet with a hole above the target chip. Each SVM
architecture was tested individually with a constant flux
of 6.94 · 106 neutrons / (s · cm2). The Binary SVM was
tested for 2 hours and 20 minutes, yielding a total fluence
of 5.83 ·1010 neutrons / cm2, and the Multiclass SVM was
tested for 3 hours and 8 minutes, giving a total fluence of
7.833 · 1010 neutrons / cm2.

In order to test both of the SVM architectures (Binary
and Multiclass) designed, we have made use of the set-

up is illustrated in Figure 4. The test vehicle used was a
ZedBoard, that embeds a Zynq-7000 SoC. This is the same
model of board and same part number used in our fault in-
jection experiments, described in 4.1. On the PL part, two
components have been instantiated: one of the SVM ar-
chitectures, marked as SVM in the figure, and an indexed
list of its respective input vectors, named the controller.
The controller, when given an index, outputs to the SVM
the input sample at that index. For example, when given
as input the number 8, it will place on the instantiated
SVM primary inputs the eighth input sample. The SVM
module would contain either the Binary or the Multiclass
SVM at a time, i.e. the Binary SVM and Multiclass SVM
were tested separately. On the PS part, one module is re-
sponsible send to the controller the indexes while a second
module reads the output of the SVM through an AXI in-
terconnect and forwards it to a host PC through a serial
port. The L2 cache of the ARM processor has been dis-
abled to reduce the probability of faults affecting the PS
[21]. No scrubbing mechanism nor the Xilinx Soft Error
Mitigation (SEM) core IP were instantiated. We are aware
that these IPs would be very useful in a final implemen-
tation, as they would not let errors accumulate. However,
these tools have a time delay in order to detect/correct the
fault. This may still be not sufficient in a short term for
our design, as it is fully combinational. Thus, these IPs
were left off to observe a worst-case scenario.

5.2. Radiation Test Method

The radiation test methodology is the same for both
the Binary and Multiclass SVM and only one architecture
was tested at a time. The set of input vectors is con-
tinuously evaluated in the SVM currently instantiated in
the FPGA. The radiation is able to alter the Configura-
tion SRAM (CRAM) of the FPGA, which contains the
bitstream that implements the circuit, creating an error.
Mathematically, as the error changes the SVM structure
or its weights, it changes the classification function. As
the classification function changes, the score of an input
sample may deviate from the expected result. Thus, in or-
der to identify an error, the primary outputs of the SVM
are constantly compared with a golden error. At the first
mismatch, we are sure of the presence of an error. Once we
are certain of the presence of the error, the complete set of
input samples is evaluated in the architecture, each input
sample being the logged according to Subsection 4.2. Once
the complete set of input samples has been logged, we re-
run the complete set of input samples once more. This
was done to identify if transient faults were present in the
previous run. If a transient fault had happened during the
computation of an input sample, it would have been cor-
rected when the same sample was evaluated for the second
time. After the second run, the FPGA is reset and the bit-
stream is reloaded in the FPGA to correct the errors. It
is worth noting that the board is subject to SEUs as well
as to Single Event Multiple Upsets (SEMUs), the latter
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Figure 4: Zynq-7000 set-up under radiation test

being increasingly present in recent technologies given the
shrinking size of transistors [22].

5.3. Radiation Test Results for the Binary SVM

During the neutron radiation test campaign, we have
identified 24 errors, of which 3 crashed the FPGA and 21
errors that allowed it to continue to produce results. No
transient faults have been identified. Even though crashes
have been responsible for 12.5% of the total number of er-
rors, they are not related to the case-study SVM architec-
ture design but due to either a fault in the device perform-
ing the serial communication with the control computer,
i.e. the PS, or on the on the AXI module instantiated on
the FPGA fabric, which can cause the PS to hang if it
fails to perform a proper handshake. The obtained static
cross-section and the Failure In Time (FIT) are respec-
tively 4.11 · 10−10 cm2 and 2.67, considering New York’s
flux at sea level (6.5 thermal neutrons / (h · cm2)) [12].

4695 samples were processed by the Binary SVM with
radiation-induced errors. Note that the total number of
samples is not a direct product between the number of
input sample and the number of faults, as it would be ex-
pected by the methodology described in Subsection 5.2.
This is the case as in some cases, the FPGA would halt
after a fault before reevaluating the complete set of input
vectors. Of the total number of samples evaluated, 7% re-
sulted in critical failures, while 21.4% have been tolerable

Figure 5: FPGA board installed at the D50 thermal neutron accel-
erator facility

failures and the majority, 71.6% were masked faults. From
these results, it is noticeable that it is more likely for an
error not to critically interfere with the application in this
study case, as in 93% of the cases, the final classification
of a sample would STILL be correct, recreating roughly
the results in [11]. It is worth nothing that no fault miti-
gating or correction has been implemented on the Binary
SVM, with the overall error resilience being an intrinsic
characteristic of the algorithm.

5.4. Radiation Test Results for the Multiclass SVM

On the radiation campaign of the Multiclass SVM, a
total of 16 faults were identified, of which 2 caused crashes.
Again, the radiation induced crashes are out of the scope of
the paper. The obtained cross-section is 2.042 · 10−10cm2

with a FIT of 1.32 using New York thermal neutron flux
at sea level.

A total of 2884 samples has been evaluated in the im-
plemented Multiclass SVM, of which 2049 have been clas-
sified as masked fault, 799 as tolerable failure, and 36 as
critical failure. As observed on the Binary SVM, the Mul-
ticlass SVM also has an intrinsic tolerance to faults. The
results indicate that only 1.2% of the evaluated samples
on faulty Multiclass SVMs have been misclassified. Fur-
thermore, only 3 out of 14 faults that had not crashed the
FPGA have led to at least one critical failure.

5.5. Assessment of Results and Comparison of the SVM
Architectures

First, we are going to discuss the effect of radiation-
induced faults in Binary SVMs. On FPGA implementa-
tions of a Binary SVM, errors mathematically change the
classification function (Equation 1) as they change either
an xi, an α or the calculation logic. The location of error
may have a great importance on how it impacts the ar-
chitecture. Errors on the least important bits of an xi or
α can potentially cause a small displacement of the classi-
fier, making it less probable that a sample is misclassified.
In terms of the architecture, the algorithm is a series of
multiplications performed in parallel accumulated in a se-
ries of additions. This structure suggests that changes in
the least significant bits are less likely to greatly impact
the score of a sample, not causing a critical error. For ex-
ample, an input sample that when evaluated on the SVM
should output a score of 2.0, may have its score change to
1.9 if an error happened on the least significant bit, be-
ing still classified correctly. However, if an error happens
on the most significant bits, the result could become -2.0,
which would be a critical error as the signal of the score
represents the final class. Note that different samples are
affected differently in the event of a fault. Samples that
have scores closer to zero are more likely to be misclassi-
fied, being sensible even to changes on not so important
bits. For instance, a sample that has an original score of
0.2 is more easily made negative than a sample with score
of 2. Thus, the distribution of the samples in regard to the
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classifier has a great impact on the intrinsic reliability of
the algorithm. On the other hand, the training algorithm
of the SVM maximizes the distance between samples of
different classes, i.e making the score of samples as high
as possible, corroborating to an augmented reliability, but
still highly dependent of the dataset. Finally, the output
of the case-study SVM is composed of 49 bits, of which
48 are irrelevant for the calculation, only the sign bit be-
ing used for the final result. This indicates a high level
of fault tolerance even to faults close to the output. All
these properties translated into a 93% level of tolerance to
faults for the case-study Binary SVM.

As mentioned in Subsection 2.2, Multiclass SVMs are
made of a composition of Binary SVM, thus inheriting the
intrinsic reliability properties previously discussed. How-
ever, our Multiclass SVM presented even higher levels of
fault-tolerance in comparison to purely Binary SVM, only
having a 1% rate of critical errors, suggesting that it is
more reliable than the Binary counterpart. This behav-
ior has also been present in the fault-injection campaign,
as shown in Figure 3(b), in which the reliability of the Bi-
nary falls more rapidly than the one of the Multiclass. One
possible explanation is that parts of the Multiclass SVM
are irrelevant when evaluating a sample. For example, in
our case, there were three possible classes for an unknown
sample: virginica, versicolor and setosa. As the Multiclass
SVM for this study follows the One-vs-One approach, de-
scribed in Subsection 2.2, three Binary SVMs have been
trained, one for each pair of classes. Assuming that an
unknown sample should be classified as virginica, the re-
sult of the Binary SVM to classify between versicolor and
setosa is irrelevant as long as the output of the other two
remain correct. Therefore, Multiclass SVMs may build
an extra level of reliability when compared Binary SVMs,
which is indicated by the radiation results. It is worth
pointing out that the datasets used have been different,
which may have an impact in the levels of reliability. Fur-
ther evaluation using both fault injections and radiation
tests would be needed to better compare the difference in
terms of reliability between the two architectures.

5.6. Comparison with State-of-the-Art Works

Few authors have explored the radiation effects on ma-
chine learning algorithms as it is still a new field. The in-
trinsic fault tolerance of an FPGA implementation of Arti-
ficial Neural Networks (ANN) is evaluated in [7], in which
the authors perform a fault injection campaign along with
a heavy ion campaign. The work is complemented in [8],
where the same architecture along with an FPGA imple-
mentation of a Convolutional Neural Network (CNN), a
very popular variant of ANN for image processing ap-
plications, have been evaluated under the effect of neu-
trons. Graphics Processing Unit (GPU) implementations
of CNNs have also been evaluated under neutron radiation
in [9].

In [7, 8], the authors have made used of the same
dataset that we have used for our Multiclass SVM to train

an ANN. Also, they have used the same FPGA platform.
When comparing with their results, the authors have found
that 65% of the faults led only to tolerable failures. In
our case, we achieved 79% in respect to that, suggesting
that SVMs may have a higher reliability in comparison to
ANNs. We have also had reliability figures comparable to
those of [9], even though the datasets used are different,
but still with multiple output classes. Using GPU and
CNNs, the authors have found that around 82% of the
faults in one configuration bit of their GPUs would lead
to no critical error. When comparing to GPU implementa-
tions of CNNs, while GPUs present better fault tolerance,
FPGA implementations cannot be ruled out as they may
be faster for some applications [23].

6. Conclusions

This work presents the first evaluation of SVMs under
thermal neutron radiation along with the first assessment
of radiation effects on Multiclass SVMs. Furthermore,
both architectures were also thoroughly evaluated with an
extensive fault injection campaign to correlate with the
radiation results. On both the radiation and fault injec-
tion campaigns, the Multiclass SVM presented an overall
higher reliability when compared to a Binary SVM. It is
worth noting that neither designs had any error detection
nor error correction mechanisms implemented, suggesting
that the Multiclass SVM has a higher intrinsic reliability.
Also, in our experiment, the Multiclass SVM performed
better in terms of reliability than an ANN trained for the
same dataset, suggesting that it may be more reliable.

As a future work, we intend to evaluate different datasets
for both the Binary and Multiclass SVMs to further in-
spect our results. We also plan in conducting fault injec-
tion campaigns in a more fine-grained manner, e.g., in-
jecting faults in each SV at a time or specific regions of
the circuit, with multiple datasets in order to try to gen-
erate a model for the reliability that we could potentially
extrapolate to other datasets.

Furthermore, we plan to test different architectures for
the algorithm. For instance, the chain of adders at the end
of the circuit could benefit from being pipelined. In terms
of reliability, we could expect some differences. The cir-
cuit would be bigger, as several registers would have to be
added, which could make the circuit somewhat more frag-
ile. Apart from that, another type of error could become
more present, which are errors that affect only one sam-
ple of the dataset and that are erased once another input
sample is evaluated. They could happen as intermediate
results would have to be stored in memory elements.
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