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Abstract: Cardiac memory, also known as the Chatterjee phenomenon, refers to the persistent
but reversible T-wave changes on ECG caused by an abnormal electrical activation pattern. After
a period of abnormal ventricular activation in which the myocardial repolarization is altered and
delayed (such as with artificial pacemakers, tachyarrhythmias with wide QRS complexes or ventricular
pre-excitation), the heart remembers and mirrors its repolarization in the direction of the vector of
“abnormally” activated QRS complexes. This phenomenon alters patterns of gap junction distribution
and generates changes in repolarization seen at the level of ionic-channel, ionic concentrations, ionic-
current gating and action potential. In this work, we propose a mathematical model of cardiac
electrophysiology which takes into account cardiac memory phenomena. The electrical activity in heart
through torso, which is dependent on the prior history of accrued heartbeats, is mathematically modeled
by a modified bidomain system with time fractional-order dynamics (which are used to describe
processes that exhibit memory). This new bidomain system, that I name “ memory bidomain system”,
is a degenerate nonlinear coupled system of reaction-diffusion equations in shape of a fractional-
order differential equation coupled with a set of time fractional-order partial differential equations.
Cardiac memory is represented via fractional-order capacitor (associate to capacitive current) and
fractional-order cellular membrane dynamics. First, mathematical model is introduced. Afterward,
results on generalized Gronwall inequality within the framework of coupled fractional differential
equations are developed. Next, the existence and uniqueness of solution of state system are proved
as well as stability result. Further, some preliminary numerical applications are performed to show
that memory reproduced by fractional-order derivatives can play a significant role on key dependent
electrical properties including APD, action potential morphology and spontaneous activity.

Keywords: fractional-order dynamics; heart-torso coupling; cellular heterogeneity; integral
inequality; weak solution; cardiac memory; memory induced T-wave; ionic models
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1. Introduction and mathematical setting of the problem

1.1. Modeling motivation

The heart is an electrically controlled mechanical pump which drives blood flow through the
circulatory system vessels (through deformation of its walls), where electrical impulses trigger
mechanical contraction (of various chambers of heart) and whose dysfunction is incompatible with
life. The coordinated contraction of heart and the maintenance of heartbeat are controlled by a
complex network of interconnected cardiac cells electrically coupled by gap junctions and
voltage-gated ion channels. The evaluation of bioelectrical activity in heart is then a very complex
process which uses different phenomenological mechanism and subject to various perturbations, and
physiological and pathophysiological variations.

The electrical system of a normal heart is highly organized in a steady rhythmic pattern. This normal
heartbeat is called sinus rhythm. Irregular or abnormal heartbeats, called arrhythmias, are caused
by a change in propagation and/or formation of electrical impulses, that regulate a steady heartbeat,
causing a heartbeat that is too fast or too slow, that can remain stable or become chaotic (irregular and
disorganized). Many times, arrhythmias are harmless and can occur in healthy people without heart
disease; however, some of these rhythms can be serious and require special and efficiency treatments.
Fibrillation is one type of arrhythmia and is considered the most serious cardiac rhythm disturbance. It
occurs when the heart beats with rapid, erratic electrical impulses (highly disorganized almost chaotic
activation). This leads to quivering (or fibrillation) of heart chambers rather than normal contraction,
which then leads the heart to lose its ability to pump enough blood through circulatory system. The
treatment therapy of these diseases, when it becomes troublesome or when it can present a danger,
often uses electrical impulses to stabilize cardiac function and restore the sinus rhythm, by implanting
the patients with active cardiac devices (electrotherapy). For example, in case of cardiac rhythms that
are too slow, the devices transmit electronic impulses and ensure that periodic contractions of heart
are maintained at a hemodynamically sufficient rate; and in the case of a fast or irregular heart rate,
the devices monitor heart rate and, if needed, treat episodes of tachyarrhythmia (including tachycardia
and/or fibrillation) by transmitting automatically impulses to either give defibrillation shocks or cause
overstimulation (via an ICDs∗) or synchronize contraction of left and right ventricles.

After cessation of a transient period of abnormal ventricular activation (arrhythmia or pacing) in
which the myocardial repolarization is altered and delayed (such as with artificial pacemakers [82],
tachyarrhythmias with wide QRS complexes, intermittent left bundle branch block or ventricular
pre-excitation observed in Wolff-Parkinson-White syndrome [45]), the heart remembers and mirrors
its repolarization in the direction of vector of “abnormally” activated QRS complexes [66]. This
remodeling of electrical properties of myocardium is characterized by persistent but reversible T-wave
changes on the surface electrocardiogram (ECG). The scope, significance and direction of T-wave
deviation depend on duration and direction of abnormal electrical activation. Moreover, these changes
are often confused with pathological conditions manifesting with T-wave deviations, such as (acute)
myocardial ischemia or infarction. This cumulative and complex phenomenon is named cardiac
memory and can persist up for several weeks after normal ventricular conduction is restored. Heart is
considered as network of cardiac oscillators communicating via gap junctions between neighboring
cells and through voltage gated ion channels (that are activated by changes in electrical membrane

∗The so-called implantable cardioverter defibrillators

AIMS Mathematics Volume 6, Issue 1, 821–867.



823

potential near channel): this phenomenon alters patterns of gap junction distribution and generates
changes in repolarization seen at the level of ionic-channel, ionic concentrations, ionic-current gating
and action potential.

The existence of cardiac memory has been known for many years and resulted in a large number
of publications, see for example [23, 37, 44, 58–60, 67, 72, 73, 75] and the references therein. Yet
despite all this, this phenomemon is under-recognized and there is still limited information regarding its
physiological significance and practical clinical implications because this phenomenon is considered
to be a relatively benign pathophysiologic finding. Unfortunately, the work of past few years has
shown that despite the mostly benign nature of cardiac memory in healthy individuals under some
conditions, it can be the trigger of more complex arrhythmias and then requires emergency care of
the patient. Other works estimate that clinically administered antiarrhythmic drugs alter expression of
cardiac memory and that generate changes in repolarization could in turn alter the effects of these drugs
(see e.g. [4, 63]). Moreover, cardiac memory may also lead to unnecessary and invasive diagnostic
investigation that put patients under unnecessary risks (see e.g., [71]).

Then, recognition of cardiac memory as a serious potential cause of T-wave changes and the analysis
of T-wave morphology (throughout the ECG during narrow- and wide-QRS rhythms) are critical to help
differentiate T-wave changes due to myocardial ischemia from those induced by cardiac memory, and
consequently sustainably establish the clinical relevance of this phenomenon, facilitates diagnosis and
increases efficiency of cardiac disorders treatment.

Consequently, this has greatly emphasized the need for model and methodologies capable of
predicting and understanding the dynamic mechanisms of different sources of electrical instability in
heart like cardiac action potential (AP) repolarization alternans which is influenced by memory. At
cellular level, alternans is generally manifests as cyclic, beat-to-beat alternations between long and
short action potential and/or intracellular Ca transient, and is frequently associated with the
development of ventricular tachycardia and fibrillation. It is generally agreed that disturbances of
bi-directional (mutual) relationship between transmembrane potential (or membrane voltage) φ and
Ca-sensitive ionic currents play a key role in generation of alternans. Because membrane voltage φ is
strongly affected by Ca-sensitive ionic currents and intracellular Ca loading in turn is strongly
influenced by φ-dependent ionic currents. This complex bidirectional coupling influences and
controls the amplitude and duration of action potentials (APD) through various time- and
voltage-dependent ionic currents.

The classical bidomain system is commonly used for modeling propagation of electrophysiological
waves in cardiac tissue. Motivated by above discussions, to take into account the critical effect of
memory in propagation of electrophysiological waves, together with other critical cardiac material
parameters, we propose and analyze a new bidomain model, that I name “memory bidomain system”
by incorporating memory effects. In next section, we shall present derivation of this memory bidomain
model.

1.2. Modeling and formulation of the problem

Mathematical and computational cardiac electrophysiological modeling is now an important field
in applied mathematics. Indeed, nowadays, heart and cardiovascular diseases are still the leading cause
of death and disability all over the world. That is why we need to improve our knowledge about heart
behavior, and more particularly about its electrical behavior. Consequently we want strong methods to
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compute electrical fluctuations in the myocardium to prevent cardiac disorders (as arrhythmia). Tissue-
level cardiac electrophysiology, which can provide a bridge between electrophysiological cell models
at smaller scales, and tissue mechanics, metabolism and blood flow at larger scales, is usually modeled
using the coupled bidomain equations, originally derived in [78], which represent a homogenization of
the intracellular and extracellular medium, where electrical currents are governed by Ohm’s law (see
also e.g. [46] for a review and an introduction to this field). The model was modified and extended
to include heart tissue surrounded by a conductive bath or a conductive body (see e.g. [64] and [74]).
From mathematical viewpoint, the classical bidomain system is commonly formulated in terms of
intracellular and extracellular electrical potentials of anisotropic cardiac tissue (macroscale), φi and φe,
(or, equivalently, extracellular potential φe and the transmembrane voltage φ = ϕi − ϕe) coupled with
cellular state variables u describing cellular membrane dynamics and torso potential state variable φs.
This is a system of non-linear partial differential equations (PDEs) coupled with ordinary differential
equations (ODEs), in the physical region Ω (occupied by excitable cardiac tissue, which is an open,
bounded, and connected subset of d-dimensional Euclidean space Rd, d ≤ 3). The PDEs describe the
propagation of electrical potentials and ODEs describe the electrochemical processes.

Cardiac memory can affect considerably the resulting electrical activity in heart and thus the cardiac
disorders therapeutic treatment. It is then necessary to introduce the impact of memory on dynamical
behaviors of such a system. Memory terms can cause dynamical instabilities (as Alternans) and give
rise to highly complex behavior including oscillations and chaos.

Figure 1. The derived “Memory bidomain model” is defined on heart domain ΩH, while ΩB

is the rest of body.

In order to take into account the influence of cardiac memory and inward movement of u into
the cell which prolongs depolarization phase of action potential, we propose a new bidomain model.
In this new model, classical bidomain model has been modified via time fractional-order dynamical
system, arising due to cellular heterogeneity, which are used to describe processes that exhibit memory.
More precisely, the derived system with memory (or history), is a nonlinear coupled reaction-diffusion
model in shape of a set of time fractional-order differential equations (FDE) coupled with a set of time
fractional-order partial differential equations, in the torso-heart’s spatial domain Ω (Figure 1) which is
a bounded open subset with a sufficiently regular boundary ∂Ω, and during the final fixed time horizon
T > 0, as follows

AIMS Mathematics Volume 6, Issue 1, 821–867.
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cα∂
α
0+φ + I(.; φ, u) − div(Ki∇ϕi) = Ii, in QH = ΩH × (0,T )

cα∂
α
0+φ + I(.; φ, u) + div(Ke∇ϕe) = −Ie, in QH

−div(Ks∇ϕs) = 0, in QB = ΩB × (0,T )

∂
β
0+u + G(.; φ, u) = 0, in QH

subject to initial and boundary conditions (1.4),

(1.1)

or equivalently

cα∂
α
0+φ + I(.; φ, u) − div(Ki∇φ) = div(Ki∇ϕe) + Ii, in QH

−div((Ke +Ki)∇ϕe) = div(Ki∇φ) + I, in QH

−div(Ks∇ϕs) = 0, in QB

∂
β
0+u + G(.; φ, u) = 0, in QH

subject to initial and boundary conditions (1.4).

(1.2)

Here, ∂α0+ and ∂
β
0+ denote the forward Caputo fractional derivatives with α and β be real values in

]0, 1] and the unknowns are the potentials ϕi, ϕe, ϕs and a single ionic variable u (e.g. gating variable,
concentration, etc.).

The heart’s spatial domain is represented by ΩH which is a bounded open subset, and by ΓH =

∂ΩH we denote its piecewise smooth boundary. A distinction is made between the intracellular and
extracellular tissues which are separated by the cardiac cellular membrane. The surrounding tissue
within the thorax is modeled by a volume conduction ΩB with a piecewise smooth boundary ΓB =

ΓH ∪ ΓT where ΓT is the thorax surface. The whole domain is denoted by the Ω = ΩH ∪ ΩB. In ΩH,
the transmembrane potential is φ = ϕi − ϕe where ϕe and ϕi are the transmembrane, extracellular and
intracellular potentials, respectively, and in ΩB, ϕs is thoracic medium electric potential. The parameter
cα is cα = κCα > 0, where Cα is the membrane capacitance per unit area and κ is the surface area-to-
volume ratio (homogenization parameter). The membrane is assumed to be passive, so the capacitance
Cα can be assumed to be not a function of state variables. Classically this membrane is assimilate
to a simple parallel resistor-capacitor circuit. However various studies showed clearly that a passive
membrane may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage
relationship is given by a fractional-order derivative (see e.g [84]). So, according to the passivity of
tissue we can assimilate this membrane to electrical circuit with a resistor associate to the ionic current
(Iion) and a capacitor associate to the capacitive current, Iαc = cα∂

α
0+φ, in parallel, with α usually ranging

from 0.5 to 1 (Figure 2). Moreover, since the electrical restitution curve (ERC)† is affected by the
action potential history through ionic memory, we have represented the memory via ionic variable u
by a time fractional-order dynamic term ∂

β
0+u.

†which traditionally describes the recovery of APD as a function of the interbeat interval
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Figure 2. Modeling of the membrane as resistor and non-ideal capacitor coupled in parallel
(where 0 < α ≤ 1 is the fractional order of capacitor).

The coupling between equations in ΩH and equation in ΩB (in systems (1.1) and (1.2)) is operate at
the heart-torso interface ΓH. The continuity conditions at the interface can be given by

ϕe = ϕs, in ΣH = ΓH × (0,T )(
Ke∇ϕe

)
· n =

(
Ks∇ϕs

)
· n, on ΣH.

(1.3)

where n is the outward normal to ΓH.
The tensors Ki and Ke are the conductivity tensors describing anisotropic intracellular and

extracellular conductive media, and tensor Ks represents the conductivity tensor of thoracic medium.
The electrophysiological ionic state u describes a cumulative way of effects of ion transport through
cell membranes (which describes e.g., the dynamics of ion-channel and ion concentrations in different
cellular compartments). The operator I is equal to κIion, where the nonlinear operator Iion describes
the sum of transmembrane ionic currents across cell membrane with u. The nonlinear operator G is
representing the ionic activity in myocardium. Functional forms for I and G are determined by an
electrophysiological cell model. The source terms are Ii = κ fi, Ie = κ fe and I = Ii + Ie, where fi and fe

describe intracellular and extracellular stimulation currents, respectively.
To close the system, we impose the following initial and boundary conditions

initial conditions

φ(., t = 0) = φ0, u(., t = 0) = u0, in ΩH

and boundary conditions
ϕe = ϕs, in ΣH(
Ke∇ϕe

)
· n =

(
Ks∇ϕs

)
· n, on ΣH(

Ki∇ϕi
)
· n = 0, on ΣH(

Ks∇ϕs
)
· nT = 0, on ΣT = ΓT × (0,T )

(1.4)

where nT is the outward normal to ΓT .
In absence of a grounded electrode, the bidomain equations are a naturally singular problem since

ϕe and ϕs, in system (1.2), only appear in the equations and boundary conditions through their
gradients. Moreover, the states ϕe and ϕs are only defined up to the same constant. Such problems
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have compatibility conditions determining whether there are any solution to the PDEs. This is easily
found by integrating the second and third equations of (1.2) over the domain and using the divergence
theorem with boundary conditions. Then the following conservation of the total current is derived
(a.e. in (0,T )) ∫

ΩH

Idx = 0. (1.5)

Consequently, we must choose current I such that the compatibility condition (1.5) is satisfied. For the
choose of intracellular stimulus, it is natural and usual (as is common) to take Ii = −Ie (denoted in the
sequel by fH) i.e., setting the total current I to zero. It is clear that this condition does not correspond
to zero extracellular stimulus, but that the extracellular stimulus current and the intracellular stimulus
current are equal in magnitude and opposite in direction. Moreover, the functions ϕe and ϕs are defined
within a class of equivalence, regardless of the same time-dependent function. This function can be
fixed, for example, by setting the condition, (a.e. in (0, T))∫

ΓH

ϕedx =

∫
ΓH

ϕsdx = pH where pH is a fixed time-dependent function. (1.6)

Remark 1.1. 1. Condition (1.6) is used for pressure in oceanography (see e.g. [15]).
2. The functions Ki, Ke,H and G depend on the fiber extension ratio.
3. We can suppose, for example, that fH is only a time dependent source and is of the form

fH(x, t) = θ(t)(χ
Ω

(1)
H

(x) − χ
Ω

(2)
H

(x)), (1.7)

where χ
Ω

(i)
H

is the characteristic function of set Ω
(i)
H , i = 1, 2. The support regions Ω

(1)
H and Ω

(2)
H

can be considered to represent an anode (positive electrode) and a cathode (negative electrode)
respectively. �

In recent years, various problems concerning biological rhythmic phenomena and memory
processes which can be included in a cardiac model in many ways (via delay model or time fractional
dynamical model), have been studied. Via delayed system we can cited e.g., [11, 17, 20, 40, 41, 43, 69]
and the references therein. For problems associated with bidomain models with time-delay, the
literature is limited, to our knowledge, to [8, 9, 27]. In these references, in order to take into account
the influence of disturbance in data and the time-varying delays on propagation of
electrophysiological waves in heart, the authors have developed a new mathematical model and have
considered the theoretical analysis as well as numerical simulations (with real data) and validation of
developed model. Via time fractional dynamical model, the literature is also limited, we can cite
e.g. [26, 31]. In [26], the authors study, using a minimal cardiac cell model, the effects of a
fractional-order time diffusion for the voltage and for the ionic current gating. They have shown
numerically the interest of modeling memory through fractional-order and that with the model it is
able to analyze the influence of memory on some electrical properties as spontaneous activity and
alternans. Concerning problems associated with classical bidomain models various methods and
technique, as evolution variational inequalities approach, semi-group theory, Faedo-Galerkin method
and others, the studies of well-posedness of solutions have been derived in the literature (see
e.g., [12, 16, 18, 19, 24, 80] and the references therein); for development of multiscale mathematical
and computational modeling of bioelectrical activity in myocardial tissue and the formation of cardiac
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disorders (as arrhythmias), and their numerical simulations, which are based on methods as finite
difference method, finite element method or lattice Boltzmann method, have been receiving a
significant amount of attention (see e.g., [5, 6, 21, 28–30, 35, 38, 46, 51, 65, 79, 81] and the references
therein).

The rest of paper is organized as follows. In next section, we give some preliminaries results useful
in the sequel. In Section 3, some preliminaries results concerning fractional calculus are given and
results on generalized Gronwall inequality to a coupled fractional differential equations are developed.
In Section 4 we shall prove the existence, stability and uniqueness of weak solutions of derived
model, under some hypotheses for data and some regularity of nonlinear operators. Numerical
experiments, using a modified Lattice Boltzmann Method for numerical simulations of the derived
memory bidomain systems, are described in Section 5. In Section 6, conclusions are discussed.

2. Assumptions, notations and some fundamental inequalities

Let f ⊂ IRm, m ≥ 1, be an open and bounded set with a smooth boundary and fT = f× (0,T ). We
use the standard notation for Sobolev spaces (see [1]), denoting the norm of Wq,p(f) (q ∈ IN,
p ∈ [1,∞]) by ‖ . ‖Wq,p . In the special case p = 2, we use Hq(f) instead of Wq,2(f). The duality
pairing of a Banach space X with its dual space X′ is given by 〈., .〉X′,X. For a Hilbert space Y the inner
product is denoted by (., .)Y and the inner product in L2(Ω) is denoted by (., .). For any pair of real
numbers r, s ≥ 0, we introduce the Sobolev space Hr,s(fT ) defined by
Hr,s(fT ) = L2(0,T ; Hr(f)) ∩ H s(0,T ; L2(f)), which is a Hilbert space normed by(
‖ v ‖2L2(0,T ;Hr(f)) + ‖v ‖2Hs(0,T ;L2(f))

)1/2
, where H s(0,T ; L2(f)) denotes the Sobolev space of order s of

functions defined on (0,T ) and taking values in L2(f), and defined (see [52]) by
H s(0,T ; L2(f)) = [Hq(0,T, L2(f)), L2(fT )]θ, for s = (1 − θ)q with θ ∈ (0, 1) and q ∈ IN, and
Hq(0,T ; L2(f)) =

{
v ∈ L2(fT )| ∂

jv
∂t j ∈ L2(fT ), for 1 ≤ j ≤ q

}
. For a given Banach space X, with norm

‖.‖X, of functions integrable on f, we define its subspace X|IR =
{
u ∈ X,

∫
f

u = 0
}

that is a Banach

space with norm ‖.‖X, and we denote by [u] the projection of u ∈ X on X|IR such that

[u] = u −
1

mes(f)

∫
f

udx (with mes(f) standing for Lebesgue measure of f).

Lemma 2.1. (Poincaré-Wirtinger inequality) Assume that 1 ≤ p ≤ ∞ and that f is a bounded
connected open subset of IRd with a sufficiently regular boundary ∂Ω (e.g., a Lipschitz boundary).
Then there exists a Poincaré constant C , depending only on Ω and p, such that for every function u in
Sobolev space W1,p(f), we have

‖[u]‖Lp(f) ≤ C‖∇u‖Lp(f).

Remark 2.1. From the Poincaré-Wirtinger inequality, we can deduce that the H1 semi-norm and the
H1 norm are equivalent in the space H1(f)|IR. �

Remark 2.2. Let q be a nonnegative integer. We have the following results (see e.g. [1])
(i) Hq(f) ⊂ Lp(f), ∀p ∈ [1, 2m

m−2q ], with continuous embedding (with the exception that if 2q = m,
then p ∈ [1,+∞[ and if 2q > m, then p ∈ [1,+∞] ).
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(ii) (Gagliardo-Nirenberg inequalities) There exists C > 0 such that

‖ v ‖Lp(f)≤ C ‖ v ‖θHq(f)‖ v ‖1−θL2(f),∀v ∈ Hq(f),

where 0 ≤ θ < 1 and p = 2m
m−2θq (with the exception that if q − m/2 is a nonnegative integer, then θ is

restricted to 0). �

Finally, we introduce the spaces:

• HH = L2(ΩH), VH = H1(ΩH), V = H1(Ω) (endowed with their usual norms) and UH = VH|IR,

• UHB =
{
ψ ∈ H1(Ω) |

∫
ΩH

ψdx = 0
}
.

We will denote by V′H (resp. U′H) the dual of VH (resp. of UH). We have the following continuous

embeddings, where p ≥ 2 if d = 2 and 2 ≤ p ≤ 6 if d = 3, p′ is such that
1
p′

+
1
p

= 1

VH ⊂ HH ⊂ V
′
H , UH ⊂ HH|IR ⊂ U

′
H,

VH ⊂ Lp(ΩH) ⊂ HH ≡ (HH)′ ⊂ Lp′(ΩH) ⊂ V′H
(2.1)

and the injections VH ⊂ HH and UH ⊂ HH|IR are compact. We can now introduce the following spaces
(where q > 1, p ≥ 2 and 1

p + 1
p′ = 1)

Dp(0,T )= Lp(QH) ∩ L2(0,T ;VH), and its dual D′p(0,T )= Lp′(QH) + L2(0,T ;V′H) ⊂ Lp′(0,T ;V′H).

Remark 2.3. Space Dp(0,T ) is equipped with norm: ‖ u ‖Dp= max(‖ u ‖Lp(QH), ‖ u ‖L2(0,T ;VH)) and its
dual with norm: ‖ v ‖D′p= inf

v=v1+v2
(‖ v1 ‖Lp′ (QH) + ‖ v2 ‖L2(0,T ;V′H)). �

Definition 2.1. A real valued function H defined on D × IRq, q ≥ 1, is a Carathéodory function iff
H(.; v) is measurable for all v ∈ IRq andH(y; .) is continuous for almost all y ∈ D.

Our study involves the following fundamental inequalities, which are repeated here for review:

(i) Hölder’s inequality:
∫

D
Πi=1,k fidx ≤ Πi=1,k ‖ fi ‖Lqi (D),

where ‖ fi ‖Lqi (D)=

(∫
D
| fi |

qi dx
)1/qi

and
∑

1≤i≤k

1
qi

= 1.

(ii) Young’s inequality (∀a, b > 0 and ε > 0): ab ≤ ε
pap + ε−q/p

q bq, f or p, q ∈]1,+∞[ and 1
p + 1

q = 1.
(iii) Minkowski’s integral inequality:[∫

Ω

(∫ t

0
| f (x, s) | ds

)p

dx
]1/p

≤

∫ t

0

(∫
Ω

| f (x, s) |p dx
)1/p

ds, for p ∈]1,+∞[ and t > 0.

Finally, we denote by L(A; B) the set of linear and continuous operators from a vectorial space A
into a vectorial space B, and by R∗ the adjoint operator to a linear operator R between Banach spaces.

From now on, we assume that the following assumptions hold for the nonlinear operators and tensor
functions appearing in our model.
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(H1) We assume that the conductivity tensor functionsKθ ∈ W1,∞(ΩH), θ ∈ {i, e} andKs ∈ W1,∞(ΩB)
are symmetric, positive definite matrix functions and that they are uniformly elliptic, i.e., there exist
constants 0 < K1 < K2 such that (∀ψ ∈ IRd)

K1‖ψ‖
2 ≤ ψTKθψ ≤ K2‖ψ‖

2 in ΩH,

K1‖ψ‖
2 ≤ ψTKsψ ≤ K2‖ψ‖

2 in ΩB.
(2.2)

Remark 2.4. We can emphasize a specificity of tensors Ke and Ki (see e.g., [25]).

1. The tensors Ke(x) and Ki(x) have the same basis of eigenvectors Q(x) = (qk(x))1≤k≤d in IRd,
which reflect the organization of muscle in fibers, and consequently Ki(x) = Q(x)Λi(x)Q(x)T and
Ke(x) = Q(x)Λe(x)Q(x)T , where Λi(x) = diag((λi,k)1≤k≤d) and Λe(x) = diag((λe,k)1≤k≤d).

2. The muscle fibers are tangent to Γ so that (for θ ∈ {i, e}) : Kθn = λθ,dn, a.e., in Γ, with λθ,d(x) ≥
λ > 0, λ a constant. �

The operators I and G which describe electrophysiological behavior of the system can be taken as
follows (affine functions with respect to u)

I(x, t; φ, u) = I0(x, t; φ) + I1(x, t; φ)u,

G(x, t; φ, u) = I2(x, t; φ) + ~(x, t)u,
(2.3)

where ~ is a sufficiently regular function and I0(x, t; φ) = g1(x; φ) + g2(x, t; φ) with g1 is an increasing
function on φ. Moreover, the operators I0, I1 and I2 appearing in I and G, are supposed to satisfy the
following assumptions.

(H2)p The operators I0, I1 and I2 are Carathéodory functions from (Ω × IR) × IR into IR and
continuous on φ (as in [12]). Furthermore, for some p ≥ 2 if d = 2 and p ∈ [2, 6] if d = 3, the
following requirements hold

(i) there exist constants βi ≥ 0 (i = 1, . . . , 10) such that for any v ∈ IR

|I0(.; v)| ≤ β1 + β2|v|p−1,

|I1(.; v)| ≤ β3 + β4|v|p/2−1,

|I2(.; v)| ≤ β5 + β6|v|p/2,

|Eg(.; v)| ≤ β7 + β8|v|p, |g2(.; v)| ≤ β9 + β10|v|p−2,

(2.4)

where Eg is the primitive of g1.

(ii) there exist constants µ1 > 0, µ2 > 0, µi ≥ 0 (for i = 3, 7) such that for any (v,w) ∈ IR2:

µ1vI(.; v,w) + wG(.; v,w) ≥ µ2|v|p − µ3

(
µ1|v|2 + |w|2

)
− µ4,

Eg(., v) ≥ µ5|v|p − µ6|v|2 − µ7.
(2.5)

In order to assure the uniqueness of solution we assume that
(H3) The Nemytskii operators I and G satisfy Carathéodory conditions and there exists some µ > 0

such the operator Fµ : IR2 → IR2 defined by

Fµ(.; v) =

(
µ(I(.; v))
G(.; v)

)
, ∀v = (v,w) ∈ IR2, (2.6)
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satisfies a one-sided Lipschitz condition (see e.g., [14, 70]): there exists a constant CL > 0 such that
(∀vi = (vi,wi) ∈ IR2, i = 1, 2)(

Fµ(.; v1) − Fµ(.; v2)
)
· (v1 − v2) ≥ −CL‖v1 − v2‖

2. (2.7)

Lemma 2.2. ( [9]) Assume that Fµ is differentiable with respect to (φ, u) and denote by λ1(φ, u) ≤
λ2(φ, u) the eigenvalues of symmetrical part of Jacobian matrix ∇Fµ(φ, u):

Qµ(φ, u) =
1
2

(
∇Fµ(φ, u)T + ∇Fµ(φ, u)

)
.

If there exists a constant CF independent of φ and u such as:

CF ≤ λ1(φ, u) ≤ λ2(φ, u), (2.8)

then Fµ satisfies the hypothesis (H3).

Lemma 2.3. ( [9]) Let assumptions (2.3), (H1) and (H2)p be fulfilled. For (φ, u) ∈ Lp(Ω)×H and a.e.,
t, there exist constants Ci > 0 (i = 1, 6) such that

‖I(., t; φ, u)‖Lp′ (ΩH) ≤ C1 + C2‖φ‖
p/p′

Lp(ΩH) + C3‖u‖
2/p′

HH
,

‖G(., t; φ, u)‖L2(ΩH) ≤ C4 + C5‖φ‖
p/2
Lp(ΩH) + C6‖u‖HH ,

(2.9)

where p′ is such that 1
p + 1

p′ = 1.

In this work we assume that p = 4. The considered functions Ii, in this paper, include the three
classical type models in which assumptions (H1), (H2)4 and (H3) are satisfied namely the
Rogers-McCulloch [57] (RM), Fitz-Hugh-Nagumo [39] (FHN) and Aliev-Panfilov [61](LAP) models
as follows. The function I0 is defined by a cubic reaction term of the form
I0(.; v) = b1(.)v(v − r)(v − 1), and the functions I1 and I2 are given by

(a) for RM type model : I1(.; v) = b2(.)v, I2(; , v) = −b3(.)v,

(b) for FHN type model : I1(.; v) = b2(.), I2(; , v) = −b3(.)v,

(c) for LAP type model : I1(.; v) = b2(.)v, I2(; , v) = b3(.)v(r + 1 − v),

where bi ∈ W1,∞(Q), i = 1, 3, are sufficiently regular functions from Q into IR+,∗ and r ∈ [0, 1]. We
obtain easily the following Lemma.

Lemma 2.4. The following properties hold. For all v1, v2 in IR we have

I0(.; v1) − I0(.; v2) = b1(v1 − v2)
(
v2

1 + v2
2 + v1v2 − (r + 1)(v1 + v2) + r

)
and

(a) for RM type model : I1(.; v1) − I1(.; v2) = b2(v1 − v2), I2(.; v1) − I2(.; v2) = −b3(v1 − v2),

(b) for FHN type model : I1(.; v1) − I1(.; v2) = 0, I2(.; v1) − I2(.; v2) = −b3(v1 − v2),

(c) for LAP type model : I1(.; v1) − I1(.; v2) = b2(v1 − v2),

I2(.; v1) − I2(.; v2) = b3(v1 − v2)((r + 1) − v1 − v2).

For the sake of simplicity, we shall write Ii(ψ), I(ψ, v) andG(ψ, v) in place of Ii(x, t;ψ), I(x, t;ψ, v)
and G(x, t;ψ, v), respectively (for i = 0, 2).
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3. Fractional calculus and a generalized Gronwall’s inequality

Fractional differential equations have been studied by many investigations in recent years and the
idea of defining a derivative of fractional order (non-integer order) dates back to Leibnitz [49]. Since
19th century, different authors have considered this problem e.g., Riemann, Liouville, Hadmard, Hardy,
Littlewood and Caputo among others. Fractional integrals and derivatives have proved to be useful
in real applications, since they arise naturally in many biological phenomena such as viscoelasticity,
neurobiology and chaotic systems, see for instance [3, 34, 36, 55, 62, 76, 83].

The classical and the most used form of fractional calculus is given by the Riemann-Liouville and
Caputo derivatives. In contrast to this nonlocal Riemann-Liouville derivative operator, when solving
differential equations, is the use of Caputo fractional derivative [22] in which it is not necessary to
define the fractional order initial conditions.

3.1. Definitions and basic results

The object of this section is to give a brief introduction to some definitions and basic results in
fractional calculus in the Riemann-Liouville sense and Caputo sense. Let γ ∈]0, 1] and X be a Banach
space, we start from a formal level and assume the given functions f : t ∈ (a,T ) → f (t) ∈ X and
g : t ∈ (a,T )→ f (t) ∈ X are sufficiently smooth (with −∞ < a < T < ∞).

Definition 3.1. The forward and backward Riemann-Liouville fractional integrals of fractional order
γ on (a,T ) are defined, respectively, by (t ∈ (a,T ))

Iγa+

[
f
]
(t) =

1
Γ(γ)

∫ t

a
(t − τ)γ−1 f (τ)dτ,

IγT−
[
f
]
(t) =

1
Γ(γ)

∫ T

t
(τ − t)γ−1 f (τ)dτ,

(3.1)

where Γ(z) =

∫ ∞

0
eττz−1dτ is the Euler Γ-function.

The basic equality for the fractional integral is (from Fubini’s Theorem and the relationship between
Γ-function and β-function)

Iγ1
a+

[
Iγ2
a+

[
f
]]

= Iγ1+γ2
a+

[
f
]

(3.2)

and holds for a Lp-function f (1 ≤ p ≤ ∞).

Definition 3.2. The forward Riemann-Liouville and Caputo derivatives of fractional order γ on (a,T )
are defined, respectively, by (t ∈ (a,T ))

Dγ
a+

[
f
]
(t) =

d
dt

(I1−γ
a+

[
f
]
(t)) =

1
Γ(1 − γ)

d
dt

(
∫ t

a
(t − τ)−γ f (τ)dτ),

∂
γ
a+

[
f
]
(t) = I1−γ

a+

[
d f (t)

dt

]
=

1
Γ(1 − γ)

∫ t

a
(t − τ)−γ

d f
dt

(τ)dτ.
(3.3)

From (3.2) we can deduce the following relation between fractional integral and Caputo derivative

f (t) = f (a) + Iγa+

[
∂
γ
a+ f

]
(t) = f (a) +

1
Γ(γ)

∫ t

a
(t − τ)γ−1∂

γ
a+ f (τ)dτ. (3.4)

AIMS Mathematics Volume 6, Issue 1, 821–867.



833

Definition 3.3. The backward Riemann-Liouville and Caputo derivatives of fractional order γ, on
(a,T ) are defined, respectively, by (t ∈ (a,T ))

Dγ
T− f (t) = −

d
dt

(I1−γ
T−

[
f
]
(t)) = −

1
Γ(1 − γ)

d
dt

(
∫ T

t
(τ − t)−γ f (τ)dτ),

∂
γ
T−

[
f
]
(t) = −I1−γ

T−

[
d f (t)

dt

]
= −

1
Γ(1 − γ)

∫ T

t
(τ − t)−γ

d f
dt

(τ)dτ.
(3.5)

By substitution a→ −∞, the following definition is obtained.

Definition 3.4. The Liouville-Weyl fractional integral and the Caputo fractional derivative on the real
axis are defined, respectively, by (t ∈ (−∞,T ))

Iγ−∞
[
f
]
(t) =

1
Γ(γ)

∫ t

−∞

(t − τ)γ−1 f (τ)dτ,

∂
γ
−∞ f (t) = I1−γ

−∞

[
d f
dt

(t)
]

=
1

Γ(1 − γ)

∫ t

−∞

(t − τ)−γ
d f
dt

(τ)dτ.
(3.6)

Remark 3.1. 1. For γ −→ 1 the forward (resp. backward) Riemann-Liouville and Caputo
derivatives of fractional order γ of f converge to the classical derivative d f

dt (resp. to −d f
dt ).

Moreover, Riemann-Liouville fractional derivative of fractional order γ of constant function
t −→ f (t) = k is not 0 since Dγ

a+ f (t) = k
Γ(1−γ)

d
dt (

∫ t

a
(t − τ)−γdτ) =

k(t−a)−γ

Γ(1−γ) .

2. It is possible to show that the difference between Riemann-Liouville and Caputo fractional
derivatives depends only on the values of f on endpoints a and T . More precisely, for
f ∈ C1([a,T ], X) we have

Dγ
a+ f (t) = ∂

γ
a+ f (t) +

f (a)(t−a)−γ

Γ(1−γ) ,

Dγ
T− f (t) = ∂

γ
T− f (t) +

f (T )(T−t)−γ

Γ(1−γ) .
(3.7)

From [42], we have the following results

Lemma 3.1. (Continuity properties of fractional integral in Lp spaces on (a,T ))
The fractional integral Iγa+ is a continuous operator from

(i) Lp(a,T ) into Lp(a,T ), for any p ≥ 1,

(ii) Lp(a,T ) into Lr(0,T ), for any p ∈ (1, 1/γ) and r ∈ [1, p/(1 − γp)],

(iii) Lp(a,T ) into C0,γ−1/p([a,T ]), for any p ∈]1/γ,+∞[,

(iii) L1/γ(a,T ) into Lp(a,T ), for any p ∈ [1,+∞)

(iv) L∞(a,T ) into C0,γ([a,T ]).

From Lemma 3.1 and (3.4) we can deduce the following corollary.

Lemma 3.2. Let X be a Banach space and γ ∈]0, 1]. Suppose the Caputo derivative ∂γa+ f ∈ Lp(a,T ; X)
and p > 1

γ
, then f ∈ C0,γ−1/p([a,T ]; X).

We also need for our purposes the fractional integration by parts in the formulas (see for instance
[2, 47, 86])
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Lemma 3.3. Let 0 < γ ≤ 1 and p, q ≥ 1 with 1/p + 1/q ≤ 1 + γ. Then

(i) if g is a Lp-function on (a,T ) and g is a Lq-function on (a,T ), then∫ T

a
( f (τ), Iγa+

[
g
]
(τ))Xdτ =

∫ T

a
(g(τ), IγT−

[
f
]
(τ))Xdτ,

(ii) if f ∈ IγT−(L
p) and g ∈ Iγa+(Lq), then∫ T

a
( f (τ),Dγ

a+g(τ))Xdτ =

∫ T

a
(g(τ),Dγ

T− f (τ))Xdτ.

Lemma 3.4. Let 0 < γ ≤ 1, and g be Lp-function on (a,T ) (for p ≥ 1) and f be absolutely continuous
function on [a,T ]. Then

(i)
∫ T

a
(∂γa+ f (τ), g(τ))Xdτ = −

∫ T

a
(Dγ

T−g(τ), f (τ))Xdτ + |(I1−γ
T−

[
g
]
(τ), f (τ))X |

T
a ,

(ii)
∫ T

a
(Dγ

a+ f (τ), g(τ))Xdτ = −

∫ T

a
(Dγ

T−g(τ), f (τ))Xdτ + (I1−γ
T−

[
g
]
(T−), f (T ))X,

(iii)
∫ T

a
(Dγ

T− f (τ), g(τ))Xdτ = −

∫ T

a
(Dγ

a+g(τ), f (τ))Xdτ − (I1−γ
a+

[
g
]
(a+), f (a))X.

From [85], we can deduce the following Lemma.

Lemma 3.5. (A generalized Gronwall’s inequality)
Assume γ > 0, h is a nonnegative function locally integrable on (0,T ) and b is a nonnegative, bounded,
nondecreasing continuous function defined on [0,T ). Let f be a nonnegative and locally integrable
function on (0,T ) with

f (t) ≤ h(t) + b(t)Iγ0+[ f ](t).

Then (for t ∈ (0,T ))

f (t) ≤ h(t) +

∫ t

0

∞∑
k=1

h(τ)(t − τ)kγ−1 (b(t))k

Γ(kγ)
dτ.

If in addition h is a nondecreasing function on (0,T ), then

f (t) ≤ h(t)Eγ,1(b(t)tγ).

The used function Eθ1,θ2 is the classical two-parametric Mittag-Leffler function (usually denoted by
Eθ1 if θ2 = 1) which is defined by

Eθ1,θ2(z) =

∞∑
k=0

1
Γ(kθ1 + θ2)

zk. (3.8)

The function Eθ1,θ2 is an entire function of the variable z for any θ1, θ2 ∈ lC, Re(θ1) > 0.
Next we declare a compactness theorem in Hilbert spaces. Assume that X0, X1 and X are Hilbert

spaces with
X0 ↪→ X ↪→ X1 being continuous and X0 ↪→ X is compact. (3.9)

The Fourier transform of f : IR → X1 is defined by f̂ (τ) =

∫ ∞

−∞

exp(−2iπsτ) f (s)ds and we have

Lemma (see e.g., [68])
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Lemma 3.6. Let γ ∈ (0, 1) and f be a L1-function in IR with compact support. Then

(i) Îγ−∞ f (τ) = (2iπτ)−γ f̂ (τ),

(ii) ∂̂γ−∞ f (τ) = (2iπτ)γ f̂ (τ).

We define the Hilbert spaceWγ(IR;X0,X1), for a given γ > 0, by

Wγ(IR;X0,X1) = {v ∈ L2(IR,X0) | ∂γ−∞ f ∈ L2(IR,X1)},

endowed with the norm

‖ v ‖Wγ=

(
‖ v ‖L2

(
IR,X0

) + ‖| τ |γ v̂ ‖L2
(
IR,X1

))1/2
.

For any subset K of IR, we define the subspaceWγ
K ofWγ by

Wγ
K(IR;X0,X1) = {v ∈Wγ(IR;X0,X1) | support of v ⊂ K}.

From Lemma 3.6 and similar arguments to drive Theorem 2.2 in [77], we have the following
compactness result.

Theorem 3.1. Let X0, X1 and X be Hilbert spaces with the injection (3.9). Then for any bounded set
K and any γ > 0, the injection ofWγ

K(IR;X0,X1) into L2(IR;X) is compact.

3.2. A generalized Gronwall inequality to a coupled fractional differential equation

In this section we present a new generalized Gronwall inequality with singularity in the context of
a coupled fractional differential equations.

Theorem 3.2. Assume that γ1 and γ2 be in ]0,1] with γ2 ≤ γ1 and Ψ, hi, for i = 1, 2, are nonnegative
functions locally integrable on (0,T ). If f and g are nonnegative functions locally integrable, with
f (0) = f0, g(0) = g0, and satisfy the inequalities (for t ∈ (0,T ))

∂
γ1
0+ f (t) ≤ h1(t) + c1( f (t) + g(t)) + ηΨ(t),
∂
γ2
0+g(t) + ξΨ(t) ≤ h2(t) + c2( f (t) + g(t)),

(3.10)

where ci > 0, i = 1, 2, η ≥ 0 and ξ ≥ 0 are four constants with η ≤
ξΓ(γ1)

Γ(γ2)T (γ1−γ2) . Then we have the

following estimate

F(t) ≤ F0Eγ2,1(d1tγ2) +

∞∑
k=0

dk
1Ikγ2+γ1

0+ [h1] (t) +

∞∑
k=0

dk
1I(k+1)γ2

0+ [h2] (t), (3.11)

where F = f + g, F0 = f0 + g0, d0 =
T (γ1−γ2)Γ(γ2)
Γ(γ1)

and d1 = c1d0 + c2.

The function E.,. is the Mittag-Leffler function which is defined by (3.8).

AIMS Mathematics Volume 6, Issue 1, 821–867.



836

Proof. From (3.4) we can deduce that

Γ(γ1)( f (t) − f0) ≤
∫ t

0
(t − τ)γ1−1h1(τ)dτ + c1

∫ t

0
(t − τ)γ1−1( f (τ) + g(τ))dτ

+η

∫ t

0
(t − τ)γ1−1Ψ(τ)dτ,

Γ(γ2)(g(t) − g0) ≤
∫ t

0
(t − τ)γ2−1h2(τ)dτ + c2

∫ t

0
(t − τ)γ2−1( f (τ) + g(τ))dτ

−ξ

∫ t

0
(t − τ)γ2−1Ψ(τ)dτ.

(3.12)

Put F = f + g, then

(Γ(γ1)Γ(γ2))(F(t) − F0) ≤
∫ t

0
(Γ(γ2)(t − τ)γ1−1h1(τ) + Γ(γ1)(t − τ)γ2−1h2(τ))dτ

+

∫ t

0

(
ηΓ(γ2)(t − τ)γ1−1 − ξΓ(γ1)(t − τ)γ2−1

)
Ψ(τ)dτ

+

∫ t

0

(
c1Γ(γ2)(t − τ)γ1−1 + c2Γ(γ1)(t − τ)γ2−1

)
F(τ)dτ.

(3.13)

We can deduce that (since t ∈ (0,T ) and γ1 − γ2 ≥ 0)

(Γ(γ1)Γ(γ2))(F(t) − F0) ≤ Γ(γ2)
∫ t

0
(t − τ)γ1−1h1(τ)dτ + Γ(γ1)

∫ t

0
(t − τ)γ2−1h2(τ))dτ

+(ηΓ(γ2)T (γ1−γ2) − ξΓ(γ1))
∫ t

0
(t − τ)γ2−1Ψ(τ)dτ

+(c1Γ(γ2)T (γ1−γ2) + c2Γ(γ1))
∫ t

0
(t − τ)γ2−1F(τ)dτ.

(3.14)

Since ηΓ(γ2)T (γ1−γ2) − ξΓ(γ1) ≤ 0, then

(Γ(γ1)Γ(γ2))(F(t) − F0) ≤ Γ(γ2)
∫ t

0
(t − τ)γ1−1h1(τ)dτ + Γ(γ1)

∫ t

0
(t − τ)γ2−1h2(τ))dτ

+(c1Γ(γ2)T (γ1−γ2) + c2Γ(γ1))
∫ t

0
(t − τ)γ2−1F(τ)dτ.

(3.15)

Thus
F(t) ≤ F0 + Iγ1

0+ [h1] (t) + Iγ2
0+ [h2] (t) + d1Iγ2

0+ [F] (t), (3.16)

where d0 =
T (γ1−γ2)Γ(γ2)
Γ(γ1)

and d1 =
c1Γ(γ2)T (γ1−γ2) + c2Γ(γ1)

Γ(γ1)
= c1d0 + c2.

Finally, from Lemma 3.5 and relation (3.2), we get (since Ikγ2
0+ [F] (0) = F0 Ikγ2

0+ [.1] = F0tkγ2

Γ(1+kγ2) )

F(t) ≤ F0

∞∑
k=0

1
Γ(1 + kγ2)

(d1tγ2)k +

∞∑
k=0

dk
1Ikγ2+γ1

0+ [h1] (t) +

∞∑
k=0

dk
1I(k+1)γ2

0+ [h2] (t).

This completes the proof. �
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Corollary 3.1. Assume that assumptions of Theorem 3.2 hold, and that hi, for i = 1, 2, are
nondecreasing functions on (0,T ). Then, if f and g are nonnegative functions locally integrable, with
f (0) = f0, g(0) = g0, and satisfy the inequalities (3.10), we have the following estimate

F(t) ≤ F0 Eγ2,1(d1tγ2) + tγ1h1(t)Eγ2,γ1+1(d1tγ2) + tγ2h2(t)Eγ2,γ2+1(d1tγ2), (3.17)

where F = f + g, F0 = f0 + g0, d0 =
T (γ1−γ2)Γ(γ2)
Γ(γ1)

and d1 =
c1Γ(γ2)T (γ1−γ2) + c2Γ(γ1)

Γ(γ1)
= c1d0 + c2.

Proof. Since hi, for i = 1, 2, are nondecreasing functions then

Ikγ2+γi
0+ [hi] (t) ≤ hi(t)

1
Γ(kγ2 + γi)

∫ t

0
(t − τ)kγ2+γi−1dτ = hi(t)

1
Γ(kγ2 + γi + 1)

tkγ2+γi .

Consequently, from (3.11) we can deduce the result. This completes the proof. �

Corollary 3.2. Assume that assumptions of Theorem 3.2 hold, and that hi are L
1
αi nondecreasing

functions on (0,T ), with αi ∈ [0, γi[, for i = 1, 2. Then, if f and g are nonnegative functions locally
integrable, and satisfy the inequalities (3.10), we have the following estimate

F(t) ≤ F(0)Eγ2,1(d1tγ2) +
tγ1−α1

r1
Eγ2,γ1(d1tγ2) ‖ h1 ‖L1/α1 (0,t)

+
tγ2−α2

r2
Eγ2,γ2(d1tγ2) ‖ h2 ‖L1/α2 (0,t),

(3.18)

where ri = (γi−αi
1−αi

)1−αi , for i = 1, 2, F = f + g, F0 = f0 + g0, d0 =
T (γ1−γ2)Γ(γ2)
Γ(γ1)

and

d1 =
c1Γ(γ2)T (γ1−γ2) + c2Γ(γ1)

Γ(γ1)
= c1d0 + c2.

Proof. From Hölder’s inequality, we obtain (for i = 1, 2)

Γ(kγ2 + γi)I
kγ2+γi
0+ [hi] (t) ≤ (

∫ t

0
(t − τ)

kγ2+γi−1
1−αi dτ)1−αi(

∫ t

0
hi(τ)

1
αi dτ)αi

≤ tkγ2(
∫ t

0
(t − τ)

γi−1
1−αi dτ)1−αi(

∫ t

0
hi(τ)

1
αi dτ)αi =

tkγ2+γi−αi

ri
(
∫ t

0
hi(τ)

1
αi dτ)αi ,

(3.19)

where ri = (γi−αi
1−αi

)1−αi .
According to (3.11), we have

F(t) ≤ F0 Eγ2,1(d1tγ2) +

∞∑
k=0

dk
1

tkγ2+γ1−α1

Γ(kγ2 + γ1)r1
(
∫ t

0
h1(τ)

1
αi dτ)α1

+

∞∑
k=0

dk
1

tkγ2+γ2−α2

Γ(kγ2 + γ2)r2
(
∫ t

0
h2(τ)

1
αi dτ)α2 .

(3.20)

Thus
F(t) ≤ F0 Eγ2,1(d1tγ2) +

tγ1−α1

r1
Eγ2,γ1(d1tγ2) ‖ h1 ‖L1/α1 (0,t)

+
tγ2−α2

r2
Eγ2,γ2(d1tγ2) ‖ h2 ‖L1/α2 (0,t) .

(3.21)

This completes the proof. �
In the sequel we will always denote C some positive constant which may be different at each

occurrence.
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4. Well-Posedness of the memory bidomain-torso system

In this section, we prove the existence and uniqueness of weak solution to problem (1.1), under
Lipschitz and boundedness assumptions on the non-linear operators.

4.1. Variational formulation and preliminary results

First we define the state ψ, as the extracellular cardiac potential in ΩH, and the thoracic potential in
ΩB, by

ψ = ϕe in ΩH and ψ = ϕs in ΩB. (4.1)

Then the potential φ can be written as φ = ϕi − ψ|ΩH . From the interface coupling condition (1.3), it
follows that if ϕe ∈ H1(ΩH) and ϕs ∈ H1(ΩB) then ψ ∈ H1(Ω). Similarly, we introduce the
corresponding conductivity tensor Kg ∈ W1,∞(Ω) as follows :

Kg = Ke in ΩH and Kg = Ks in ΩB.

We now define the following forms

Ai(w, v) =

∫
ΩH

Ki∇w · ∇vdx, Ae(w, v) =

∫
ΩH

Ke∇w · ∇vdx,

As(w, v) =

∫
ΩB

Ks∇w · ∇vdx, Ag(w, v) =

∫
Ω

Kg∇w · ∇vdx.
(4.2)

Proposition 4.1. (i) The forms Ak (for k = i, e, s) and Ag, are symmetric bilinear continuous forms on
H1.
(ii) The forms Ak, (for k = i, e, s) and Ag, are coercive on H1 (we denote by νk, for k = i, e, s, g, their
coercivity coefficients).

Proof. (i) and (ii) are easily obtained providing that properties of tensorsKk, for k = i, e, s, g, and (2.2)
are satisfied. �

We can now define the weak solution to bidomain-thorax coupled model problem (1.1).

Definition 4.1. A quadruplet of state functions (ϕi, φ, ψ, u) such that : ϕi ∈ L2(0,T ;VH), φ ∈ D4(0,T )∩
L∞(0,T ; L2(ΩH)), ∂αt φ ∈ D

′
4(0,T ), ψ ∈ L2(0,T ;V), u ∈ L∞(0,T ; L3(ΩH)) and ∂βt u ∈ L2(0,T ; L2(ΩH))

is said to be a weak solution to system (1.1) if it satisfies the following weak formulation (since Ii =

−Ie = fH) 〈
cα∂

α
0+φ, vi

〉
V′H,VH

+

∫
ΩH

I(.; φ, u)vidx + Ai(ϕi, vi) =

∫
ΩH

fHvidx,

〈
cα∂

α
0+φ, v

〉
V′,V +

∫
ΩH

I(.; φ, u)vdx − Ag(ψ, v) =

∫
ΩH

fHvdx,

(
∂
β
0+u, ρ

)
L2(ΩH) +

∫
ΩH

G(.; φ, u)ρdx = 0,

(4.3)

for all vi ∈ VH, v ∈ V, ρ ∈ VH.

The results of next section concern the existence, uniqueness and regularity of solution of problem
(1.1).
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4.2. Existence, uniqueness and regularity results

The purpose of this section is to prove the well-posedness of the degenerate bidomain-thorax
coupled model (1.1). To overcome this issue, we introduce a specific non-degenerate approximate to
system (1.1).

4.2.1. Non degenerated problem study

Let ε > 0 be a small positive number. Hence, our approximation system read as (since Ii = −Ie = fH)

cα∂
α
0+φε + ε∂α0+ϕεi + I(φε , uε) − div(Ki∇ϕ

ε
i ) = fH, in QH

cα∂
α
0+φε − ε∂α0+ϕεe + I(φε , uε) + div(Ke∇ϕ

ε
e) = fH, in QH

ε∂α0+ϕεs − div(Ks∇ϕ
ε
s) = 0, in QB

∂
β
0+uε + G(φε , uε) = 0, in QH

supplemented with the same initial and boundary conditions as in (1.4).

(4.4)

The auxiliary initial conditions for ϕεi and ϕεs, needed by problem (4.4), are defined by introducing two
arbitrary functions ϕe,0 and ϕs,0. The weak formulation of (4.4) is given by (for all vi ∈ VH, v ∈ V,
ρ ∈ VH and a.e. t ∈ (0,T ))

〈
cα∂

α
0+φε , vi

〉
V′H,VH

+ ε
〈
∂α0+ϕεi , vi

〉
V′H,VH

+

∫
ΩH

I(φε , uε)vidx + Ai(ϕεi , vi) =

∫
ΩH

fHvidx,

〈
cα∂

α
0+φε , v

〉
V′H,VH

− ε
〈
∂α0+ψε , v

〉
V′,V +

∫
ΩH

I(φε , uε)vdx − Ag(ψ, v) =

∫
ΩH

fHvdx,

(
∂
β
0+uε , ρ

)
L2(ΩH) +

∫
ΩH

G(φε , uε)ρdx = 0,

with the initial condition

(φε , ϕεi , ψ
ε , uε)(t = 0) = (φ0, ϕi,0, ψ0, u0),

(4.5)

where ψε and the initial condition ψ0 are defined as in (4.1).
The following results concern the existence and regularity of the weak solution to problem (4.4)

(i.e. of (4.5)).

Theorem 4.1. Let assumptions (H1) and (H2)4 be fulfilled, β ≥ α and 0 < ε ≤ 1 be given. Then for
(ϕi,0, φ0, ψ0, u0) and fH given such that (ϕi,0, φ0, ψ0, u0) ∈ V2

H × V × L3(ΩH) and fH ∈ L
2
α1 (0,T ; L2(ΩH))

with 0 < α1 < α, there exists a solution (ϕεi , φ
ε , ψε , uε) of problem (4.5) verifying

φε ∈ L∞(0,T ;VH), ∂α0+φε ∈ L2(QH),
ϕεi ∈ L∞(0,T ;VH),

√
ε∂α0+ϕεi ∈ L2(QH),

ψε ∈ L∞(0,T ;V),
√
ε∂α0+φε ∈ L2(QH),

uε ∈ L∞(0,T ; L2(ΩH)), ∂β0+uε ∈ L2(QH).

(4.6)

Moreover, if α > 1/2 and β > 1/2 we have the continuity of the solution at t = 0.
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Proof. To establish the existence result of weak solution to system (4.4) we apply the Faedo-Galerkin
method, derive a priori estimates, and then pass to the limit in the approximate solutions using
compactness arguments. We approximate the system equations by projecting them onto finite n
dimensional subspaces, then we take the limit in n. For this, let (wk)k≥1 be a Hilbert basis and
orthogonal in L2 of VH, ( fk)k≥1 be a Hilbert basis of UH, (gk)k≥1 be a Hilbert basis of
WB = {v ∈ H1(ΩB) | v|ΓT = 0}. We denote by f̃k an extension of fk in H1(Ω), g̃k an extension of gk in
H1(Ω) with g̃k|ΩH = 0 and by (ek)k≥1 a Galerkin basis of UHB which is defined as e2k = g̃k and
e2k−1 = f̃k (for all k > 1 ).

For all n ∈ IN∗, we denote by Wi,n = span(w1, · · · ,wn), We,n = span( f1, · · · , fn),
Ws,n = span(g1, · · · , gn) and Wg,n = span(e1, · · · , e2n) the spaces generated, respectively, by (wk)n≥k≥1,
( fk)n≥k≥1, (gk)n≥k≥1 and (ek)2n≥k≥1, and we introduce the orthogonal projector L j,n on the spaces W j,n (for
j = i, e, s, g).

For each n, we would like to define the approximate solution (φεn, ϕ
ε
i,n, ψ

ε
n, u

ε
n) of the problem (4.4).

Setting

φεn(·, t) =

n∑
l=1

$ε
n,l(t)wl, uεn(·, t) =

n∑
l=1

υεn,l(t)wl,

ϕεi,n(·, t) =

n∑
l=1

$ε
i,n,l(t)wl, ψ

ε
n(·, t) =

2n∑
l=1

πεn,l(t)el

(4.7)

where ωεi = ($ε
i,n,l)l=1,n, ωε = ($ε

n,l)l=1,n, ϑε = (υεn,l)l=1,n and Πε = (πεn,m)m=1,2n are unknown functions,
and replacing (φε , ϕεi , ψ

ε , uε) by (φεn, ϕ
ε
i,n, ψ

ε
n, u

ε
n) in (4.4), we obtain ∀l = 1, n, m = 1, 2n and a.e. t ∈

(0,T ), the system of Galerkin equations (since in ΩH, φεn = ϕεi,n − ψ
ε
n)

(cα + ε)
∫

ΩH

∂α0+ϕεi,nwldx − cα
∫

ΩH

∂α0+ψεnwldx

= −

∫
ΩH

I(ϕεi,n − ψ
ε
n, u

ε
n)wldx − Ai(ϕεi,n,wl) +

∫
ΩH

fHwldx

:= 〈Fε,i
n ,wl〉

de f
= F i

l(t;ω
ε
i ,Π

ε , ϑε),

−cα

∫
ΩH

∂α0+ϕεi,nemdx + cα

∫
ΩH

∂α0+ψεnemdx + ε

∫
Ω

∂α0+ψεnemdx

=

∫
ΩH

I(ϕεi,n − ψ
ε
n, u

ε
n)emdx − Ag(ψεn, em) −

∫
ΩH

fHemdx

:= 〈Gε
n, em〉

de f
= Gm(t;ωεi ,Π

ε , ϑε),∫
ΩH

∂
β
0+uεnwldx = −

∫
ΩH

G(ϕεi,n − ψ
ε
n, u

ε
n)wldx

:= 〈Hε
n,wl〉

de f
= Hl(t;ωεi ,Π

ε , ϑε),

with the initial condition

(φεn, ϕ
ε
n,i, ψ

ε
n, u

ε
n)(t = 0) = (Li,nφ0, Li,nϕi,0, Lg,nψ0, Li,nu0)

(4.8)

where (Li,nφ0, Li,nϕi,0, Lg,nψ0, Li,nu0) satisfies (by construction)

(Li,nφ0, Li,nϕi,0, Lg,nψ0, Li,nu0)
n−→∞
−→ (φ0, ϕi,0, ψ0, u0) strongly in V2

H × V × L3(ΩH). (4.9)
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The function Fε,i
n , Gε

n and Hε
n are defined by (for (v,w, ρ) ∈ VH × V × VH)

〈Fε,i
n , v〉 = −

∫
ΩH

I(φεn, u
ε
n)vdx − Ai(ϕεi,n, v) +

∫
ΩH

fHvdx,

〈Gε
n,w〉 =

∫
ΩH

I(φεn, u
ε
n)wdx − Ag(ψεn,w) −

∫
ΩH

fHwdx,

〈Hε
n, ρ〉 = −

∫
ΩH

G(φεn, u
ε
n)ρdx.

(4.10)

Step 1. We show first that, for every n, the system (4.8) admits a unique local solution. The system
(4.8) is equivalent to an initial-value for a system of nonlinear fractional differential equations for
functions (ωεi ,Π

ε , ϑε)

Mn(∂α0+ωεi , ∂
α
0+Πε , ∂

β
0+ϑ

ε)T = Fn(t;ωεi ,Π
ε , ϑε),

(ωεi ,Π
ε , ϑε)(t = 0) = (ωεi,0,Π

ε
0, ϑ

ε
0),

(4.11)

where Fn : [0,T ] × IR4n → IR4n is a known nonlinear vector function and is given by

Fn(t;ωε
i ,Π

ε , ϑε) = ((F i
l(t;ω

ε
i ,Π

ε , ϑε))l=1,n, (Gm(t;ωεi ,Π
ε , ϑε))m=1,2n, (Hl(t;ωεi ,Π

ε , ϑε))l=1,n)T .

Thanks to assumptions (H2)4 the function Fn is Carathéodory function.
Since, by construction the matrixM ∈ IR4n×4n is symmetric and invertible, then by applyingM−1

n

to the equation of problem (4.11), we obviously get

(∂α0+ωεi , ∂
α
0+Πε , ∂

β
0+ϑ

ε)T = Sn(t;ωεi ,Π
ε , ϑε),

(ωεi ,Π
ε , ϑε)(t = 0) = (ωεi,0,Π

ε
0, ϑ

ε
0),

(4.12)

where Sn =M−1
n Fn.

The existence of a local absolutely continuous function (ωε
i ,Π

ε , ϑε) on an interval [0, T̃ ], with
T̃ ∈]0,T ] is insured by the standard FODE theory see [32, 33] (see also e.g. [48]). Thus, we have a
local solution (φε , ϕεi , ψ

ε , uε) of problem (4.8) on [0, T̃ ].

N.B. The constants which will be introduced in the sequel, are independent of n and ε unless
otherwise specified.

Step 2. We next derive a priori estimates for functions φε , ϕεi , ψ
ε , uε , which entail that T̃ = T , by

applying iteratively the step 1. For simplicity, in next step we omit the ”˜” on T . Now, we set

hn(·, t) =

n∑
k=1

ϑn,k(t)wk, vn(·, t) =

n∑
l=1

ζn,l(t)wl, en(·, t) =

2n∑
p=1

πn,p(t)ep.

where ϑn,k, πn,p and ζn,l are absolutely continuous coefficients. Then, from (4.8), the approximation
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solution satisfies the following weak formulation

(cα + ε)
∫

ΩH

∂α0+ϕεi,nhndx − cα
∫

ΩH

∂α0+ψεnhndx

= −

∫
ΩH

I(ϕεi,n − ψ
ε
n, u

ε
n)hndx − Ai(ϕεi,n,hn) +

∫
ΩH

fHhndx,

−cα

∫
ΩH

∂α0+ϕεi,nendx + cα

∫
ΩH

∂α0+ψεnendx + ε

∫
Ω

∂α0+ψεnendx

=

∫
ΩH

I(ϕεi,n − ψ
ε
n, u

ε
n)endx − Ag(ψεn, en) −

∫
ΩH

fHendx,∫
ΩH

∂
β
0+uεnvndx = −

∫
ΩH

G(ϕεi,n − ψ
ε
n, u

ε
n)vndx,

with the initial condition

(φεn, ϕ
ε
n,i, ψ

ε
n, u

ε
n)(t = 0) = (Li,nφ0, Li,nϕi,0, Lg,nψ0, Li,nu0).

(4.13)

Taking hn = ϕεi,n, en = ψεn and vn = uεn and using the uniform coercivity of the forms Ai and Ag, we can
deduce (since ψεn = ϕεe,n and φεn = ϕεi,n − ϕ

ε
e,n in ΩH)

1
2

(
cα∂

α
0+ ‖ φεn ‖

2
L2(ΩH) +ε(∂α0+ ‖ ψεn ‖

2
L2(Ω) +∂α0+ ‖ ϕεi,n ‖

2
L2(ΩH))

)
+νi ‖ ∇ϕ

ε
i,n ‖

2
L2(ΩH) +νg ‖ ∇ψ

ε
n ‖

2
L2(Ω) +

∫
ΩH

I(φεn, u
ε
n)φεndx

≤

∫
ΩH

fHφ
ε
ndx,

1
2
∂
β
0+ ‖ uεn ‖

2
L2(ΩH)≤ −

∫
ΩH

G(φεn, u
ε
n)uεndx.

(4.14)

Then the following inequality

1
2

(
cα∂

α
0+ ‖ φεn ‖

2
L2(ΩH) +ε(∂α0+ ‖ ψεn ‖

2
L2(Ω) +∂α0+ ‖ ϕεi,n ‖

2
L2(ΩH))

)
+νi ‖ ∇ϕ

ε
i,n ‖

2
L2(ΩH) +νg ‖ ∇ψ

ε
n ‖

2
L2(Ω) +

1
µ1

∫
ΩH

(
µ1I(φεn, u

ε
n)φεn + G(φεn, u

ε
n)uεn

)
dx

≤

∫
ΩH

fHφ
ε
ndx −

1
µ1

∫
ΩH

G(φεn, u
ε
n)uεndx,

1
2
∂
β
0+ ‖ uεn ‖

2
L2(ΩH)≤ −

∫
ΩH

G(φεn, u
ε
n)uεndx.

(4.15)

Since, from (H2)4, µ1I(φεn, u
ε
n)φεn + G(φεn, u

ε
n)uεn ≥ µ2 | φ

ε
n |

4 −µ3(µ1 | φ
ε
n |

2 + | uεn |
2) − µ4 and

| G(φεn, u
ε
n)uεn |≤ c1(1+ | φεn |

2| uεn | + | u
ε
n |

2), we obtain (from Hölder’s inequality)

cα∂
α
0+ ‖ φεn ‖

2
L2(ΩH) +ε(∂α0+ ‖ ψεn ‖

2
L2(Ω) +∂α0+ ‖ ϕεi,n ‖

2
L2(ΩH))

+2νi ‖ ∇ϕ
ε
i,n ‖

2
L2(ΩH) +2νg ‖ ∇ψ

ε
n ‖

2
L2(Ω) +

µ2

µ1

∫
ΩH

| φεn |
4 dx

≤ c2 + c3 ‖ fH ‖
2
L2(ΩH) +c4(‖ φεn ‖

2
L2(ΩH) + ‖ uεn ‖

2
L2(ΩH)),

∂
β
0+ ‖ uεn ‖

2
L2(ΩH)≤ c5 + c6(‖ φεn ‖

2
L2(ΩH) + ‖ uεn ‖

2
L2(ΩH)) + η

∫
ΩH

| φεn |
4 dx,

(4.16)
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with the constants η chosen appropriately. In particular we have

∂α0+Ψε
n +

µ2

µ1

∫
ΩH

| φεn |
4 dx ≤ c7(1+ ‖ fH ‖

2
L2(ΩH)) + c8(Ψε

n + Uε
n),

∂
β
0+Uε

n ≤ c9 + c10(Ψε
n + Uε

n) + η

∫
ΩH

| φεn |
4 dx,

(4.17)

where Ψε
n = cα ‖ φ

ε
n ‖

2
L2(ΩH) +(‖

√
εψεn ‖

2
L2(Ω) + ‖

√
εϕεi,n ‖

2
L2(ΩH)) and Uε

n =‖ uεn ‖
2
L2(ΩH).

According to regularity fH ∈ L2/α1(0,T, L2(ΩH)) and by choosing η =
Γ(β)µ2/µ1
T β−αΓ(α) ), we can get by Corollary

3.2 and the fact that quantity Ψε
n(0) + Uε

n(0) is uniformly bounded (from (4.9) and 0 < ε < 1)

Ψε
n(t) + Uε

n(t) ≤ c11(1+ ‖ fH ‖
2
L2/α1 (0,T,L2(ΩH))), (4.18)

for all t ∈ (0,T ) and then Ψε
n(t) and Uε

n(t) is uniformly bounded with respect to ε and to n. This ensures
that

the sequences (φεn,
√
εϕεi,n, u

ε
n) and (

√
εψεn) are bounded sets

of L∞(0,T ; L2(ΩH)) and L∞(0,T ; L2(Ω)), respectively.
(4.19)

Moreover, from the first inequality of (4.16), relations (3.4) and (4.9), we have that for t ∈ (0,T ) (since∫ t

0
(t − τ)α−1dτ =

1
α

tα ≤
1
α

Tα)

Γ(α)Ψε
n(t) +

∫ t

0
(t − τ)α−1(2νi ‖ ∇ϕ

ε
i,n ‖

2
L2(ΩH) +2νg ‖ ∇ψ

ε
n ‖

2
L2(Ω) +

µ2

µ1
‖ φεn ‖

4
L4(ΩH))dτ

≤ c11C0

(4.20)

where C0 = (1+ ‖ fH ‖
2
L2/α1 (0,T,L2(ΩH))

).
We can deduce that (since φεn = ϕεi,n − ϕ

ε
e,n and ψεn = ϕεe,n in ΩH)

Iα0+

[
‖ ∇φεn ‖

2
L2(ΩH)

]
(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 ‖ ∇φεn ‖

2
L2(ΩH) dτ ≤ c12C0,

Iα0+

[
‖ ∇ϕεi,n ‖

2
L2(ΩH)

]
(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 ‖ ∇ϕεi,n ‖

2
L2(ΩH) dτ ≤ c12C0,

Iα0+

[
‖ ∇ψεn ‖

2
L2(Ω)

]
(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 ‖ ∇ψεn ‖

2
L2(Ω) dτ ≤ c12C0,

Iα0+

[
‖ φεn ‖

4
L4(ΩH)

]
(t) =

1
Γ(α)

∫ t

0
(t − τ)α−1 ‖ φεn ‖

4
L4(ΩH) dτ ≤ c12C0.

(4.21)

Hence (since α − 1 ≤ 0 and (t − τ) ∈ (0,T ),∀τ ∈ (0, t) then (t − τ)α−1 ≥ Tα−1)

the sequences (ϕεi,n) and (ψεi,n) are bounded sets
of L2(0,T ; H1(ΩH)) and L2(0,T ; H1(Ω)), respectively

and the sequence (φεn) is bounded set of L4(0,T, L4(ΩH)) ∩ L2(0,T ; H1(ΩH)).
(4.22)

Using Lemma 2.3 and results (4.19) and (4.22), we get

|

∫ T

0

∫
ΩH

I(φεn, u
ε
n)φεndx | is uniformly bounded with respect to n,

|

∫ T

0

∫
ΩH

G(φεn, u
ε
n)uεndx | is uniformly bounded with respect to n.

(4.23)
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Now we estimate the fractional derivative ∂α0+(φεn, ϕ
ε
i,n, ψ

ε
n) and ∂β0+uεn. Taking hn = ∂α0+ϕεi,n, en = ∂α0+ψεn

and vn = ∂
β
0+uεn and using uniform coercivity of forms Ai and Ag, we can deduce (since ψεn = ϕεe,n and

φεn = ϕεi,n − ϕ
ε
e,n in ΩH)

cα ‖ ∂
α
0+φεn ‖

2
L2(ΩH) +ε(‖ ∂α0+ψεn ‖

2
L2(Ω) + ‖ ∂α0+ϕεi,n ‖

2
L2(ΩH))

+
νi

2
∂α0+ ‖ ∇ϕεi,n ‖

2
L2(ΩH) +

νg

2
∂α0+ ‖ ∇ψεn ‖

2
L2(Ω)

≤ −

∫
ΩH

I(φεn, u
ε
n)∂α0+φεndx +

∫
ΩH

fH∂
α
0+φεndx,

‖ ∂
β
0+uεn ‖

2
L2(ΩH)= −

∫
ΩH

G(φεn, u
ε
n)∂α0+uεndx.

(4.24)

Then
cαIα0+

[
‖ ∂α0+φεn ‖

2
L2(ΩH)

]
(t) + ε

(
Iα0+

[
‖ ∂α0+ψεn ‖

2
L2(Ω)

]
(t) + Iα0+

[
‖ ∂α0+ϕεi,n ‖

2
L2(ΩH)

]
(t)

)
+
νi

2
‖ ∇ϕεi,n(t) ‖2L2(ΩH) +

νg

2
‖ ∇ψεn(t) ‖2L2(Ω)

≤
νi

2
‖ ∇ϕεi,n(0) ‖2L2(ΩH) +

νg

2
‖ ∇ψεn(0) ‖2L2(Ω)

−

∫
ΩH

Iα0+

[
I(φεn, u

ε
n)∂α0+φεn

]
(t)dx +

∫
ΩH

Iα0+

[
fH∂

α
0+φεn

]
(t)dx,∫ t

0
‖ ∂

β
0+uεn ‖

2
L2(ΩH) dτ = −

∫ t

0

∫
ΩH

G(φεn, u
ε
n)∂α0+uεndxdτ.

(4.25)

Let us now estimate right-hand side of equations of system (4.25).
According to (H2)4 and regularity of ~, we can deduce that

−

∫
ΩH

G(φεn, u
ε
n)∂β0+uεndx ≤ c0

∫
ΩH

(1+ | φεn |
2 + | uεn |) | ∂

β
0+uεn | dx

≤
1
2
‖ ∂

β
0+uεn ‖

2
L2(ΩH) +c1(1+ ‖ φεn ‖

4
L4(ΩH) + ‖ uεn ‖

2
L2(ΩH))

(4.26)

and then from second equation of (4.25) (according to (4.19) and (4.21))

‖ ∂
β
0+uεn ‖

2
L2(0,t,L2(ΩH))≤ c2(1+ ‖ φεn ‖

4
L4(QH) + ‖ uεn ‖

2
L∞(0,T,L2(ΩH))) ≤ C. (4.27)

Before to estimate the term
∫

ΩH

Iα0+

[
I(φεn, u

ε
n)∂α0+φεn

]
(t)dx, we prove that uεn is uniformly bounded in

L∞(0,T, L3(ΩH)). Since uεn satisfies

uεn(x, t)=uεn(x, 0) −
1

Γ(β)

∫ t

0
(t − τ)β−1G(φεn, u

ε
n)(x, τ)dτ,

then, according to regularity of ~, we have

| uεn(x, t) |≤ c3

(
| uεn(x, 0) | +

∫ t

0
(t − τ)β−1 | I2(φεn) | dτ +

∫ t

0
(t − τ)β−1 | uεn(x, τ) | dτ

)
. (4.28)
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Consequently (since from assumption (2.4) we have | I2(φεn) |≤ β5 + β6 | φ
ε
n |

2)

| uεn(x, t) |≤ c4

(
| uεn(x, 0) | +

∫ t

0
(t − τ)β−1dτ

)
+c5

( ∫ t

0
(t − τ)β−1 | φεn |

2 dτ +

∫ t

0
(t − τ)β−1 | uεn(x, τ) | dτ

)
.

This implies (since
∫ t

0
(t − τ)β−1dτ ≤ T β/β)

(∫
ΩH

| uεn(x, t) |3 dx
)1/3

≤ c6

(
1+ ‖ uεn(x, 0) ‖L3(Ω) +

[ ∫
ΩH

( ∫ t

0
(t − τ)β−1 | uεn(x, τ) | dτ

)3dx
]1/3

+
[ ∫

ΩH

( ∫ t

0
(t − τ)β−1 | φεn(x, s) |2 ds

)3dx
]1/3

)
and then (using Minkowski inequality and the continuous embedding of H1 in L6)

‖ uεn(., t) ‖L3(ΩH)≤ c7

(
1+ ‖ uεn(., 0) ‖L3(Ω) +

∫ t

0
(t − τ)β−1 ‖ uεn(., τ) ‖L3(ΩH) dτ

+

∫ t

0
(t − τ)β−1 ‖ φεn(., τ) ‖2H1(ΩH) dτ

)
.

Using (4.19), (4.21) and the fact, from (4.9) the quantities uεn(0) is uniformly bounded in L3, we obtain

‖ uεn(., t) ‖L3(ΩH)≤ c8 + c9Iβ0+

[
‖ uεn ‖L3(ΩH)

]
(t)

and then (from Lemma 3.5)

‖ uεn(., t) ‖L3(ΩH)≤ c10

(
1 + Eβ,1(c9T β)

)
≤ C. (4.29)

Consequently
the sequence uεn is uniformly bounded in L∞(0,T, L3(ΩH)). (4.30)

We can now estimate the term
∫

ΩH

Iα0+

[
I(φεn, u

ε
n)∂α0+φεn

]
(t)dx.

Since I(φεn, u
ε
n) = I0(φεn) +I1(φεn)uεn and I0(φεn) = g1(φεn) + g2(φεn) with g1 is an increasing function, we

have first (from (H2)4)

−

∫
ΩH

(g2(φεn) + I1(φεn)uεn)∂α0+φεndx ≤ c0

∫
ΩH

(1+ | φεn |
2 + | uεn || φ

ε
n | + | u

ε
n |)∂

α
0+φεndx

≤
cα

4
‖ ∂α0+φεn ‖

2
L2(ΩH) +c1(1+ ‖ φεn ‖

4
L4(ΩH) + ‖ uεn ‖

2
L2(ΩH) + ‖ φεn ‖

2
L6(ΩH)‖ uεn ‖

2
L3(ΩH)).

(4.31)

Moreover, since g1 is an increasing function then the primitive Eg of g1 is convex. Hence, from [50],
we can deduce (since g1 is and independent on time) ∂α0+ Eg(φεn) ≤ g1(φεn)∂α0+φεn and then

−Iα0+

[
g1(φεn)∂α0+φεn

]
(t) ≤ −Iα0+

[
∂α0+ E(φεn)

]
(t). (4.32)
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Now, we estimate the term −Iα0+

[
∂α0+ E(φεn)

]
.

−

∫
ΩH

Iα0+

[
∂α0+ Eg(φεn)

]
(t)dx = −

∫
ΩH

Eg(φεn)(t)dx +

∫
ΩH

Eg(φεn)(0)dx. (4.33)

Since, from (H2)4, µ6 | φ
ε
n |

2 −µ7 ≤ Eg(φεn) ≤ c2(1+ | φεn |
4) then

−

∫
ΩH

Iα0+

[
∂α0+ E(φεn)

]
dx ≤ c3(1+ ‖ φεn(0) ‖4H1(ΩH) + ‖ φεn(t) ‖2L2(ΩH)). (4.34)

According to (4.31), (4.32) and (4.34), we can deduce that

−

∫
ΩH

Iα0+

[
I(φεn, u

ε
n)∂α0+φεn

]
(t)dx ≤

cα

4
Iα0+

[
‖ ∂α0+φεn ‖

2
L2(ΩH)

]
+c4(‖ uεn ‖

2
L∞(0,T,L2(ΩH)) + ‖ φεn ‖

2
L∞(0,T,L2(ΩH)))

+c5(1 + Iα0+

[
‖ φεn ‖

4
L4(ΩH)

]
+ ‖ φεn(0) ‖4H1(ΩH)),

+c6Iα0+

[
‖ φεn ‖

2
H1(ΩH)

]
‖ uεn ‖

2
L∞(0,T,L3(ΩH)) .

(4.35)

Finally for the external forcing we have (using Hölder inequality)

Iα0+

[∫
ΩH

fH∂
α
0+ψεndx

]
≤
cα

4
Iα0+

[
‖ ∂α0+ψεn ‖

2
L2(ΩH)

]
+ c7 ‖ fH ‖

2
L2/α1 (0,T,L2(ΩH)) . (4.36)

According to (4.35), (4.36), (4.19), (4.21), and the fact, from (4.9) and ε ∈ (0, 1), the quantities ψεn(0),
φεn(0) and ϕεi,n(0) are uniformly bounded in H1, we can derive from (4.25) the following estimate (for
all t ∈ (0,T ))

cα

2
Iα0+

[
‖ ∂α0+φεn ‖

2
L2(ΩH)

]
(t) + ε

(
Iα0+

[
‖ ∂α0+ψεn ‖

2
L2(Ω)

]
(t) + Iα0+

[
‖ ∂α0+ϕεi,n ‖

2
L2(ΩH)

]
(t)

)
+
νi

2
‖ ∇ϕεi,n(t) ‖2L2(ΩH) +

νg

2
‖ ∇ψεn(t) ‖2L2(Ω)

≤ c8(1+ ‖ ϕεi,n(0) ‖2H1(ΩH) + ‖ ψεn(0) ‖2H1(Ω) + ‖ φεn(0) ‖4H1(ΩH))

+c9(‖ fH ‖
2
L2/α1 (0,T,L2(ΩH)))

+c10(‖ uεn ‖
2
L∞(0,T,L2(ΩH)) + ‖ φεn ‖

2
L∞(0,T,L2(ΩH)) +Iα0+ ‖ φεn ‖

4
L4(ΩH))

+c11Iα0+

[
‖ φεn ‖

2
H1(ΩH)

]
‖ uεn ‖

2
L∞(0,T,L3(ΩH))≤ C.

(4.37)

We can deduce that (from (4.27) and (4.37))

Iα0+

[
‖ ∂α0+φεn ‖

2
L2(ΩH)

]
(t) + Iα0+

[
‖
√
ε∂α0+ψεn ‖

2
L2(Ω)

]
(t) + Iα0+

[
‖
√
ε∂α0+ϕεi,n ‖

2
L2(ΩH)

]
(t)

+ ‖ ∇ϕεi,n(t) ‖2L2(ΩH) + ‖ ∇ψεn(t) ‖2L2(Ω)≤ C,

‖ ∂
β
0+uεn ‖

2
L2(0,t,L2(ΩH))≤ C.

(4.38)

In order to show that the local solution can be extended to the whole time interval (0; T ), we
assume that we have already defined a solution of (4.12) on [0,Tk] and we shall define the local
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solution on [Tk,Tk+1] (where 0 < Tk+1 − Tk is small enough) by using the obtained a priori estimates
and the fractional derivative ∂γT +

k
(for γ = α or β) with beginning point Tk. Consequently, by iteration

process, we thus obtain that Faedo-Galerkin solutions are well-defined on (0,T ). So, we omit the
details.

Step 3. We are now ready to prove existence of solutions to system (4.5). From results (4.19), (4.22),
(4.29) and (4.38), Theorem 3.1 and compactness argumentand, it follows that there exist
(Xε; uε) = (φε , ϕεi , ψ

ε; uε) and (X̃ε; ũε) = (φ̃ε , ϕ̃εi , ψ̃
ε; ũε) such that there exists a subsequence of

(Xε
n; uεn) = (φεn, ϕ

ε
i,n, ψ

ε
n; uεn) also denoted by (Xε

n; uεn), such that

(Xε
n; uεn) −→ (Xε; uε) weakly in L∞(0,T ;VH × VH × V) × L∞(0,T ; L3(ΩH)),

(Xε
n; uεn) −→ (Xε; uε) strongly in (L2(QH))2 × L2(Q) × L2(QH),

(∂α0+ Xε
n; ∂β0+uεn) −→ (∂α0+ X̃ε; ∂β0+ ũε) weakly in (L2(QH))2 × L2(Q) × L2(QH).

(4.39)

First we show that (∂α0+ Xε
n; ∂β0+uεn) exists in the weak sense and that (∂α0+ Xε; ∂β0+uε) = (X̃ε; ũε). Indeed,

we take ω ∈ C∞0 (0,T ) and v ∈ VH (then ωv ∈ D4(0,T )), by the weak convergence and Lebesgue’s
dominated convergence arguments we have

〈φ̃ε , ωv〉D′4,D4 = lim
n→∞

∫ T

0

∫
ΩH

ω(t)∂α0+φεn(x, t)v(x)dxdt

= lim
n→∞

∫
Ω

(∫ T

0
ω(t)∂α0+φεndt

)
v(x)dx

= − lim
n→∞

∫ T

0
Dα

T−ω(t)
(∫

Ω

φεn(x, t)v(x)dx
)

dt − I1−α
0+ ω(0+)

∫
Ω

φεn(x, 0)v(x)dx

= −

∫ T

0
Dα

T−ω(t)
(∫

Ω

φε(x, t)v(x)dx
)

dt − I1−α
0+ ω(0+)

∫
Ω

φε(x, 0)v(x)dx

=

∫ T

0

∫
ΩH

ω(t)∂α0+φε(x, t)v(x)dxdt.

(4.40)

Consequently, φ̃ε = ∂α0+φε in the weak sense. In the same way we prove, in the weak sense, that
(∂α0+ϕεi , ∂

α
0+ψε , ∂

β
0+uε) = (ϕ̃εi , ψ̃

ε , ũε).
Consider κ ∈ D(]0,T [) and (hn,kn, ρn) ∈ Wi,n ×Wg,n ×Wi,n. According to (4.8) , we can deduce that

cα

∫ T

0
κ(t)

〈
∂α0+φεn,hn

〉
V′H,VH

dt + ε

∫ T

0
κ(t)

〈
∂α0+ϕεi,n,hn

〉
V′H,VH

dt

= −

∫ T

0
κ(t)

∫
ΩH

I(φεn, u
ε
n)hndxdt −

∫ T

0
κ(t)Ai(ϕεi,n,hn)dt +

∫ T

0
κ(t)

∫
ΩH

fHhndxdt,

cα

∫ T

0
κ(t)

〈
∂α0+φεn,kn

〉
V′H,VH

dt − ε
∫ T

0
κ(t)

〈
∂α0+ψεn,kn

〉
V′,Vdt

= −

∫ T

0
κ(t)

∫
ΩH

I(φεn, u
ε
n)kndxdt +

∫ T

0
κ(t)Ag(ψεn,kn)dt +

∫ T

0
κ(t)

∫
ΩH

fHkndxdt,∫ T

0
κ(t)

〈
∂
β
0+uεn, ρn

〉
V′H,VH

dt = −

∫ T

0
κ(t)

∫
ΩH

G(φεn, u
ε
n)ρndxdt.

According to (4.21), (4.39) and to density properties of spaces spanned by (wl) and (em), and using
similar arguments to derive (4.40), it is easy to pass to limit (n→ ∞) in linear terms. For the nonlinear
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terms, we take into account assumption (H2)4 and we use the classical technique based on taking the
difference between the sequence and its limit in the form of sum of two terms such that the first uses
weak convergence result and the other uses strong convergence result. So we omit the details. The
limit (φε , ϕεi , ψ

ε , uε) then satisfies the following system (for all (h,k, ρ) ∈ VH × V × VH)〈
cα∂

α
0+φε ,h

〉
V′H,VH

+ ε
〈
∂α0+ϕεi ,h

〉
V′H,VH

+

∫
ΩH

I(φε , uε)hdx + Ai(ϕεi ,h) =

∫
ΩH

fHhdx,〈
cα∂

α
0+φε ,k

〉
V′H,VH

− ε
〈
∂α0+ψε ,k

〉
V′,V +

∫
ΩH

I(φε , uε)kdx − Ag(ψ, v) =

∫
ΩH

fHkdx,(
∂
β
0+uε , ρ

)
L2(ΩH) +

∫
ΩH

G(φε , uε)ρdx = 0.

(4.41)

In the case of α > 1/2 and β > 1/2, the continuity of solution at t = 0 and the equalities ϕεi (0
+) = ϕi,0,

φε(0+) = φ0, ψε(0+) = ψ0 and uε(0+) = u0, is a consequence of Lemma 3.2. This completes the proof.
�

We can now show the well-posedness of memory bidomain-torso (degenerate) problem (1.1).

4.3. Degenerate problem study

Similar to derive results (4.19), (4.22), (4.29) and (4.38), we have the following a priori estimates
for problem (4.4).

Lemma 4.1. Assume the conditions (H1) and (H2)4 hold, fH ∈ L2/α1(0,T ; L2(Ω)) and u0 ∈ L3(ΩH).

(i) If φ0, ϕi,0 and ψ0 are L2-functions, then there exists a constant C > 0 (independent on ε) such that
(for all t ∈ (0,T ))

‖ φε(t) ‖2L2(ΩH) + ‖
√
εψε(t) ‖2L2(Ω) + ‖

√
εϕεi (t) ‖

2
L2(ΩH)

+Iα0+

[
‖ φε ‖4L4(ΩH)

]
(t) + Iα0+

[
‖ ∇ϕεi ‖

2
L2(ΩH)

]
(t) + Iα0+

[
‖ ∇ψεn ‖

2
L2(Ω)

]
(t) ≤ C,

‖ uε ‖2L∞(0,t,L3(ΩH)) + ‖ ∂
β
0+uε ‖2L2(0,t,L2(ΩH))≤ C.

(4.42)

(ii) If φ0, ϕi,0 and ψ0 are H1-functions, then there exists a constant C > 0 (independent on ε) such that
(for all t ∈ (0,T ))

Iα0+

[
‖ ∂α0+φε ‖2L2(ΩH)

]
(t) + Iα0+

[
‖
√
ε∂α0+ψε ‖2L2(Ω)

]
(t) + Iα0+

[
‖
√
ε∂α0+ϕεi ‖

2
L2(ΩH)

]
(t)

+ ‖ ∇ϕεi (t) ‖
2
L2(ΩH) + ‖ ∇ψε(t) ‖2L2(Ω)≤ C,

‖ uε ‖2L∞(0,t,L3(ΩH)) + ‖ ∂
β
0+uε ‖2L2(0,t,L2(ΩH))≤ C.

(4.43)

We are now ready to prove existence of weak solutions to system (1.1).

Theorem 4.2. Let assumptions (H1) and (H2)4 be fulfilled and β ≥ α. Then for (φ0, u0) and fH given
such that (φ0, u0) ∈ VH × L3(ΩH) and fH ∈ L

2
α1 (0,T ; L2(ΩH)) with 0 < α1 < α, there exists a weak

solution (ϕi, φ, ψ, u) to problem (1.1) verifying

φ ∈ L∞(0,T ;VH), ∂α0+φ ∈ L2(0,T ; L2(ΩH)),
ψ ∈ L∞(0,T ;V), ψ ∈ L∞(0,T ;VH),
u ∈ L∞(0,T ; L3(ΩH)), ∂β0+u ∈ L2(0,T ; L2(ΩH)).

(4.44)
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Moreover, if β > 1/2 then u ∈ C([0,T ]; L2(ΩH)) and u(0+) = u0 and if α > 1/2 then
φ ∈ C([0,T ]; L2(ΩH)) and φ(0+) = φ0.

Proof. From Lemma 4.1, similar arguments to derive (4.40), Theorem 3.1 and compactness argument,
it follows that there exist X = (φ, ϕi, ψ) and u such that there exists a subsequence of (Xε; uε) =

(φε , ϕεi , ψ
ε; uε) also denoted by (Xε; uε) such that

(Xε; uε) −→ (X; u) weakly in L∞(0,T ;VH × VH × V) × L∞(0,T ; L3(ΩH)),
(Xε; uε) −→ (X; u) strongly in (L2(QH))2 × L2(Q) × L2(QH),
(∂α0+ Xε; ∂β0+uε) −→ (∂α0+φ, 0, 0; ∂β0+u) weakly in (L2(QH))2 × L2(Q) × L2(QH).

(4.45)

Thus, using (4.45) and similar argument to derive (4.41), we can deduce the existence of weak solution
(φ, ϕi, ψ, u) satisfying regularity (4.44).

Finally, in case of α > 1/2 and β > 1/2, the continuity of solution at t = 0 and the equalities
φε(0+) = φ0, and uε(0+) = u0, is a consequence of Lemma 3.2. This completes the proof. �.

Theorem 4.3. Let assumptions (H1), (H2)4 and (H3) be fulfilled and β ≥ α. Then the solution
(ϕi, φ, ψ, u) to system (1.1) is unique. Moreover, let (φ(i)

0 , u
(i)
0 , f (i)

H ) be given such that

(φ(i)
0 , u

(i)
0 ) ∈ VH × L3(ΩH) and f (i)

H ∈ L
2
α1 (0,T ; L2(ΩH)), for i = 1, 2, with 0 < α1 < α. For

(ϕ( j)
i , φ

( j), ψ( j), u( j)) a weak solutions to system (1.1), which corresponds to data (φ( j)
0 , u

( j)
0 , f ( j)

H ) (for
j = 1, 2), the following Lipschitz continuity relationship is satisfied.

(i) If α = β, we have the following relation

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH) +Iα0+

[
‖ ∇ϕi ‖

2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)

]
(t)

≤ C(‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) + ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH))).

(4.46)

(ii) If α < β and if the following assumption holds

| I2(φ1) − I2(φ2) |≤ CI | φ | (1+ | φ1 | + | φ2 |), (4.47)

the relation (4.46) is also obtained.

Proof. As uniqueness result is a consequence of relation (4.46) (see further), we start by showing this
relation.

Since (ϕ( j)
i , φ

( j), ψ( j), u( j)) is a weak solution to system (1.1), for j = 1, 2, then (ϕi, φ, ψ, u) = (ϕ(1)
i −

ϕ(2)
i , φ(1) − φ(2), ψ(1) − ψ(2), u(1) − u(2)) satisfies

cα
(
∂α0+φ, ϕi

)
L2(ΩH) +

∫
ΩH

(I(φ1, u1) − I(φ2, u2))ϕidx + Ai(ϕi, ϕi) =

∫
ΩH

fHϕidx,

cα
(
∂α0+φ, ψ

)
L2(ΩH) +

∫
ΩH

(I(φ1, u1) − I(φ2, u2))ψdx − Ag(ψ, ψ) =

∫
ΩH

fHψdx,(
∂
β
0+u, u

)
L2(ΩH) +

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx = 0,

u(0) = u0, φ(0) = φ0,

(4.48)

where (φ0, u0, fH) = (φ(1)
0 − φ

(2)
0 , u(1)

0 − u(2)
0 , f (1)

H − f (2)
H ).
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Then (since ψ = ϕe and φ = ϕi − ϕe in ΩH),

cα
(
∂α0+φ, φ

)
L2(ΩH) +

∫
ΩH

(I(φ1, u1) − I(φ2, u2))φdx + Ai(ϕi, ϕi) + Ag(ψ, ψ) =

∫
ΩH

fHφdx,(
∂
β
0+u, u

)
L2(ΩH) +

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx = 0,

u(0) = u0, φ(0) = φ0.

(4.49)

(i) If α = β, according to (H3), we have
1
2

min(µcα, 1)∂α0+(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

+µmin(νi, νg)(‖ ∇ϕi ‖
2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH))

≤ −

∫
ΩH

(Fµ(φ1, u1) − Fµ(φ2, u2)).(φ, u)dx +

∫
ΩH

fHφdx

≤ c0(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH) + ‖ fH(t) ‖2L2(ΩH)

(4.50)

and then
∂α0+(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)) + (‖ ∇ϕi ‖

2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH))

≤ c1(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)) + c2 ‖ fH(t) ‖2L2(ΩH) .
(4.51)

So (using Hölder inequality),

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH) +Iα0+

[
‖ ∇ϕi ‖

2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)

]
(t)

≤‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) +c3 ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH)) tα−α1

+c1Iα0+

[
‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

]
(t).

(4.52)

By Lemma 3.5, we can deduce that first

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)≤ c4(‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) + ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH)))

and then, from (4.51)

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH) +Iα0+

[
‖ ∇ϕi ‖

2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)

]
(t)

≤ C(‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) + ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH))).

(4.53)

(ii) Assume now that α < β, then, according to (H3), we get

∂α0+ ‖ φ(t) ‖2L2(ΩH) +
2
cα

min(νi, νg)(‖ ∇ϕi ‖
2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH))

≤ −
2
cα

1
µ

∫
ΩH

Fµ(φ1, u1) − Fµ(φ2, u2)).(φ, u)dx

+
2
cα

1
µ

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx +
2
cα
‖ fH(t) ‖L2(ΩH)‖ φ(t) ‖L2(ΩH)

≤ c5(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)) + c6 ‖ fH(t) ‖2L2(ΩH)

+
2
cα

1
µ

∫
ΩH

(G(φ1, u1) − G(φ2, u2))φdx,

∂
β
0+ ‖ u(t) ‖2L2(ΩH)≤ −2

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx.

(4.54)
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On account of assumption (4.47), Hölder’s inequality, continuous embedding of H1 in L4 and the fact
that φi ∈ L∞(0,T,H1(ΩH)), for i = 1, 2, we have

|

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx |≤ c7(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

+c8

∫
ΩH

| φ || u | (| φ1 | + | φ2 |)dx

≤ c7(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

+c9 ‖ u(t) ‖L2(ΩH)‖ φ(t) ‖L4(ΩH) .

So
2
cα

1
µ

∫
ΩH

(G(φ1, u1) − G(φ2, u2))udx ≤ c10(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

+η1(‖ ∇ϕi ‖
2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)),

−2
∫

ΩH

(G(φ1, u1) − G(φ2, u2))udx ≤ c11(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH))

+η2(‖ ∇ϕi ‖
2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)),

(4.55)

with the constants η1 and η2 chosen appropriately. According to estimates (4.55) and by choosing
η1 = 1

cα
min(νi, νg), estimate (4.54) becomes

∂α0+ ‖ φ(t) ‖2L2(ΩH) +ζΨ(t) ≤ c12(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)) + c13 ‖ fH(t) ‖2L2(ΩH),

∂
β
0+ ‖ u(t) ‖2L2(ΩH)≤ c14(‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)) + η2Ψ(t),

(4.56)

with Ψ(t) =‖ ∇ϕi ‖
2
L2(ΩH) + ‖ ∇ψ ‖2L2(Ω) and ζ = 1

cα
min(νi, νg).

Consequently, by choosing η2 <
Γ(β)ζ

T β−αΓ(α) , we can deduce first from Corollary 3.2 that

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH)≤ c15(‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) + ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH)))

and then, from (4.56)

‖ φ(t) ‖2L2(ΩH) + ‖ u(t) ‖2L2(ΩH) +Iα0+

[
‖ ∇ϕi ‖

2
L2(ΩH) + ‖ ∇ψ ‖2L2(ΩH)

]
(t)

≤ C(‖ φ0 ‖
2
L2(ΩH) + ‖ u0 ‖

2
L2(ΩH) + ‖ fH ‖

2
L2/α1 (0,T ;L2(ΩH))).

(4.57)

Finally, if the difference between data is null i.e., φ0 = 0, u0 = 0 and fH = 0, we can conclude from
(4.53) (or (4.57)), (1.4) and (1.6) that (φ, ϕi, ψ, u) = (0, 0, 0, 0) and then the uniqueness of solution.
This completes the proof. �

Remark 4.1. In the previous theoretical work, our main results investigate the well-posedness of
system (1.1) with an abstract class of ionic models, including some classical models as
Rogers-McCulloch, Fitz-Hugh-Nagumo and Aliev-Panfilov. We can consider other ionic model type
including Mitchell-Schaeffer model,see [56] (which has a slightly different structure). This
two-variable model can be defined with operators I and G as (in which the state variables are
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dimensionless and scaled)

I(φ, u) = −
u
τin
φ2(1 − φ) −

φ

τout
,

G(φ, u) =


u − 1
τopen

if φ < φgate,

u
τclose

if φ ≥ φgate,

(4.58)

where 0 < φgate < 1, τin, τout, τopen and τclose are given positive constants. The cubic function φ2(1 − φ)
describes the voltage dependence of the inward current. This model is well-known to be valid under
the assumption 0 < τin � τout � min(τopen, τclose).

In order to guarantee the well-posedness of system (1.1) with Mitchell-Schaeffer ionical model, we
can use the following regularized version of ionic operator G

Gζ(φ, u) =

(
1

τclose
−

( 1
τclose

−
1

τopen

)
hζ(φ)

) (
u − hζ(φ)

)
, (4.59)

where the differentiable function 0 ≤ hζ ≤ 1 is given by

hζ(φ) =
1
2

(
1 − tanh

(
φ − φgate

ζ

))
,

with ζ a positive parameter.
The operator Gζ(φ, u) can be written as Gζ(φ, u) = I2,ζ(φ) + ~ζ(φ)u where

I2,ζ(φ) = −

(
1

τclose
−

( 1
τclose

−
1

τopen

)
hζ(φ)

)
hζ(φ),

~ζ(φ) =
1

τclose
−

( 1
τclose

−
1

τopen

)
hζ(φ).

(4.60)

According to the definition of tanh, we can deduce that lim
ζ→0

hζ(φ) =

 1 if φ < φgate,

0 if φ > φgate

and then

lim
ζ→0
Gζ(φ, u) = G(φ, u). The regularized Mitchell-Schaeffer model has a slightly different structure

compared to models in (2.3) because in this model, ~ζ depend on φ through the function hζ . Since hζ is
sufficiently regular, the arguments of this paper can be adapted with some slight necessary
modifications to analyze the well-posedness of this regularized Mitchell-Schaeffer ionical model.

In more general, the study developed in this paper remains valid (with some necessary
modifications) if we consider the operator G in the form of G(.; φ, u) = I2(.; φ) + ~(.; φ)u (i.e. a
general form of Hodgkin-Huxley model including Beeler-Reuter and Luo-Rudy ionic models
described by continuous or regularized discontinuous functions, see [7, 53, 54]) with G Carathéodory
function from (Ω × IR) × IR2 into IR and locally Lipschitz continuous function on (φ, u) and, I2 and ~
sufficiently regulars. �
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5. Numerical applications

In this section, we shall present some preliminary numerical simulations of the problem (1.1) to
illustrate our result with showing two-dimensional simulation. Two of the most used ionical models,
FitzHugh-Nagumo model [39] and Mitchell-Shaeffer model [56], are considered. This numerical
study investigates the impact of fractional-order φ dynamics and fractional-order u dynamics (i.e. the
influence of the capacitor and the ionic variable memory) on key rate dependent electrical properties
including APD, the amplitude of the action potential and spontaneous activity.

Although part of the theoretical analysis was limited to the case β ≥ α, in order to show the impact
of β on the evolution of system, we will also present some results for α fixed to 1 and β variable. We
will explore the behavior of the two models when first they are stimulated by a brief current and second
when they are stimulated twice in sequence.

In these two situations we fix first β at 1 and we vary α, and in a second time we fix α at 1 and we
vary β to analyze the impact of each time-fractional order derivative on system behavior, one after the
other.

In order to solve numerically system (1.1) we have analyzed different approximation methods of
Caputo fractional derivative ∂γ0+ , γ ∈]0, 1]. In this paper, we consider the following approximation (for
sufficiently regular function ψ at time t ∈]tn−1, tn] (n = 1, 2, . . .), with tk = k∆t for k = 0, 1, . . . and given
time step ∆t)

∂
γ
0+

[
ψ
]
(x, t) =

1
Γ(1 − γ)

∫ t

0
(t − τ)−γ

∂ψ

∂t
(x, τ)dτ,

=
1

Γ(1 − γ)

n−2∑
m=0

∫ tm+1

tm
(t − τ)−γ

∂ψ

∂t
(x, τ)dτ +

1
Γ(1 − γ)

∫ t

tn−1

(t − τ)−γ
∂ψ

∂t
(x, τ)dτ,

≈ −Iγmemory(ψhistory)(x, t) +
∆t1−γ

Γ(2 − γ)
∂ψ

∂t
(x, t),

(5.1)

where

Iγmemory(ψhistory)(x, t) = −
∆t−γ

Γ(2 − γ)

n−2∑
m=0

[(n − m)1−γ − (n − m − 1)1−γ][ψ(x, tm+1) − ψ(x, tm)]. (5.2)

It is clear that I1
memory(ψhistory), for γ = 1, is a null function. The state function ψhistory is corresponding

to the prior history of ψ.
Note that the previous fractional-order dynamic is the sum of first-order dynamics and an operator

Iγmemory representing hypothetical memory effects.
The term Iγmemory depends on the prior history of accrued heartbeats and characterize the influence of

capacitive/ionic memory on the dynamical of system. This memory operator Iγmemory can be interpreted
as a new force which is added over time to the external applied forcing. So, for example, this adding
force can invert at some time points the sign of the external applied stimulus ‡ and then generates
changes in myocardial polarization.

Here, we perform various numerical experiments to investigate the impact of different values of φ
fractional-order α and u fractional-order β across the time in (0,T ) and we present some numerical

‡Thus the depolarizing effect of the stimulus becomes repolarizing and vice versa
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results corresponding to the middle point of heart domain ΩH for φ, ϕe and u, and in the middle
point of torso domain ΩB for ϕs. We assume that the domain heart-torso is in a square region Ω =

[−LT/2,−LT/2] × [−LT/2,−LT/2] and the domain ΩH corresponds to an approximate shape of heart,
where LT is the torso length and LH is the characteristic length of ΩH (Figure 3).

The boundary of domain ΩH is defined by (for (x, y) ∈ ΓH) : |x − a|3 + (y − b − c|x − d|2)2 − e = 0,
where a, b, c, d, e are given positive constants. Here we choose a = 0.5, b = 3.5, c = 0.5, c = 1, d = 0.5
and e = 1/15.

-20 -15 -10 -5 0 5 10 15 20

x

-20

-15

-10

-5

0

5

10

15

20

y

Figure 3. Heart-torso domain.

We use some biophysical parameters which are presented in Table 1 and we fix LH = 15cm and

Table 1. Cell membrane parameters.

Description name value (unit)

Cell surface to volume ratio κ 200 (cm−1)
transmembrane capacitance Cα 10−3 (F/cm2)

Depolarization length Tin 4.5 (ms)
Repolarization length Tout 90 (ms)
Opening time constant Topen 100 (ms)
Closing time constant Tclose 130 (ms)
Change-over voltage φgate −67 (mV)

Resting potential φmin −80 (mV)
Maximum potential φmax 20 (mV)

Activation time Tact 10 (ms)

LT = 45cm. In those both applications, we impose the following initial conditions

φ(x, y, 0) = φmin, U(x, y, 0) =
1

(φmax − φmin)2 . (5.3)

Finally, we consider T = 1, Ki = Ke = 0.003s.cm−1Id (with Id identity matrix) and we define (as
in [28]) the external stimulus fH in short time ai < t < ai + Tact, i = 0, 1 with a0 = 0 (electroshock for
example), as

fH(x, t) = Ii,appχH(x)χ[ai,Tact+ai](t)χprop(x, t)Φ(x), on (ai, ai + Tact) (5.4)
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where Iapp is the amplitude of external applied stimulus with Ii,app = bi104, and the functions χH,
χ[ai,Tact+ai] and χprop are defined by

χH(x) =

{
1 if x ∈ Ω,

0 else
(5.5)

χ[ai,Tact+ai](t) =

{
1 if ai < t < Tact + ai,

0 else
(5.6)

χprop(x, t) =

{
1 if x + y < 2t/Tact,

0 else.
(5.7)

The last characteristic is associated to wave propagation as a diagonal which evolves from to left-
bottom side to right-top side of ΩH. The function Φ, which corresponds to the shape of electrical
wave, is defined by

Φ(x) = 1 −
1

LH

(
x −

LH

2

)2

−
1

LH

(
y −

LH

2

)2

. (5.8)

To perform the numerical simulations, we have developed a numerical scheme reliable, efficient, stable
and easy to implement in context of such “memory bidomain systems” by generalizing the modified
Lattice Boltzmann Method introduced in previous works [9, 27, 28].

Nota Bene: In all figures first-order dynamic (corresponding to the case α = β = 1) is shown in
black and the last curve drawn is in dotted line.

5.1. FitzHugh-Nagumo ionical model

The first ionical model we choose is the simplest FitzHugh-Nagumo phenomenological model (see
[39]). This model can be defined with the operators I and G as:

I(φ, u) = −0.0004
φ − φmin

φmax − φmin

(
U(φmax − φmin)2 +

(φ − φgate)(φ − φmax)
(φmax − φmin)2

)
, (5.9)

and

G(φ, u) = 0.63
φ − φmin

φmax − φmin
− 0.013U(φmax − φmin)2. (5.10)

For this model, we investigate only the impact of membrane capacitive memory on action potential
properties in absence of ionic variable memory (i.e., we fix β to 1 and we vary α). In Figures 4-6
(response to single stimulus) and in Figures 7-9 (response to two stimuli in sequence) we plot the time
evolution of φ, ϕe and u, at midpoint of heart, for different values of α with β = 1. We observe first that
we have always the same kind of behavior. Second, we find that the amplitude varies depending on α
values. For state ϕe, the effect fractional-order dynamic is negligible except for the extremum of ϕe (as
the value of α becomes smaller, the value of the minimum point becomes smaller too).
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Figure 4. Response to a single stimulus. Time evolution of the transmembrane potential φ at
midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 5. Response to a single stimulus. Time evolution of the extracellular potential ϕe at
midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 6. Response to a single stimulus. Time evolution of the ionic variable u at midpoint
of heart β = 1 and α = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 7. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
transmembrane potential φ at midpoint of heart β = 1 and α = 1, 0.925, 0.9, 0.85,

0.8.
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Figure 8. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
extracellular potential ϕe at midpoint of heart with β = 1 and α = 1, 0.925, 0.9,
0.85, 0.8.
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Figure 9. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
ionic variable u at midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85, 0.8.

5.2. Mitchell-Schaeffer ionical model

The second ionic model corresponds to Mitchell-Shaeffer biophysical ionic model (see [56]). This
two-variable model can be defined with operators I and G as:

I(φ, u) = −
u
τin

(φ − φmin)2(φmax − φ)
(φmax − φmin)

−
1
τout

φ − φmin

(φmax − φmin)
,

G(φ, u) =


u

τopen
−

1
τopen(φmax − φmin)2 if φ < φgate,

u
τclose

if φ ≥ φgate.

(5.11)

These operators depend on the change-over voltage φgate, the resting potential φmin, the maximum
potential φmax, and on times constants τin, τout, τopen and τclose, the two times τopen and τclose, respectively
controlling the durations of the action potential and of the recovery phase, and the two times τin and
τout, respectively controlling the length of depolarization and repolarization phases. These constants
are such that τin < τout < min(τopen, τclose).

First, we investigate the influence of membrane capacitive memory on action potential properties
in absence of ionic variable memory (i.e., we fix β to 1 and we vary α). In Figures 10-13 (response
to a single stimulus) and in Figures 14-17 (response to two stimuli in sequence), we plot the time
evolution of φ, ϕe and u, at midpoint of heart and ϕs at at midpoint of torso, for different values of
α with β = 1. We find first that following the stimuli cessation, spontaneous action potentials are
triggered and persist for the duration of simulation. Second, the spontaneous action potential cycle
length decreases as fractional-order α decreases, and we notice therefore an increase in the rate of
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spontaneous activity (when α decreases). We observe the same kind of behaviors for the other state
variables than for φ, with an acceleration of spontaneous activity when α decreases.
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Figure 10. Response to a single stimulus. Time evolution of the transmembrane potential φ
at midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85.
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Figure 11. Response to a single stimulus. Time evolution of the extracellular potential ϕe at
midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85.
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Figure 12. Response to a single stimulus. Time evolution of the ionic variable u at midpoint
of heart β = 1 and α = 1, 0.925, 0.9, 0.85.
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Figure 13. Response to a single stimulus. Time evolution of the torso potential ϕs at midpoint
of torso with β = 1 and α = 1, 0.925, 0.9, 0.85.
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Figure 14. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
transmembrane potential φ at midpoint of heart with β = 1 and α = 1, 0.925, 0.9,
0.85.
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Figure 15. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
extracellular potential ϕe at midpoint of heart with β = 1 and α = 1, 0.925, 0.9,
0.85.
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Figure 16. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
ionic variable u at midpoint of heart with β = 1 and α = 1, 0.925, 0.9, 0.85.
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Figure 17. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
torso potential ϕs at midpoint of torso with β = 1 and α = 1, 0.925, 0.9, 0.85.

We next investigate the influence of ionic variable memory on action potential properties in absence
of membrane capacitive memory. In Figures 18-21 (single stimulus) and in Figures 22-25 (two stimuli
in sequence), we plot the time evolution of φ, ϕe and u, at midpoint of heart and ϕs at at midpoint
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of torso, for different values of β with α = 1. We observe that the smaller the value of β becomes,
the more APD is shortened. Therefore the ionic current memory alters the action potential duration.
Moreover from some value of APD we observe the triggering of spontaneous chain activities.
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Figure 18. Response to a single stimulus. Time evolution of the transmembrane potential φ
at midpoint of heart with α = 1 and β = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 19. Response to a single stimulus. Time evolution of the extracellular potential ϕe at
midpoint of heart with α = 1 and β = 1, 0.925, 0.9, 0.85, 0.8.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-4

Figure 20. Response to a single stimulus. Time evolution of the ionic variable u at midpoint
of heart with α = 1 and β = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 21. Response to a single stimulus. Time evolution of the torso potential ϕs at
midpoint of torso with α = 1 and β = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 22. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
transmembrane potential φ at midpoint of heart with α = 1 and β = 1, 0.925, 0.9,
0.85, 0.8.
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Figure 23. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
extracellular potential ϕe at midpoint of heart with α = 1 and β = 1, 0.925, 0.9,
0.85, 0.8.
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Figure 24. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
ionic variable u at midpoint of heart with α = 1 and β = 1, 0.925, 0.9, 0.85, 0.8.
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Figure 25. Response to a multiple stimuli (two stimuli in sequence). Time evolution of the
torso potential ϕs at midpoint of torso with α = 1 and β = 1, 0.925, 0.9, 0.85,
0.8.

6. Conclusions

Modeling and control of electrical cardiac activity represent nowadays a very valuable tool to
facilitate diagnosis and maximize the efficiency and safety of treatment for cardiac disorders. In this
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work, we have developed a new bidomain model of the cardiac electrophysiology which takes into
account cardiac memory phenomena, named “memory bidomain model”. Cardiac memory is a
non-anecdotal phenomena, the impact of which in clinical practice is significant, particularly at the
level of diagnostic and decision-making challenges. The derived model is a degenerate nonlinear
coupled system of reaction-diffusion equations in shape of a fractional-order ODE coupled with a set
of time fractional-order PDEs. Cardiac memory is represented via fractional-order capacitor and
fractional-order cellular membrane dynamics. The existence of a weak solution as well as regularity
and Lipschitz continuity of map solution results are established, with an abstract class of ionic
models, including some classical models as Rogers-McCulloch, Fitz-Hugh-Nagumo and
Aliev-Panfilov. This theoretical analysis is completed by numerical results that validate the interest of
developed model. For this, some preliminary numerical simulations are performed to illustrate our
results by comparing dynamic restitution curves obtained by numerically solving the first-order model
and time fractional-order models (which reproduce critical memory effects). FitzHugh-Nagumo
model and Mitchell-Shaeffer model are considered in these numerical applications. We observe that
memory can alter the key dependent electrical properties including APD, action potential morphology
and spontaneous activity.

These first observations demonstrate that memory effects can play a significant role in cardiac
electrical dynamics (whether normal or disease states) and then motivates the continuation and
deepening of these studies.

For predicting and acting on phenomena and processes occurring inside and surrounding cardiac
medium, it would be interesting to study control and regulation problems in order to determine§ the best
optimal prognostic values of sources in presence of disturbances and pacing history, using the approach
developed in [8,10,13]. The resolution of this type of problem makes it possible in practice to improve
the stimuli applied during e.g., defibrillation sessions. This stimulus must be adjusted according to the
patient’s metabolism and type of cardiac problem (cardiac arrest rhythms, bradycardia, tachycardia,
etc.).
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