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Abstract

Background: Prader-Willi syndrome (PWS) is a rare and complex neurodevelopmental disorder of genetic origin. It
manifests itself in endocrine and cognitive problems, including highly pronounced hyperphagia and severe obesity.
In many cases, impaired acquisition of social and communication skills leads to autism spectrum features, and
individuals with this syndrome are occasionally diagnosed with autism spectrum disorder (ASD) using specific
scales. Given that communicational skills are largely based on vocal communication, it is important to study human
voice processing in PWS.
We were able to examine a large number of participants with PWS (N = 61) recruited from France’s national
reference center for PWS and other hospitals. We tested their voice and nonvoice recognition abilities, as well as
their ability to distinguish between voices and nonvoices in a free choice task. We applied the hierarchical drift
diffusion model (HDDM) with Bayesian estimation to compare decision-making in participants with PWS and
controls.

Results: We found that PWS participants were impaired on both voice and nonvoice processing, but displayed a
compensatory ability to perceive voices. Participants with uniparental disomy had poorer voice and nonvoice
perception than participants with a deletion on chromosome 15. The HDDM allowed us to demonstrate that
participants with PWS need to accumulate more information in order to make a decision, are slower at decision-
making, and are predisposed to voice perception, albeit to a lesser extent than controls.

Conclusions: The categorization of voices and nonvoices is generally preserved in participants with PWS, though
this may not be the case for the lowest IQ.
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Background
Prader-Willi syndrome (PWS) is a rare genetic disease that
was first described in 1956. It is caused by the absence or
inactivation of paternal genes in the 15q11.2-q13 region of
chromosome 15. The absence of gene expression is due to
one of the following genetic subtypes: q11–13 de novo dele-
tion on chromosome 15 of paternal origin (DEL; 60% inci-
dence); chromosome 15 maternal uniparental disomy
(UPD; 35%) [1]. Nowadays, diagnosis is made during the
first months of life, and the prevalence of each genetic

subtype currently stands at 50% for DEL and 50% for non-
DEL. The main diagnostic criteria for PWS are severe hypo-
tonia at birth, associated with difficulty sucking and swal-
lowing, which causes low weight gain with failure to thrive
[2]. Around the age of 2–3 years, although no change in
food intake is observed [3], excessive weight gain occurs,
followed by a sudden behavioral change that manifests itself
as eating disorders leading to the hyperphagia that charac-
terizes this disease. During early childhood and adolescence,
cognitive disorders and a mild or moderate mental deficit
emerge alongside this behavioral disturbance. Although an
overall delay in the acquisition of certain skills (motor, com-
munication, cognitive) often leads to the behavioral alter-
ations similar to autism spectrum disorder (ASD), it is only
fully diagnosed in 20–40% of PWS cases [4, 5].
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Given the similarities with ASD in terms of social be-
havioral alterations, it is important to study participants’
communication skills, which include both human voice
and face processing [6]. Voices, just like faces, can tell us
a great deal about individuals. Beyond the linguistic as-
pect, voices make it possible to identify the type of per-
son, as well as that person’s age, identity, and sometimes
corpulence [7]. Prosody also gives us access to individ-
uals’ emotions and states of mind. Although there is a
large body of knowledge about face processing distur-
bances in ASD, some studies have also demonstrated
that voice processing can be impaired in autism [8, 9].
This voice processing difficulty could cause social inter-
action disorders or be linked to the lack of social motiv-
ation found in autism [10].
Little is known about voice processing in PWS. These

participants are described as having difficulty discrimin-
ating vocal sounds [11], but it is still unclear whether
voices, being socially important entities, are considered
as a separate category, as is the case in a healthy popula-
tion. We therefore set out to explore the voice recogni-
tion skills of participants with PWS by administering a
simple two-alternative forced-choice task (2FAC)
adapted to their intellectual disability (ID). Importantly,
we were able to collect the data of more than 60 partici-
pants with this rare pathology. This large cohort of par-
ticipants has also allowed us to analyze and compare the
genetic subtypes that are differently impaired on face
processing [12].
One of the aims of our study was to evaluate the origins

of social information processing deficits in PWS. The large
amount of data we collected allowed us to apply a specific
model (hierarchical drift diffusion model, HDDM [13]; to
clearly differentiate any sensorimotor deficit from a cogni-
tive deficit related to decision-making in a 2FAC protocol.
In most psychological tests of sensory processing to date
[11], participants with PWS have systematically had longer
reaction times (RTs), which have been attributed to early
developmental deficits in sensorimotor integration skills
[14]. The HDDM would allow us to study the neurocogni-
tive implementation of psychological decision making pro-
cesses. It might help us to decipher whether the slower
RTs of participants with PWS can be attributed to particu-
lar features of their cognitive processing, such as the need
to accumulate information in order to make choices.
In addition, there is now a large body of evidence that

when social cognition is evaluated in ASD, participants
can present performance levels close to those of typically
developed (TD) controls, reflecting the adoption of
adaptive strategies [15]. In some cases, these results can
be explained by the fact that the experimental protocol
elicited the explicit use of social cognition mechanisms.
When it comes to dissociating implicit from explicit
mechanisms, a free sorting task (FST) constitutes a good

alternative to 2FAC protocols, as it can even be per-
formed by young children [16]. We developed an FST
with different types of natural environmental sounds, in-
cluding voice sounds. In this test, participants can group
items on the basis of either perceptual criteria (pitch, in-
tensity, rhythmicity, etc.) or semantic criteria (everyday
listening). In the latter case, categorization relies on the
internalization of auditory objects, but this can be im-
paired in participants with disorders such as ASD [17].
In addition, the FST protocol makes it possible to
analyze participants’ hierarchical representation of nat-
ural sounds, and yields a clear assessment of their impli-
cit categorization.

Results
Hit rates and reaction times
Voice identification is a relatively simple and easy task,
and controls achieved a high level of performance (hit
rate of over 97% for both vocal and nonvocal stimuli).
An inspection of performance data indicated that PWS
participants exhibited deficits in this task. In both PWS
participant subgroups, performances were below 95% on
average, but we observed considerable variability in indi-
vidual performance levels. To pinpoint the differences in
performance between the PWS participant subgroups
and the control group, we entered their hit rates into the
general linear mixed-effect model. This allowed us to es-
timate performances for both voices and nonvoices
within each group, and differences in performance be-
tween the groups for each type of stimulus (Fig. 1).
The analysis of hit rates (Fig. 1a) revealed a significant

effect of group (p < 0.001). Using post hoc tests to ex-
plore the effect of group, we found that for voices, UPD
participants had a lower mean hit rate than controls
(84% vs. 97%, p < 0.001). However, the difference with
controls for voice perception only tended toward signifi-
cance for DEL participants (92% vs. 97%, p = 0.0522).
Thus, compared with controls, UPD participants had a
pronounced deficit for voice perception, whereas this
deficit was quite weak for the DEL participants. Import-
antly, we also observed a significant difference on voices
when we directly compared the PWS participant sub-
groups: UPD had lower hit rates for voices than DEL
(84% vs. 92%, p < 0.001). This confirmed that UPD par-
ticipants have a greater voice perception deficit than
DEL participants.
Concerning nonvoices, the mean hit rate was signifi-

cantly lower for DEL (89%, p < 0.001) and UPD (79%,
p < 0.001) participants than for controls (97%) (Fig. 1a).
This means that both PWS subgroups were deficient in
nonvoice perception. Similarly to the above results for
voices, UPD participants also had a lower hit rate than
DEL participants for nonvoices (79% vs. 89%, p < 0.001).
The UPD participants therefore had a more pronounced
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deficit than the DEL participants for both types of
stimulus.
In addition to the significant main effect of group, the

analysis of hit rates revealed a significant effect of stimu-
lus (p < 0.001), as well as a significant Group x Stimulus
interaction (p < 0.05) (Fig. 1a). To see the directions of
these effects, we examined the interaction further by
running post hoc comparisons. These indicated that the
difference in hit rates between voices and nonvoices was
not significant for controls (p = 0.842), whereas hit rates
were significantly higher for voices than for nonvoices in
both the DEL (p < 0.001) and UPD (p < 0.01) participant
subgroups. Thus, the equality of performance for voices
and nonvoices in controls was not observed in PWS par-
ticipants. Both PWS subgroups performed more poorly
on nonvoices than on voices, possibly reflecting more
pronounced compensation effects for such socially im-
portant stimuli as voices.
We also searched for correlations between hit rates

and general intelligence (IQ) or clinical (DBC) scores,
but none were found.
As previously observed adopting a simple discrimin-

ation approach [11], participants with PWS responded
much more slowly to the vocal/nonvocal stimuli. Over-
all, mean RTs were about 50% longer for PWS partici-
pants than for controls (1005 ms vs 660 ms) but the only
significant effect was for group (p < 0.001) (Fig. 1b). For
both voices and nonvoices, post hoc tests showed that
DEL and UPD participant subgroups had longer RTs
than controls (p < 0.001). PWS participants’ longer RTs,
taken together with their lower hit rates, may reflect a
deficit in the perception of voices and nonvoices. Fur-
thermore, for both voices and nonvoices, UPD partici-
pants had longer RTs than DEL participants did (p <

0.05). UPD participants also had lower hit rates than
DEL participants, so the longer RTs support the notion
of a more pronounced deficit for voice and nonvoice
perception in UPD participants.

HDDM parameters
The Bayesian estimation of the HDDM (Fig. 2a) indi-
cated that in order to make a decision, participants had
to integrate a certain amount of information represented
by a threshold, at a specific speed represented by a drift
rate. Nondecision time corresponded to the time re-
quired to execute the motor control and detect the
stimulus (i.e., excluding time involved in decision-
making). The total RT can be regarded as a combination
of these parameters. We estimated the differences in the
HDDM parameters between the groups of PWS partici-
pants and controls. For voice identification, participants
with PWS had a higher threshold, lower drift rate, and
longer nondecision time than controls (Fig. 2b). The
threshold of participants with PWS was about 30%
higher than that of controls, indicating that they needed
to accumulate more information before making a deci-
sion about a perceived stimulus. This accumulation also
took longer, as expressed by the lower drift rate. How-
ever, nondecision time was also longer, indicating slower
stimulus perception and response execution in PWS par-
ticipants. When all these parameters are considered to-
gether, it is clear that the greater deficit observed in the
voice discrimination task originated from differences
with controls on both threshold and drift rate values.
A similar pattern of HDDM parameters was found for

nonvoices, as PWS participants also had a higher thresh-
old, lower drift rate, and longer nondecision time than

Fig. 1 Performance on voice (V) and nonvoice (NV) processing. This figure illustrates the performance of typically developed (TD) subjects,
participants with the chromosome 15 deletion (DEL) and uniparental disomy (UPD) in terms of their hit rates (a) and reaction times (b) for Voice
(V) or Non-voice (NV) stimuli. Concerning hit rates, participants with PWS, especially UPD participants, were deficient in the recognition of voices
and non-voices. This deficit was slightly weaker for voices than for non-voices in both genetic subgroups. To avoid clutter, only significant effects
for voices are indicated in the figure as (*). The deficit in hit rates was accompanied by significantly longer reaction times with no difference
between voices and non-voices
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controls (Fig. 2). Thus, participants with PWS used simi-
lar strategies for both voice and nonvoice perception.
Regarding the distinction between participants with

DEL or UPD, no significant differences were found on
the HDDM parameters.
In a separate model including voices and nonvoices,

we found an initial bias toward voices in all the groups,
but this bias was higher in controls than in participants
with PWS (Fig. 2b, z values). This means that controls
were automatically more predisposed to perceive voices
- a bias that was not so strongly present in participants
with PWS.

Sound categorization task
In line with our previous results, controls’ categorization
was predominantly based on semantic information, as a
result of identifying a sound source. The tree diagrams
(Fig. 3a) show that controls categorized sounds as vocal,
musical, or environmental sounds. Interestingly, the dia-
gram showing categorization by participants with PWS
is very similar, as the same three categories emerge from
the first branches. This suggests that PWS participants

made their categorization based on the same semantic
criteria and according to the same hierarchical order.
However, in the diagram, the between-category distance
is clearly greater for controls than for participants with
PWS, indicating that controls adopted a more homoge-
neous categorization strategy, where the categories were
more clearly separated.
M ultiple correspondence analysis (MCA) was applied

to the categorization performed by the two groups of par-
ticipants in order to assess their overall categorization
strategies. Analysis was restricted to the dimensions that
explained the most variance within the original data, and
we only report results for the first two dimensions, which
together accounted for 54% of the total variance for con-
trols and 39% for participants with PWS. In the MCA
maps (Fig. 3b), the first dimension clearly reflects a dis-
tinction between voices and instruments for both the
PWS participant and control groups. However, whereas
the second dimension reflects a division between environ-
mental sounds and animal sounds for controls, partici-
pants with PWS grouped animal and environmental
sounds together. This absence of segregation of animal

Fig. 2 Hierarchical drift diffusion model for voices and nonvoices. This figure provides a scheme of the Bayesian estimation of the drift-diffusion
model (a). The drift-diffusion model makes it possible to assess how much information individuals need to make a decision, thus separating
decision criteria from non-decision processes. Different parameter of decision making are obtained (see Methods): the threshold (a); the drift rate
(v) the non-decision reaction time (t) and the initial bias (z). The differences between the groups of participants concerning these parameters of
the model are provided and compared in (b). For both voice and non-voice identification, DEL and UPD participants exhibited a similar pattern
of changes in model parameters with respect to the TD participants. They had a higher threshold, a lower drift rate and longer non-decision
times than controls. Their bias for voices was lower than in controls. Other conventions as in Fig. 1
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vocalizations by PWS participants appears to be the main
difference in strategy between the two groups.
Furthermore, in order to analyze how clearly human

voice stimuli were categorized, we compared the Euclid-
ean distances between the categories of voices and other
sounds (nonvoices). These comparisons revealed no sig-
nificant difference on distances between controls and
PWS participants (p > 0.05). However, within the voice
category, as well as within the other categories formed
by the participants with PWS, the distances between the
stimuli were significantly greater than they were within
the categories formed by controls (p < 0.05). This means
that PWS participants grouped together sounds with
greater variability than controls.
This variability was confirmed when we analyzed the

participants’ maps, which indicated the degree of homo-
geneity of categorization within each group (Fig. 4a).
This representation demonstrated that all controls ex-
tensively used both the first and second classification

dimensions, as all controls had values above 0.8 for each
dimension. There was a rather different picture for PWS
participants, as one subgroup (n = 2) did not use either
of these two dimensions, while another subgroup (n = 3)
extensively used the first dimension, but only moderately
the second dimension. Of interest, the IQ scores of par-
ticipants with PWS in these two subgroups were in the
lowest range (45–51). However, when we looked at cor-
relations between IQ, DBC, and dimension use, none of
them was statistically significant. Nonetheless, Dimen-
sion 1 (separating musical from vocal sounds) was sig-
nificantly correlated with PWS participants’ hit rate for
voices (r = 0.55, p < 0.01), thus confirming that it corre-
sponded to the separation of vocal from nonvocal stim-
uli, and that the PWS participants’ categorization
strategy was based on their ability to discriminate be-
tween the two types of stimuli.
Lastly, we conducted a word cloud analysis of partici-

pants’ descriptions of their sound categories (Fig. 4b).

Fig. 3 Dendograms and MCA maps for sound categorization by participants with Prader-Willi syndrome and typically developed controls. In a,
the branches corresponding to the largest categories are named. In b, the circled sound categories are voice and musical instruments. Both the
tree diagrams (a) and MCA maps (b) showed that participants with PWS created the similar voice, instruments and environmental categories
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These word clouds showed that participants with PWS
and controls produced broadly similar descriptions, the
most frequently used words being ones relating to music
and animals. This clearly indicates that PWS participants
categorized sounds on semantic not acoustic criteria.
However, PWS participants also frequently used the
words sounds and noise, which featured less prominently
in the controls’ word clouds. This may reflect a lack of
ability to produce precise verbal descriptions of the
sounds.

Discussion
Social interactions and voice processing in PWS
Like individuals with ASD, participants with PWS display
problems in social functioning, characterized by a reduced
ability to interpret and respond to social information [4].
Their empathy deficit, combined with social withdrawal,
prevents them from engaging in harmonious peer-group
relationships [6, 18, 19]. It is only natural to assume that
their social interaction difficulties are related to deficits in
processing the two major sources of information in hu-
man communication: the human face and voice [20, 21].
Concerning facial information processing, participants

with PWS have a known facial recognition deficit related
to an altered strategy of face exploration [12]. Belin et al.
[22] suggested that the human face and voice constitute a
fused entity-in which case, face processing deficits should
be accompanied by voice processing deficits. According to
Salles et al. [11], participants with PWS present a specific
deficit in distinguishing voices from nonvoices. However,
it remains unclear whether their voice identification is also
impaired and whether this is related to their performance
for environmental sounds.
In the present study, we found that participants with

PWS, especially UPD participants, were deficient in the
recognition of voices and nonvoices. This deficit was
slightly weaker for voices than for nonvoices in both
PWS subgroups. It was accompanied by significantly
longer RTs, with no difference between voices and
nonvoices.
Given that no auditory deficit was reported for any of

the PWS participants we tested, this voice recognition
deficit is unlikely to be of sensory origin, except at an
advanced level of sensory integration (e.g., multisensory
integration). Salles et al. [11] demonstrated decreased
multisensory benefits with an absence of violation of the

Fig. 4 Participant maps and word clouds for sound categorization. Participant maps in a indicate the usage of the first two dimensions in the
MCA maps by each participant and the homogeneity of categorization across PWS participants. In these maps, participants located above 0.8
made the greatest use of the given dimension. In b, the size of the words in word clouds reflect the frequency of their usage by the participants.
These word clouds show that participants with PWS and controls produced broadly similar descriptions, the most frequently used words being
ones relating to music and animals
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race model indicating that multisensory information
does not converge in participants with PWS. Though
some of the participants were the same as in the present
study, the analyses performed in the present study are
different from those in Salle et al. [11], so that we cannot
compare directly participants’ performances with Salles
et al. [11].
Although this may depend on the particular task and

the cognitive load, the participants with PWS seemed to
have specific impairments that could not solely be ex-
plained by their ID. Even if top-down effects of impaired
integrative functions cannot totally be excluded, the def-
icit in the perception of voice and nonvoice sounds was
more likely to be attributable to impairment of the most
integrative associative sensory areas (e.g. posterior por-
tion of the superior temporal sulcus (STS) known to be
involved in integrative and multisensory analysis, and
temporal poles involved in voice processing). The tem-
poral pole (Brodmann area, BA 38) was found to be
hypoactive in a resting-state PET study of participants
with PWS, as was the posterior temporal area (BA 22)
[23]. Individuals with ASD also show deficient activation
during voice perception in the temporal voice areas,
which are typically more sensitive to vocal stimuli [8].
Moreover, there is a hypothesis that autism results from
the disconnection of different brain areas owing to STS
dysfunction [24]. A variety of sensory disabilities have
been reported in ASD [25], and similar ones may be
present in participants with PWS.
Hit rates showed that UPD participants were more im-

paired on voice and nonvoice perception than DEL par-
ticipants. These findings confirmed that the participants
with PWS had a sensory integration deficit, but also in-
dicated that their higher order integrative deficits needed
to be considered, given that PWS is characterized by ID
and impaired social adaptation. To unravel these effects,
we looked for correlations between hit rates for voices
and nonvoices and IQ and DBC scores, but no signifi-
cant correlation was found.
To further check whether this difference could be due

to ID, we ran a Mann-Whitney test to analyze the differ-
ence in IQ between UPD and DEL participants, but
found that it was nonsignificant (p > 0.6). It is therefore
unlikely that the differences between the UPD and DEL
participants on voice and nonvoice identification were
related to ID. This confirms the specific deficit of partic-
ipants with PWS for voice/nonvoice discrimination, but
also their heterogeneity [11], and explains the identifica-
tion results we found.
Although participants with PWS had a voice percep-

tion deficit that could be predicted from their impaired
social functioning, their deficit for nonvoices was even
more pronounced. This finding may contradict the hy-
pothesis of a centrally driven, highly integrative origin of

the deficit, insofar as voices require a more integrative
cognitive function related to the perception of identity
and personality [26]. Then again, PWS participants’
compensatory mechanisms for the recognition of such
socially important stimuli as voices could be of central
origin. However, given the social deficits of these PWS
participants, it would be difficult to attribute this com-
pensation for voices to social feedback or social adapta-
tion, as opposed to the special role of the voice.

Decision Modelling with HDDM
The longer RTs for voice and nonvoice detection in
PWS (Fig. 1b) raise the question of whether they were
due to slower decision-making or to a general slowdown
in perception and motor reactions. To address this ques-
tion, we used the HDDM, which implies that before giv-
ing a response, individuals have to accumulate and
integrate a certain amount of information. The precise
amount of information they need to arrive at a decision
is represented by a threshold, while the speed at which
they reach this threshold is the drift rate. Importantly
for our question, the model also deduces their nondeci-
sion time, reflecting the time it takes them to execute
the motor control and detect the stimulus. We assumed
that PWS participants’ nondecision time and drift rate
would both be longer, owing to their general slowdown.
For both voice and nonvoice identification, partici-

pants with PWS exhibited a similar pattern of parame-
ters in the HDDM. They had a higher threshold for both
types of auditory stimuli, meaning that they needed to
accumulate more information to identify them than con-
trols did. This need for more information can be ex-
plained by a lack of integrative brain capacity, linked to
their general ID. This alone would have been enough to
slow down their responses, but they were also slower at
accumulating the necessary information (lower drift
rate).
As a results, both factors (higher threshold and lower

drift rate) contributed to the long RTs of participants
with PWS, which were nearly twice as long as those of
controls (Fig. 1b). Moreover, PWS participants had lon-
ger nondecision times than controls (Fig. 2b), which also
contributed to their longer RTs.
Thus, the HDDM demonstrated that a number of dif-

ferent processes contribute to the behavioral slowdown
in participants with PWS. Furthermore, the initial bias
parameter indicated that participants with PWS were
predisposed to the perception of voices, but to a lesser
extent than controls were. It is curious that, despite the
significant difference in performance between the UPD
and DEL participants, the HDDM did not indicate any
difference between the two subgroups on any of the pa-
rameters. This may mean that the UPD and DEL partici-
pants used similar cognitive strategies, but were more or
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less efficient in doing so, leading to the significantly dif-
ferent performances. According to the HDDM, partici-
pants with PWS needed more time to accumulate
information for decision-making and were predisposed
to voice perception. The sound categorization tests
highlighted categorization strategies similar to those of
controls, although PWS participants had more problems
describing the categories they had created.

Auditory free sorting task
Our exploration of PWS participants’ performances on
the identification of predefined categories of voices and
nonvoices led us to postulate that the deficit we ob-
served was not related to higher-order cognitive func-
tions, but instead to a deficit in integrative sensory
processing in the temporal lobes. To further verify this
hypothesis, we examined the results of an FST task that
required greater involvement of cognitive and intellec-
tual abilities such as similarity judgment, working mem-
ory, and executive functions [27]. The additional load on
high-order integrative functions was generated by re-
quiring participants to establish the categorization cri-
teria/principles for themselves. In an FST, participants
may group items according to a variety of subjective cri-
teria, but sounds are usually grouped according to their
common semantic or acoustic properties [16, 28, 29].
We found that controls divided the sounds they heard
into voice, instruments and environmental categories
(i.e., categorization predominantly based on semantic in-
formation as a consequence of identifying the sources of
the sounds). Both the tree diagrams (Fig. 3A) and MCA
maps (Fig. 3b) showed that participants with PWS cre-
ated the same voice, instruments and environmental cat-
egories. This means that participants with PWS used the
same semantically based cognitive strategy as controls.
Furthermore, no correlations were found between
categorization and IQ. PWS participants’ IQ therefore
only weakly influenced their ability to establish sound
categories. This weak influence could be detected at the
within-category level, where the within-group distances
between stimuli were significantly greater than they were
for controls. The within-category dispersion can be ex-
plained by subgroups of PWS participants with low IQ
who did not categorize the sounds as the other PWS
participants did. The outlier PWS participants in the
participant maps (Fig. 4a) had a lower IQ than the other
PWS participants (there were no outliers in the control
group). However, the correlation with IQ disappeared
when we considered it from the opposite direction, in
that not all PWS participants with low IQ were outliers
with poor categorization performances.
As demonstrated by the word clouds (Fig. 4b), partici-

pants with PWS were less accurate in the description of
the stimuli because of their poorer vocabulary, which

may have been related to their ID. We also noticed that
they tended to tell stories involving the stimuli, instead
of providing an exact description of each category they
formed.
As previously discussed, the HDDM indicated that

participants with PWS needed more time to accumulate
information to make a decision. Higher information ac-
cumulation demands may explain their relatively good
results on categorization, where no time limits were im-
posed. This observation evokes the theory that ASD is
the phenotypic expression of spatiotemporal processing
disorders, which may result from multisystem brain
disconnectivity-dissynchrony, defined as an increase or
decrease in functional connectivity and neuronal
synchronization within/between multiple neurofunc-
tional territories and pathways [30]. Consequently, the
world changes too fast for these participants, but given
enough time, their brain can find compensatory path-
ways and circuits.

Differences between UPD and DEL participants
Hit rates indicated that UPD participants had poorer
voice and nonvoice perception than DEL participants
(Fig. 1a). Similarly, UPD participants had longer RTs for
both voices and nonvoices (Fig. 1b). This is in line with
the finding of Salles et al. [11] that UPD participants
have a greater deficit for the discrimination of voices
and environmental sounds than DEL participants. How-
ever, the HDDM did not reveal any differences between
the UPD and DEL participants on the decision making
parameters. For sound categorization in the FST (Fig.
4a), three of the five PWS participants with the poorest
performances were DEL participants, and the remaining
two were UPD participants, so no conclusion can be
reached as to possible differences between these sub-
groups. This may mean that UPD participants had more
problems with the explicit task and fewer problems with
the more implicit FST. Considering the absence of dif-
ferences on the FST and the HDDM for decision-
making, our overall results suggest that the differences
in voice and nonvoice perception between the UPD and
DEL participants concerned integrative sensory process-
ing rather than the higher cognitive functions related to
decision-making and ID.

Conclusions
In this study, we found a deficit in participants with PWS
for voice processing, but UPD participants were more im-
paired than DEL participants on both voice and nonvoice
perception. We were also able to demonstrate a compen-
satory improvement in the perception of voices compared
with nonvoices. The HDDM enabled us to demonstrate
that participants with PWS need to accumulate more in-
formation for decision-making, are slower at decision-
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making, and are less predisposed to voice perception than
TD individuals. Sound categorization in participants with
PWS is generally preserved, though impoverished, and
may be influenced by their low IQ.

Methods
Participants
Participants were 38 TD adults (mean age = 30 years,
SD = 5) and 61 individuals with PWS (Mage = 30 years,
SD = 7): 38 with DEL and 23 with UPD. PWS partici-
pants were initially assessed either at Hendaye Hospital
(n = 26), a dedicated rehabilitation center for adults with
PWS, or during a consultation at the PWS reference
center of Toulouse University Hospital (n = 35). The
present study is an extension of the Salles et al. [11] art-
icle, in the present set of analysis we have included some
participants from the previous study. However, not all of
the previous participants performed the totality of the
tests analyzed in the present study and the majority of
PWS participants in this study did not overlap with the
study of Salles et al. [11]. See Table 1 for the partici-
pants’ data.
The study was approved by the ethics committees of

Toulouse University Hospital (Toulouse Hospital CHU
13687203; National EudraCT 201,300,437–33), and all
participants gave their written informed consent prior to
their inclusion in the study.

Clinical assessment
The Developmental Behaviour Checklist for Adults
(DBC_A) is a questionnaire completed by parents or care-
givers to assess the behavioral and emotional problems of
adults with developmental and intellectual disabilities, and
it is routinely used for participants with PWS. The full
questionnaire contains 107 items divided into six categor-
ies: disruptive/antisocial, communication disturbance,
anxiety, self-absorbed, depressive, and social relating.

Voice discrimination task
We assessed participants’ ability to distinguish between
vocal and nonvocal stimuli in a two-alternative forced-
choice (2FAC) paradigm. Each participant sat in a quiet,
dimly lit room looking at a fixation cross on a computer
screen. They were tested with a 1-s intertrial interval
and were instructed to respond as accurately as possible,
using the left or right control button of the E-prime

response box to indicate their answer (voice or non-
voice). The response keys were counterbalanced across
participants, and they each underwent a short training
session to ensure that they understood the test. The 110
stimuli were presented in two blocks of 55.
All the stimuli were taken from a database containing

vocal and nonvocal sounds used in previous experiments
[11, 31, 32]. They each lasted 500 ms. The set of 55 vocal
stimuli included 29 speech stimuli (phonemes presented
in a /h/−vowel−/d/ context, words in different languages,
or nonsemantic syllables) and 26 non-speech stimuli
(e.g., laughs, coughs). The set of 55 nonvocal stimuli
consisted of a wide variety of environmental sounds
(cars, telephones, bells, running water, etc.). Neither set
contained animal vocalizations.

Auditory free sorting task
Most studies exploring how we categorize natural
sounds are based on pairwise similarity judgments, but
one alternative method of determining how natural
sounds are perceived is to use an FST. This task pro-
vides an opportunity to test a large set of stimuli without
having to divide them into dimensions beforehand, thus
allowing participants to categorize them according to
their own criteria/principles. The FST has been shown
to be well-suited to evaluating auditory perception in
adult participants, as well as in children as young as 6
years [16, 28, 29]. In an FST, participants group the ob-
jects according to their common semantic or acoustic
properties. Although this free categorization process is
closely related to similarity judgment, the process in-
volves more holistic-based decisions [33] and is more
strongly influenced by cognitive factors [27]. In the
present FST categorization protocol, both groups were
seated in front of a PC monitor positioned at eye level,
with loudspeakers located on either side at a distance of
1 m. The stimuli were played at a level of 65 dB SPL
(measured at head height with a sound level meter at a
distance of 1 m) through loudspeakers in free-field lis-
tening conditions. Testing was carried out using open-
source TCL-LabX software (http://petra.univ-tlse2.fr/tcl-
labx/), which acted as the interface for the FST. The 16
sounds were represented on the computer by 16 num-
bered and colored squares that were positioned in the
same order for all participants.
The task for participants was to listen to the 16 sounds

and place them in groups (i.e. create categories) using any
criteria they chose. The experimenter gave only minimal
feedback to facilitate completion of the experiment.
Sounds were played using the PC mouse, by double click-
ing on each square, and participants created categories by
dragging and grouping the squares together on the screen.
Once participants had finished placing the squares in cat-
egories, they were asked to listen to each sound one last

Table 1 Summary description of study participants

Age M F DEL UPD IQ DBC

Mean PWS (SD) 30 (7) 29 32 38 23 56.6 0.32

Mean TD (SD) 30 (5) 16 22

Note. DEL deletion on chromosome 15, UPD uniparental disomy, IQ
intelligence quotient, DBC Developmental Behavior Checklist, PWS participants
with Prader-Willi syndrome, TD typically developing controls
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time to verify their choices before ending the experiment.
They were then asked to type a brief description of each
category using the keyboard.
There were no limits on the amount of time taken to

complete the test or the number of times participants
could listen to a given sound (i.e., playbacks). Partici-
pants were also allowed to create as many or as few cat-
egories as they wished, such that one category could
contain just a single stimulus or all 16. The TCL-LabX
software also recorded performance data and statistics
for all participants, including the number of categories
they created, the number of playbacks they listened to,
and the duration of the experiment.
All the sounds were taken from a database owned by

the PETRA group at Toulouse Jean Jaurès University
(http://petra.univ-tlse2.fr) and were chosen to cover a
broad range of semantic and acoustic information (see
[28]). We selected sounds that are frequent in everyday
life and can be divided into three main types: environ-
mental sounds (alarm clock ringing, car engine starting,
door opening, footsteps, glass breaking, helicopter, run-
ning water); musical sounds (bells, guitar, oboe, violin,
xylophone); or vocal sounds (male voice coughing, fe-
male voice speaking, female voice laughing, male voice
speaking). Stimuli were presented at the comfortable
level of approximately 65 dB SPL and were delivered in
stereo through headphones plugged into the computer.

Data analysis
The participants’ performances on the voice discrimin-
ation task were analyzed in the form of hit rates and
RTs (Fig. 1), using the general linear mixed-effect model
of the lme4 R package, with the factors group (TD, Del
PWS, UPD PWS) and stimulus (vocal, nonvocal) and the
Group x Stimulus interaction. We ran type II Wald chi-
square tests for post hoc comparisons.
Hit rates and RTs were then analyzed with the HDDM

[13], a sequential sampling model that correlates response
accuracy with RTs for simple 2FACs. It postulates that
each decision can be modulated by the accumulation of
noisy information over time. Occurrences accumulate
until they reach a threshold when the individual takes a
decision. Each decision is represented by an upper and a
lower boundary that have to be crossed in order to initiate
the corresponding response. Applying the Bayesian ap-
proach to the HDDM can shed light on the cognitive and
psychological processes behind decision-making, based
solely on RT distribution for the two response choices.
With this model, the behavioral data can be categorized
according to four parameters (see Fig. 2a): threshold, drift
rate for the accumulation speed, nondecision time associ-
ated with stimulus perception and response execution,
and initial bias. We used the Monte Carlo and Markov
chains (MCMC) method to estimate posteriors based on

our data. We performed 20,000 iterations. We discarded
5000 initial burn-in items, and only saved every fifth sam-
ple. This method yielded 3000 posterior values that were
normally distributed. We confirmed our model using the
posterior plots available in Python software (PyMC). From
this simulated population, we could calculate the mean
and 95% confidence interval for each parameter.
In the categorization part of the study, to analyze the

sound categories the participants created, we applied
two approaches in the R environment [34]: hierarchical
clustering based on principal components (HCPC)
allowed us to represent stimulus associations as tree dia-
grams; and multiple correspondence analysis (MCA)
allowed us to obtain the group-level statistics for the
preferred associations of stimuli.
More specifically, we performed HCPC in order to

view a simplified version of the sound categories in the
form of tree diagrams. With this analysis, it is not pos-
sible to account for all of the variance (inertia) within
the data (i.e. the variability of participant responses), and
so a certain proportion remains unaccounted for. How-
ever, by increasing the number of desired categories, the
inertia can be reduced, and it was by using this process
that we were able to choose the final number of categor-
ies: if the number of categories is Q, then the optimum
number of categories is found when the change in iner-
tia is greater when moving from Q - 1 to Q than from Q
to Q + 1 [34].
We applied MCA to a multi-participant categorization

table (raw data not included) produced by TCL LabX soft-
ware. This table represented the results as an array of cat-
egorical variables as columns and categorical items (sound
stimuli) as rows, with each cell containing a number that
defined the category membership of each sound for each
participant. MCA used correspondence analysis to repre-
sent each sound as a data point in an n-dimensional Eu-
clidean space based on the categorical values (i.e.,
categories created by participants). Each of the dimensions
was chosen to account for the greatest amount of variance
possible within the dataset, and they were produced in de-
scending order of variance. MCA on the participants
showed how strongly individual results coincided with the
dimensions [35]. A total of 15 dimensions were used in
the analysis. We focused on the two most significant ones
(Dim 1 & Dim 2), as they accounted for the greatest
amount of variance in the data and also showed the most
significant correlations with the acoustic variables mea-
sured for the sounds. As there was no a priori knowledge
that could be used to automatically establish these rela-
tions, a degree of interpretation was required when com-
menting on the dimensions [35].
To characterize the distances between the sounds in

the MCA maps, we calculated the corresponding Euclid-
ean distances.
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