
HAL Id: hal-03093923
https://hal.science/hal-03093923

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a continuous certification of safety-critical
avionics software

Claude Baron, Vincent Louis

To cite this version:
Claude Baron, Vincent Louis. Towards a continuous certification of safety-critical avionics software.
Computers in Industry, 2021, 125, pp.103382. �10.1016/j.compind.2020.103382�. �hal-03093923�

https://hal.science/hal-03093923
https://hal.archives-ouvertes.fr

1

Towards a continuous certification of safety-critical avionics software

Abstract - Many industries use safety-critical systems and

software, the failure of which may result in the loss of human lives.
This article investigates the development and certification of safety-
critical software, with a focus on the avionics industry. It highlights
the problems encountered in companies to demonstrate compliance
with the certification requirements and indicates current industrial
practices. It demonstrates the interest and importance of closely and
continuously integrating certification requirements in the software
development process. It underlines a very recent trend in industry
that consists in taking inspiration from agile principles in order to
ensure that certification requirements applicable to software
development are met as early as possible. It presents some successful
industrial experiments and concludes on practical lessons that could
be transferred to other projects.

Keywords – Agile development, development process,
certification standards, avionics, safety-critical software engineering

I. INTRODUCTION
In avionics many systems are described as

“safety-critical”. The criticality1 of a system is based
on the consequences of its failure, and the risk of this
failure leading to loss of equipment or human lives.
When an aircraft function is deemed safety-critical,
an authority such as the European Aviation Safety
Agency (EASA) for civilian aircraft or the DGA2 for
French military and government state aircraft,
generally requires that the methodology used for the
system development process has been proven and
recognized as acceptable. This authority carries out
one or more audits, either directly or through another
body, to ensure that the industrial development
process complies with the objectives specified in the
recognized and applicable standards, following a
certification process. This process consists in
fulfilling the regulatory requirements recommended
for each type of aircraft and submitting the proof to

1 The criticality (C) of functions provided by a system is determined with
respect to the failure conditions in relation to those functions. It is calculated by
taking the occurrence (O) of the failure conditions, their severity (S) and their
detectability (D): C = O * S * D [DOD MIL-HDBK-338B 1998].

a certification authority. Systems and equipment,
including embedded software, must be approved in
order to be accepted for certification. The
certification authority’s approval depends on the
success of the product lifecycle demonstration or
test.

The certification process is essential in regulated
safety-critical fields. In avionics, it is mandatory. Its
effectiveness has been demonstrated by a constant
reduction of fatal accidents through the years despite
the growth in air traffic. The several independent
assessments are of utmost importance to ensure to the
system environment and its future users that the level
of trust is in line with the intended use.

Standards defining technical activities and
processes have been written to help detecting errors
as early in the development process as possible.
However, the implementation of such standards
guidelines by industry is often seen as extremely
time-consuming and costly. Therefore, certification
is often seen as a constraint, resulting in further
activities that are deemed to be superfluous and
which generate cost overruns, such as drafting the
software specifications, carrying out reviews (of
requirements, procedures and test results), and
managing the configuration of all engineering
elements. In reality, manufacturers very rarely carry
out these activities during the prototyping stage.
They are often pushed back and conducted shortly
before certification audits. Certification does indeed
have a cost, because it requires additional activities
on top of the standard development process, but

2 DGA (Direction Générale de l’Armement) means General Direction of Armed
Forces.

2

“doing the certification” at the last minute, after
prototyping, carries a much greater risk of additional
costs due to retrofitting, or reverse engineering. As
many certification audits fail because the objectives
are not met, additional audits must be regularly
carried out, which leads to postponing certification.
A recent illustration of this behavior could be still
found during the development of critical avionics
software for a military UAV, where, despite 10
successive audits, the supplier was still unable to
demonstrate compliance with certification
requirements; this resulted in significant cost
overruns.

Having observed the current state of these
practices, the U.S. Congress has encouraged the
American certification authority, the Federal
Aviation Administration, to reduce the number of
constraints in order to lower costs. This, however,
may come at the expense of safety. An alternative
option would be to try and facilitate certification, by
carrying out certification activities throughout the
development stages. This would contribute to
minimize the effort and the financial impact.
Furthermore, the capacity to continuously provide
proof of compliance would not only make the
process more efficient.

This article discusses the challenges faced by the
industry during the development of safety-critical
software, with a focus on the avionics industry. It is
based on the analysis of a large body of data and
experience, hitherto unpublished, resulting from
multiple audits led by the DGA, as certification
authority with more than 30 years of proven expertise
in this field. This field analysis is complemented by
an extensive review of the literature on agile software
development for safety-critical software and related
avionics regulations. Thank to this, the article
highlights the problems companies often
encountered when demonstrating compliance with
the certification requirements. It also addresses the
current state of industrial practices, the upcoming
challenges and the associated necessary
improvements; it highlights some successful
projects.

Overall, the paper is a reasoned opinion paper. It
provides arguments in favor of a better integration of
certification requirements into the development

process. It demonstrates the interest and importance
of closely and continuously integrating certification
requirements in the software development process
and underlines a very recent trend in industry that
consists in taking inspiration from agile principles in
order to ensure that software development
certification requirements are met as early as
possible. It also notes practical lessons that could be
transferred to other projects.

Section II sets out the background to this study,
introduces the matter of software certification in the
aeronautical industry. Section III explains how
certification objectives and requirements affect the
software development process. Section IV provides
a feedback and an analysis of current postures and
practices in industry with respect to certification
activities. Section V gives an overview on the
industrial trend to implement continuous
development. Section VI proposes to extend this
trend with continuous certification, by introducing
agility into the development process of safety-critical
software; it also discusses some first industrial
experiments that initiate this trend. The article
concludes by highlighting the need to help practices
evolve.

II. SOFTWARE CERTIFICATION PROCESS AND
STANDARDS

After a reminder on safety assessment, this
section explains how to ensure, thanks to
certification, that industrial systems comply with
current regulations and aeronautical standards.

A. Safety assessment
Safety uses systems theory and systems

engineering to prevent foreseeable accidents and
minimize the consequences of unforeseeable
accidents. It takes into account the loss of human life
(or injuries), the destruction of assets, mission
failures and environmental damages [Leveson 2003].
Safety is a planned, disciplined and systematic
strategy for identifying, analyzing, evaluating,
eliminating and controlling hazards throughout the
system’s life cycle in order to prevent or reduce the
number of accidents.

Safety standards are guidelines edited by
regulation authorities to determine if the product will
perform reliably in its operational context. They

3

recommend a number of stages, deliverable
documents and output criteria focusing on planning,
analysis and design, implementation, verification
and validation, configuration management and
quality assurance for the development of a safety-
critical system [Rempel 2014]. Furthermore, they
generally outline expectations for the creation and
use of traceability in a project. Safety-related
activities begin in the very first stages of the project’s
concept development, and continue throughout the
design, production, testing and deployment and
decommissioning stages.

Manufacturers use various strategies to ensure a
high level of safety. However, analysis techniques
rely solely on the skills and expertise of the safety
engineers. The most common conventional strategies
to ensure safety are failure mode effects and safety-
criticality analysis (FMECA) [Leveson 2004] and
fault tree analysis (FTA) [Wessiani 2018]. They are
now being challenged by the introduction of new
technologies and the growing complexity of the
systems we want to build. Exhaustive testing of a
complex system with a lot of integrated critical
software is all but impossible as the time taken to
gain a credible estimate of its failure rate is excessive
except for systems with the lower levels of safety
integrity requirements. To gain confidence in the
safety of a software-based system both the product
(the system) and the process of its development need
to be assessed. The use of models and automation for
certain parts of the safety analysis reduces costs and
improves the quality of the analyses [Braun 2009].

B. Software certification in aeronautics
After defining the regulatory objectives and

requirements, regulation authorities often suggest
acceptable means of compliance for each regulatory
requirement. These are recognised techniques that
enable safety objectives to be met. Then industry
stakeholders (manufacturers and authorities)
produced guidelines (standards) to meet the
requirements and develop systems and software in
line with regulations. Systems and components,
whether separately or interconnected, must be

3 A condition having an effect on the aircraft and/or its occupants, either direct
or consequential, which is caused or contributed to by one or more failures or
errors, considering flight phase and relevant adverse operational or

designed so that the occurrence of catastrophic
failures that reduce flight or landing safety is
“extremely improbable” and is not due to a single
failure; this is known as a fail-safe design concept
[Gario 2018].

The authority must validate that the methods
chosen by manufacturers to fulfil regulatory
objectives comply with the fundamental aspects
required for certification. Correct application of an
engineering process is the only way to ensure that the
product fulfils safety objectives. Audits are a way of
verifying the technical content produced by the
processes implemented. Although the audit cannot
be exhaustive, as it focuses on a sample of
engineering data, this random method is deemed
satisfactory. During this type of exercise, applicants
(certification candidates) need to demonstrate their
ability to design software, overcome problems and
size the resources in order to meet all regulatory
objectives. These objectives are determined by the
software’s criticality level, which is based on a
system analysis that identifies how the software may
contribute to failure condition3 scenarios.

TABLE I. classifies failure conditions according
to the severity of their consequences, on a scale of one
to five, with one being ‘No Safety Effect’ and five
being ‘Catastrophic’. If the failure condition causes
fatalities or incapacities to the crew or multiple
fatalities to the passengers, or as “normally causing
hull loss” to the aircraft, it is considered catastrophic.

TABLE I. RELATIONSHIP BETWEEN SEVERITY OF EFFECTS AND
CLASSIFICATION OF FAILURE CONDITIONS

environmental conditions or external events (AMC 25.1309 from [RTCA DO-
178C 2012].

4

TABLE II. establishes a relationship between the
severity of a failure condition and the probability of
its occurrence. If the failure condition is considered
catastrophic, then its probability of occurring
(acceptable quantitative probability) should be less
than 10-9 per flight hour and its acceptable qualitative
probability should be “extremely improbable”. At the
aircraft level, which should be capable of
withstanding 100 catastrophic failure conditions, and
for which 10% of crashes are due to technical failures,
it is deemed economically and socially acceptable to
lose one plane for every one million flight hours
(probability <10-6).

TABLE II. RELATIONSHIP BETWEEN PROBABILITY AND SEVERITY OF
FAILURE CONDITION

For software, the aim is to reduce the risk of

introducing errors during the development phase. If a
latent error is triggered, the deterministic behavior of
software will systematically result in a failure.
Consequently, the solution is to place constraints on
the software engineering process. These constraints
are objectives to be complied with as outlined in the
DO-178C standard.
C. The DO-178C Standard

Among the guidelines used in avionics, a key
standard is the DO-178C (Software Considerations in
Airborne Systems and Equipment Certification)
[RTCA DO-178C 2012]. It sets out the safety
conditions applicable to safety-critical avionics
software in commercial aviation and general aviation.
In their overview of safety-critical software
certification in civil aviation, [Kornecki 2008]
highlights that “DO-178 guidelines serve industry
well and promote rigor and scrutiny required by
highly critical systems”.

It is based on four main principles:

• Software is so complex that it is practically
impossible to guarantee that it is error-free.

Consequently, if the final product cannot be
guaranteed, the manner in which it is produced
must be as reliable as possible.

• Even if the development process is reliable, errors
can occur. Several verification activities should be
performed at each step in order to eliminate all
potential residual error.

• DO-178C is a document that focuses on
controlling three processes to reach technical
goals: the development process, the verification
process and the configuration management
process. No methods or techniques are specified.
Only the objectives are specified. The
manufacturer decides which method to use to fulfil
the objectives.

• Most safety measures are assumed to have been
taken at the system level, and quality assurance of
the software development should ensure they were
correctly implemented.
Software specifications and the way they are

produced also play a major role in safety. DO-178C
requires that for certain aspects of the development,
there must be two separate teams, one which
performs the task and one which verifies the task. The
applicant must therefore provide proof of this
independence by keeping track of all people that
perform tasks.

Safety analyses assign a safety-criticality level to
each software solution, which reflects the severity of
failure conditions that they contribute to. This safety-
criticality level is called the Development Assurance
Level (DAL) and by applying the DO-178C standard,
it indicates the software engineering activities to be
carried out to certify the software [ARP4754A 2011].

Software programs are classified into five safety-
critical levels, which determine the level of
development assurance or DAL (from E to A). The
closer this level is to A, the higher the number of DO-
178C objectives will be. TABLE III. shows the
number of objectives to be met according to DO-
178C in terms of development assurance level. If the
failure condition is considered to be catastrophic, then
the development assurance level of the contributing
software will be classified DAL A, and the DO-178C
will require it to satisfy 71 objectives.

5

TABLE III. DO-178C OBJECTIVES VERSUS THE DEVELOPMENT
ASSURANCE LEVEL

Failure Condition
Severity

No Safety
Effect Minor Major Hazardous Catastrophic

Development
Assurance Level
(DAL)

E D C B A

Number of DO-178C
Objectives 0 26 62 69 71

Certification actions must be carried out to reach

these objectives. These actions must be implemented
in the processes required to meet the objectives. For
example, one of the development process objectives
is to develop high level software requirements to
produce the expected output data (software
specification and traceability, for instance).

An important point to remember is that
aeronautical standards do not impose the means of
compliance but rather provide a description of the
objectives to be achieved through implementing of a
process.

III. CERTIFICATION CONSTRAINTS ON THE
DEVELOPMENT PROCESS OF SAFETY-CRITICAL
SOFTWARE

This section first reviews the constraints imposed
by certification objectives on the conventional
software development process in avionics then
highlights the importance of the verification process.
A. Certification objectives and requirements

Software engineering processes enable the
development of software that corresponds to the
customer’s needs, is reliable, maintainable and
efficient. Fig. 1 shows the typical stages in software
development: user requirements are transformed into
software requirements, which are then used as a guide
to draw up a software architecture, before moving on
to detailed design and coding. This is followed by
tests for each function, conducted by unit, followed
by integration tests, software tests and acceptance
tests by the customer. Each test plan is prepared in the
downward part of the V-cycle (on the left on the
figure).

Fig. 1. Standard software life cycle

Aircraft certification using the standard DO-178C
does not impose any life cycle requirements but
defines separate processes which could be combined
to describe the life cycle of a given project:
• Planning process: development, verification and

configuration management plans;
• Development process: specifications, design,

coding and integration;
• Integral processes: verification, configuration

management, quality assurance and coordination
for certification.
For each process the following are identified:

assurance objectives (for example, defining the
architecture and elements enabling coding), the
means to satisfy them, entry data (for example,
specifications, development plan, design rules),
activities (for example, defining the architecture,
derived requirements), products (for example, the
design description) and transition requirements.

DO-178C also specifies the objectives that must
be met to obtain certification. As an example, here are
a number of objectives that are mentioned in the
standard:
• The software’s functions must be systematically

specified in a general specifications document
based on the system requirements.

• An architectural design and a detailed design will
be required for the most safety-critical software.

• Each specification or design element must be
developed, precise, coherent, traceable and
verifiable.

• The source code will be developed from these
elements before being used to generate the
executable object code.

• All requirements must be tested. The tests should
be based on the requirements to cover the nominal

System engineering

Software engineering

6

behavior and robustness test cases and not on the
code (requirement based testing [Skokovic 2010]).

• The structural coverage4 of the source code,
obtained by executing these requirement-based
tests, must be measured. The structural coverage
criteria are modified based on the software’s
safety-criticality (Statement Coverage, Decision
Coverage, Modified Condition/Decision
Coverage)5.

• The source code should be developed in
compliance with coding standards.

• Traceability should be established between data
items.

• Configuration management must be used to
handle engineering data. In some cases, the
production of data and its verification must be
performed independently.

• Finally, quality assurance activities must be
conducted and logged.
Depending on the safety-criticality level, the

cyclomatic complexity [Ebert 2016], which
represents the number of decisions obtained by
studying the algorithm control graph, the structure
nesting depth and the number of parameters, will be
restricted by increasingly constraining limits.
TABLE IV. specifies the constraints to be respected
depending on the software category (criticality level).
For example, for target category C software, the
cyclomatic complexity of algorithms must not be
more than 15.

TABLE IV. SOFTWARE QUALITY METRICS IN THE AEROSPACE SECTOR

4 Code coverage is a measure used to describe the degree to which the source
code of a program is executed when a particular test suite is run. It shows the
percentage of the source code that has been tested or not tested. It is expressed
as a percentage of the code executed in comparison to the full code.
5 There are several levels of coverage: Function coverage, statement coverage,
condition coverage (Boolean-type logic operators) and decision coverage

Measures of the source code can be completed
using the concept of “technical debt” [Osetskyi 2018]
which evaluates the cost of correcting anomalies to
comply with coding standards [NT DGATA 2016]. A
supervisory strategy that measures the ratio of
technical debt against the cost of the new code
[Letouzey 2012] will facilitate the gradual resorption
of previous anomalies.

B. Safety-critical software verification process
Verification is the most important chapter in DO-

178C, in terms of volume (13 pages of descriptions
compared to an average of five in other chapters) and
in terms of the resulting workload (for the A380, there
are four lines of test for every line of embedded code).
It is a cross-functional process, as it applies to all the
other processes. It recommends a combination of
reviews (inspections of a product by an independent
body - qualitative analysis), analyses (detailed
examination of a product that may be done using a
tool - quantitative analysis) and tests (execution of
software to compare the results obtained with the
results expected - functional tests, functional and
structural coverage analyses) to detect and report
errors introduced during development.

It is important to note that the standard DO-178C
does not distinguish between “validation” and
“verification” activities. Both are indiscriminately
named “verification”. The DO-254 standard [RTCA
DO-254 2006] is clearer on this matter. It refers to
“validation” as the activity that involves ensuring the
requirement under consideration is compliant with
and supports the upper level requirement (“Are we
building the right product?”). As for verification, this
entails making sure the result obtained when
executing the implementation meets expectations
(“Are we correctly building the product?”). Fig. 2
shows the difference between “validation” and
“verification” activities.

(logical operators composed of conditions and logical connectors). In addition,
modified condition/decision coverage (MC/DC) requires that each condition of
the decision be evaluated (at least once) when it affects the final value of the
decision.

Quality
Charateristics Metric Target Category A Target Category B Target Category C Target Category D

Reliability
Evidence

Structural
code coverage

Decision
Coverage =>
100%

Modified
Condition /
Decision
Coverage =>

Decision
Coverage =>
100%

Decision
Coverage =>
100% for on
board software

Statement
Coverage =>
100% for ground

Reliability
Evidence

Requirement
coverage 100% 100% 100% 100%

Maintainability
Modularity

Cyclomatic
complexity <10 <12 <15 <=20

Maintainability
Modularity Nesting level <5 <5 <5 <7

Maintainability
Modularity

Number of
statements
(per functions) <100 <100 <100 <200

Maintainability
Stability

Requirement
stability 2% 5% 10% 15%

Quality
Charateristics Metric Target Category A Target Category B Target Category C Target Category D

Reliability
Evidence

Structural
code coverage

Decision
Coverage =>
100%

Modified
Condition /
Decision
Coverage =>

Decision
Coverage =>
100%

Decision
Coverage =>
100% for on
board software

Statement
Coverage =>
100% for ground

Reliability
Evidence

Requirement
coverage 100% 100% 100% 100%

Maintainability
Modularity

Cyclomatic
complexity <10 <12 <15 <=20

Maintainability
Modularity Nesting level <5 <5 <5 <7

Maintainability
Modularity

Number of
statements
(per functions) <100 <100 <100 <200

Maintainability
Stability

Requirement
stability 2% 5% 10% 15%

7

Fig. 2. Difference between validation and verification [RTCA DO-254 2006]

The constraints associated with each engineering
level will have an impact on how the company teams
are organized. At the project level, the constraints will
be adapted to conduct the required reviews, with or
without an independent party. Engineering activities
such as instrumentation to measure the structural
coverage of the code, verification of the algorithm
precision, calculation of the worst-case execution
time, creation of robustness and equivalence class
testing as well as production of documents will also
have to be conducted in an increasingly strict manner.

The independence requirement shows the impact
on organizations in developing DAL A or DAL B
level software. Two types of independence are
considered:

• Independent appraisals or analyses: the person
who conducts the appraisal must be different to the
person who produced the data;

• Independence between those who carry out the
activities: for example, between the person
performing the coding and the person who selects
the requirement-based test cases.
Verification independence requires tasks to be

clearly distributed to ensure that the activities or
appraisals were correctly conducted by an
independent third party. At least three people are
needed in a team in order to develop DAL A level
software according to verification independence
requirements: the developer and/or reviewer of data
produced by the auditor, the auditor and/or reviewer
of data produced by the developer, and the quality
assurance manager.

IV. ANALYSIS OF SOFTWARE CERTIFICATION
ISSUES FOR MANUFACTURERS

This section results from the analysis of the DGA
(as technical authority) internal surveys, based on
more than a hundred industrial certification audits
carried out each year, that provided a most interesting
practical experience feedback.

One of the DGA’s responsibilities is to monitor the
compliance of all governmental aircraft systems with
regulatory requirements. The DGA also appraises
systems used in other various fields, such as space,
naval, medical, missiles and drones. Therefore, it has
a global view on the industrial practices in the
development of safety-critical systems. In this
market, certain longstanding manufacturers have
been applying the same rigorous processes for
decades while developing their safety-critical
software, whereas others have just recently
implemented their first structured methodology. The
DGA has also observed new arrivals (start-ups) in
defense markets companies that have never had to
demonstrate the reliability of their software.

In the avionics industry, whereas the effectiveness
of guidelines is recognized (there has been a
continuous drop in the number of air accidents as it
appears in the Fig. 2), in practice, implementing
certification guidelines is seen by manufacturers to be
a costly and time-consuming exercise, requiring
actions that are considered to be superfluous in the
prototyping phase.

Fig. 3. Fatal accidents in general aviation from 1946 to date (from Aviation
Safety Network releases 2018 airliner accident statistics)

Thus, standards guidelines are not always
implemented. For example, in the military field,
manufacturers rarely apply rigorous, auditable
processes when developing safety-critical software.
An argument often heard is that the system is made
for war, so safety issues are secondary.

However, it is a necessity and a guarantee to third
parties that each system can be used with an
acceptable risk level and the absence of certification
actions can cause disparities that lead to grave
consequences. For instance, it would be extremely
harmful if a drone crashed in an unsecured zone or a
missile strayed from its trajectory, striking an
unwanted target.

8

Based on feedback from the DGA in the field,
when addressing certification requirements, they are
sometimes dealt with late in the development process
by the various stakeholders involved. Certain
objectives in these guidelines are often fulfilled only
at the end of the development phase, “because it has
to be done”, to prove the software is compliant.

But this is risky (in terms of compliance) and is
likely to be costlier, and more expensive than the
expenses incurred for certification. Certification
indeed has a cost, because it requires additional
actions to be included in the standard development
process. But, as shown in Fig. 4, the cost of purely
certification-related activities accounts for a mere 3%
of the project budget.

Fig. 4. Cost distribution in software development (DGA Techniques
Aéronautiques internal report)

Addressing certification late in the project incurs a
higher risk of additional costs. For example, a
partially fulfilled structural coverage objective will
require costly reverse engineering or additional
analyses.

Furthermore, many manufacturing companies
poorly estimate the cost of moving from one
assurance level to the next. The DAL A is often seen
as the “holy grail” of certification that is excessively
expensive to attain. In reality, the biggest cost and
scheduling differences are between level D and the
level above (30% more investment required to go
from D to C, 50% to go from D to B and 55% to go
from D to A). The DGA’s experience and the
HighRely study [Hilderman 2009] show that the
biggest financial step is between DAL D and DAL
C. The cost and scheduling differences to apply the

standard DO-178B according to HighRely are shown
in Table V.

TABLE V. INCREASE IN COST VERSUS DEVELOPMENT ASSURANCE LEVEL

Level E Level D Level C Level B Level A
Baseline E + 5% D + 30% C + 15% B + 5%

The detailed design and tests that are required for

DAL C-level software require additional actions
whose purpose is to ensure there is no unintended
functional behavior. These activities incur additional
development costs in comparison to a DAL D-level
software. Fig. 5 provides extrapolations of the
metrics.

Fig. 5. Number of lines of code (LOC) developed per day versus the
development assurance level [Hilderman 2009]

The objectives to be attained to acquire DAL A
address error categories specific to dependability
(source-code-to-object-code traceability, MC/DC
structural coverage). They have no major impact on
the development cost.

In conclusion, to improve the software
development process while meeting the objectives of
certification standards, a better integration of these
objectives in the development process is needed in
order to help companies facing the different
certification issues.

V. SOFTWARE DEVELOPMENT PRACTICES: A
CONTINUOUS AND INTEGRATED PROCESS

Software, as well as the teams and deployment
infrastructure, are growing increasingly complex. To
develop, test and deliver software quickly and
consistently, developers and organizations have
created strategies to manage and automate these
processes. The use of continuous integration
mechanisms, and more recently additional practices
such as continuous delivery and continuous

9

deployment, are becoming more widespread in
industry [Düllmann 2018].

Continuous integration focuses on integrating the
work of individual developers into a primary
repository several times a day to quickly detect
integration problems and speed up collaborative
development. Continuous delivery involves reducing
friction in the deployment or publication process, by
automating the steps necessary to deploy a version so
that the code can be safely published at any time.
Continuous deployment goes even further by
automatically deploying every time the code is
changed.
1) Continuous integration
Integration covers all the activities to be carried

out once the development is complete, to obtain a
functioning “ready-to-use” product. Verifying the
consistency between several software components
and correcting possible anomalies is part of the
integration process. Continuous integration means
integrating a component as soon as possible to ensure
it is consistent with the other components and that any
modifications made do not cause regression, and then
generate an operational executable program. It is an
essential step for automating all the repetitive tasks in
a software development process, enabling certain
activities/data required for certification (such as
execution of tests and metrics of code coverage) to be
executed and produced.

The concept of continuous integration emerged as
an objective of project organization in [Royce 1998].
Continuous integration was then made popular with
‘extreme programming’, a practice that involves
developers of the same application reintegrating the
code they are working on as frequently as possible,
and launching a process with each integration that
automatically verifies the application’s functioning,
so that anomalies are detected on input [Pillou 2018].
[Fowler 2006] describes the elements of this practice:
the use of a baseline repository to manage versions of
the source code, the automation of the build process,
automated unit and function tests and the daily
execution of the whole system (build and test). This
speeds up the compiling, deployment and coding test
phases, thus resulting in productivity gains.

Continuous integration, through the systematic
execution of all software tests at each build, renders
quality assurance possible thanks to code quality

metrics, improved dependency management, early
detection of integration errors (due to an omitted
inclusion for example, or possible regression of
previously implemented functions) and ensure the
software complies with standards (naming
conventions, programming issues…) applicable to
the project. It also allows for faster response times to
changes, and the standardization of the application’s
sources and life cycle.

Continuous integration thus targets two
objectives: reducing to a minimum the duration and
effort necessary for each integration episode, and the
ability to provide a working product at any time. In
practice, these objectives require integration to be a
procedure that can be reproduced and automated
insofar as possible. It includes the execution of a
battery of unit tests and function tests for every
publication in the source repository. Even if just one
of these tests fails, the team’s priority is to restore the
stability of the product. The procedure is executed
quickly and regularly [Duvall 2007].
2) Continuous delivery
Continuous delivery is an extension of continuous

integration. According to [Fowler 2013], the purpose
is to build an application that can be approved for
production as a trusted system at any time. This way
of working is very popular in the DevOps movement,
whose motto is: “You build it, you run it.”

It focuses on the automation of the software
delivery process, so that the teams can easily deploy
their code for production, while being assured of its
reliability at all times. By ensuring that the codebase
is constantly in a deployable state, publishing the
software requires no complex coordination or
advance-stage testing [Humble 2011].

Continuous delivery means that the time between
an idea and its availability to users is as short as
possible. It is a beneficial practice because it
automates the steps between the verification of the
code in the repository and the decision to release
functional, tested builds on the production
infrastructure. The steps that guarantee the code’s
quality and exactness are automated, but the final
decision on what must be released remains in the
hands of the organizers to guarantee maximum
flexibility.

10

As with continuous integration, continuous
delivery requires the implementation of rigorous
processes that capitalize on the use of tools and
organization that is tailored to be efficient.
3) Continuous deployment
Continuous deployment goes even further. It is an

extension of continuous delivery, which involves
delivering every change made to the software to the
end user. In this type of operation, there is no human
involvement to decide on when to deploy during
production; an automatic deployment system deploys
all changes, except those which fail a test. This
practice accelerates the feedback loop and enables
developers to better focus on the software
development, because there is no “delivery date” to
look ahead to.

However, this entirely automated deployment
cycle can be a source of anxiety for teams that are
concerned about abandoning the control of their
system as to what is released. The trade-off that
automated deployment offers is sometimes deemed
too dangerous for the rewards it provides.

Fig. 6 outlines software development activities
and the various processes associated with them.

Continuous development processes
Our opinion is that a natural extension of this

‘continuous’ dynamic therefore consists in
continuously conducting the activities required by
certification throughout the safety-critical software
development; this corresponds to continuous
certification [Louis 2019]. The goal of continuous
certification is to apply agile principles to the
development of safety-critical software. At each
iteration of software development, aimed at providing
an operational increment of the final product, the
required certification objectives must be met to

achieve a "Certification Ready" status on that
intermediate deliverable, thus avoiding that
certification requirements are only met at the end of
the process.

VI. TOWARDS A CONTINUOUS CERTIFICATION
Avionics industry stakeholders strongly believe

that the certification standards in their field require
linear development (such as Waterfall or V-staging).
However, while there are references to it in the
standards, they do not impose any life cycle; they set
the objectives described in the processes to be
established. Agile, whose efficiency is recognized for
software development, is not incompatible with
aeronautical standards. An agile development of
avionics safety-critical software thus is possible. It
would be even more efficient if answering the DO-
178C requirements was fully integrated in the
development process.
This section first reminds the limits of traditional
software development and the key concepts and
general pattern of agile. It then highlights the benefits
of integrating agility to have a continuous
development process for software subject to
certification, while underlining the barriers. To
conclude, it mentions and discusses a few examples
of successful experiments in industry, thereby
proving that these barriers can be surpassed and
initiating a trend to follow.
A. Limits of traditional development strategies

Among the several sources of project failure, we
commonly agree on a high level of
compartmentalization and a lack of communication
between teams, as well as a costly and burdensome
documentation to produce. Quality assurance often
comes last, solely solicited to acquire a stamp to
validate a project, meaning it became an adjustment
criterion. Client needs are often poorly accounted for,
and the solution lacks value. Lastly, the deliverable
often is not available on the scheduled date and
development cycles are too long [Standish Group
2015].

To overcome these issues, silos need to be broken
down [Xue 2017], information must be gathered from
the teams and the client, working methods should
leave a margin for initiative, and quality must be
assured throughout the development process. To do
so, a V-model cycle is not suitable. As we can see in

11

the descending section of Fig. 6 the stages follow on
in a cascading manner, in a linear sequence that, to
analyze it simply, has three stages: everything is
thought of, everything is planned, and everything is
done, exactly as planned. Then everything is tested
and delivered, once and for all.

Fig. 6. Simplified diagram of a V-model cycle (adapted from [Ninni 2019])

This has several drawbacks. As clients are mainly
involved at the beginning and the end of the cycle, it
demands an in-depth initial analysis and design stage
to ensure all needs and possible issues are anticipated.
If clients have forgotten a constraint or wishes to add
or modify something, they must wait until the product
delivery, then launch a new project that will take their
new needs into account (this rule is often bypassed
but results in significant delays and additional costs).
Even if the V-model cycle authorizes backtracking, a
late discovery of a problem (for instance during
integration) could threaten the entire project. Lastly,
if the project is delayed, it is generally the final tasks
to be carried out, such as reviews for certification or
product testing, which suffer. The time allocated to
these activities is therefore reduced, which negatively
affects the product’s quality.

The main issue in our context is to avoid situations
that result in the certification activities being carried
out too late, under the pretext that they do not add any
value. Once the software is delivered to the client and
the acceptance tests have been done, there is not much
point in holding a requirement review. However, this
review is much more beneficial if it is conducted
throughout development, when the data is produced.
This both limits the efforts and maximizes the impact
of a detected anomaly (completeness, testability).
This risk needs to be avoided because economic
pressure tends to render these activities less beneficial
if they are carried out too late.

For these reasons, agile frameworks are extremely
useful. Projects are organized based on iterative short
loops rather than a long linear sequence of stages. The
aim is to deliver intermediary versions of operational
solutions to the client so they can measure the
project’s progress and validate the direction taken.
They promote communication in and among the
teams, as well as with the various stakeholders, the
client and the certification authorities. Agile
frameworks take a pragmatic approach: the main
thing is that everything works and that everyone
involved is satisfied, including the certification
authorities.
B. Agile software development

Agile corresponds to a philosophy that guides all
actions and processes in an organized structure
designed for the clients [Diaz 2017]. The primary
objective is to maximize business value as early as
possible in short, high-quality, industrialized
increments, thereby reducing short-sightedness. It
also allows for better, faster adaptation to changes,
enabling developers to continuously improve the
solution and capitalize on the collective intelligence
of a company. The aim is to create a more natural way
of working. Agile offers freedom and a certain degree
of autonomy, both for project organization and
engineering, but do requires great rigor, a precise and
demanding framework, and daily monitoring.

Agile puts forward a certain number of values:
1. Valuing individuals and interactions over

processes and tools. The principle consists in
setting small, clearly defined objectives that can be
easily achieved and that it is possible to commit to.
This means the commitment can be respected,
teams can be proud and satisfied of their work, and
continue.

2. Focusing on operational software rather than
comprehensive documentation. Agile means
producing complete, high-quality segments of the
application, and the expected solution behavior is
constantly verified. Working software is preferred
to the completeness of the functions. This does not
mean that documentation is of no importance: the
solution evolves regularly, so the necessary
documentation must be maintained and
sufficiently comprehensive, so it can be
capitalized on.

12

3. Collaboration within teams and with customers

(the entire team is responsible for each task) rather
than contract negotiation; creating valuable
software and delivering it as early as possible.
There is a shared vision of the software and the
project (sharing the same objectives, the same
language, the same budget constraints, deadline
and organization), headed by a customer
representative, who is part of the development
team.

4. Accepting and responding to change rather than
following a strict plan.
Twelve principles stem from these values

[Manifesto 2001]. Among them, satisfy the customer,
accept that requirements may need to be changed,
deliver frequently, motivate teams, face-to-face
conversation and simplicity are some of these
principles.

As a result, there is a real possibility the solution
can be brought to market faster, with higher
productivity and quality, lower costs, greater
satisfaction for stakeholders, greater commitment and
work satisfaction from employees - all of which are
solid reasons for adopting an agile approach.
C. General pattern of agile software development

Several frameworks support agile. Some examples
among the most well-known are: Scrum [Scrum
2018], eXtrem Programming [Xu 2009], Safe
[Leffingwell 2016], Lean Management [Salma
2018], Kanban [Ahmad 2013] or DevOps [Goudeau
2016] [Verona 2016]. Even if each does have its own
specificities, they are based on similar values and
mechanisms [Saleh 2019] [Alqudah 2017].

The agile life cycle (see Fig. 8) is characterized by
short iterations lasting a few weeks. The project is
divided into functionalities to be developed. They are
described using the customer’s choice of vocabulary
and represent the need from the user’s point of view.
For each functionality, there is an estimate of the
volume of work needed to develop, test and validate
it, as well as a relatively simple test similar to a
validation test. A detailed description of the technical
options to be implemented is added to the functions.
The list is drawn up, and the customer evaluates the
priorities.

Fig. 7. Agile process

Several ceremonies structure the execution of an
iteration. The method is supervised by a team leader
to ensure it works. At each iteration, he organizes a
planning meeting during which the most high-priority
functionalities for the customer are selected from the
list. They will be developed, tested and delivered to
the client after the iteration. During the iteration, short
progress meetings are organized each day at which all
team members indicate the tasks carried out the day
before, the tasks planned for the current day and the
problems encountered. The aim of this meeting is not
to resolve the problems but simply to identify and
mention them so that the iteration objectives can be
met. Following this meeting, the team leader updates
what was done and evaluates the team’s pace of work.
At the end of an iteration, a demonstration of the
latest developments is provided for the customer. It is
also an opportunity to debrief on how the team
operates and find areas to improve on.
D. Introducing agility in industrial practices in

avionics
The amount of software used in safety-critical

systems has been increasing at a rapid rate in
aeronautics since the last decades. At the same time,
software technology is changing, projects are pressed
to develop software faster and more cheaply, and the
software is being used in more critical ways [Rierson
2013]. Agile methods had a huge impact on how
software is developed. In many cases, this has led to
significant benefits, such as quality and speed of
software deliveries to customers. However, safety-
critical systems have widely been dismissed from
benefiting from agile methods. Indeed, agile
practices, according to the way they are popularized,

13

advertise minimal documentation, refactoring of
code, upfront planning and iterative release of
project, that in a first sight seems to contradict safety
requirement standards of safety critical systems
[Mwadulo 2016]. Products that include safety critical
aspects are therefore faced with a situation in which
the development of safety-critical parts can
significantly limit the potential speed-up through
agile methods, for the full product, but also in the
non-safety critical parts. For such products, [Kasauli
2018] demonstrates that the ability to develop safety-
critical software in an agile way will generate a
competitive advantage.

However, very few companies in the avionics
industry use agile to develop safety-critical software.
They usually are conservative and want to use the
traditional methods because they have been
thoroughly tested over time and they are familiar
with [Mwadulo 2016]. Many are afraid of having to
convince the authority to introduce a new method.
Others do not want to modify their engineering
workflow for fear of having to prove that existing
projects are not affected by these modifications. This
is a legitimate strategy but deprives the development
teams of numerous technological advances that
facilitate the production and certification audit
processes.

Furthermore, as noted by [Lemoussu 2018],
guidelines often are poorly interpreted. A survey
performed in [Kornecki 2008] also assesses that « the
relative vagueness of these guidelines causes
significant differences in interpretation by industry
and should be eliminated». One of the reasons for the
high development costs of avionic systems
complying with standards may be a lack of sufficient
understanding of how to employ these standards
efficiently [Youn 2014]. For example, manufacturers
misinterpretation of the DO-178C guidelines often
results in self-imposing a V-model. In their defense,
as we can see in Fig. 9, DO-178C appears to suggest
a linear development of systems. This is due to the
fact that ARP4754 and DO-178 standards were
written at a time when development in avionics was
based on a V or a waterfall model. However, as long
as a process can be demonstrated to meet the needs of
the relevant standard, the development team is free to
use whatever processes they want to use [Douglass
2020].

Fig. 8. Development cycles illustrated in [RTCA DO-178C 2012]

Lastly, certification-related regulations are often
referred to at the end of the development phase or are
conducted at the end of the development process
activities, just to prove that the software complies
with the standard. Demonstrating compliance is not
a continuous activity, whereas integrating it within
the development process would have several
advantages, in particular providing greater safety
assurance and reducing costs.

E. Some emerging initiatives, initiating a trend
A few but successful initiatives that have been

launched in the avionics and automotive industries,
show a recent, if marginal, change in industry
methods, to make the development of safety-critical
software more agile. This trend does however seem
promising.

An example to date is Thales Avionics’
development of the ADIRU calculator [Chenu 2013].
The teams in charge of development succeeded in
setting up a continuous delivery process with its
customer (Airbus). The teams demonstrated the
feasibility of this innovative concept, which involves
regularly delivering a solution (here, a combination
of hardware and software) with a limited but
operational functional scope. The number of errors
observed by the customer was 99% less when
compared to a similar project. The cost of product
integration has been decreased from 30% to nearly
5% of the project budget. To obtain these results, the
teams, working in agile mode, understood that the

14

certification objectives were non-negotiable and put
in place methods and tools to automate as many
activities as possible (traceability, test execution,
statistical analysis). Several times per day, the latest
software version is fully tested. This practice grows
and maintains an assembled and operational software
product. Such practices have revealed encouraging
results. The cycle-time has been reduced from one
year to 20 days. Therefore, integration is no more a
late big batch of work. This activity is now performed
early and very often within each iteration. In a 3-year
timeframe, 9 versions of the product have been
delivered on schedule to the customer. Finally, the
software has successfully passed its first flight-tests.

Airbus Helicopter more recently experimented the
Scrum framework to develop a new avionics system
(military application embedded software). [Marsden
2018] shows how apparent contradictions between
agile practices and avionics software certification
objectives have been resolved in a number of Airbus
projects. It is demonstrated that significant
improvements in quality, schedule and cost have been
achieved. Moreover, several use cases prove that,
when carefully deployed, agile techniques are not
only compatible with DO-178C, but through greater
visibility and openness actually simplify it.

Nexter, a longstanding defense industry company,
has adapted its practices to the IEC61508 standard.
Supported by Serma, an engineering company, it has
also set up a process to assess the compliance of its
contractors’ software development with the
IEC61508 guidelines. It has been deployed to all new
safety-critical software developments such as for the
military project named EBMR (Engin Blindé Multi-
Rôles) in 2019. From the authority point of view, this
is an extremely positive initiative, that guarantees that
safety is monitored in future developments of defense
systems. As a newcomer to the certification world,
Nexter quite easily succeeded in performing this
transition because building a new process requires
less effort than adapting which is outdated.

Tesla implemented a continuous process to
develop safety-critical software (data integrity and
confidentiality, service availability, safety functions)
that are embedded in their vehicles [Vöst 2016]; it is
shown on Fig. 10. It features agile principles of
continuous integration and continuous deployment.
From a commit, application software is automatically

integrated at ECU level, then this ECU is deployed on
test benches before the legal acceptance and the
deployment over the air. End user firmware update is
allowed at the end of each iteration every month.
However, the safety analyses and approval from U.S.
authorities (National Highway Traffic Safety
Administration, NHTSA) remain sequential. [Vöst
2016] doesn’t state if NHTSA analyses each
deployed software release.

Fig. 9. Continuous development process followed by Tesla [Vöst 2016]

Sogilis very recently succeeded in developing a
DO-178C/ED12C – DAL A level “Autopilot”
software for drones (Pulsar Flight System project) by
applying certain agile principles, in particular test-
driven development [Mrabti 2018]. They went even
further by formalizing the expression of test cases
through their formal expression, facilitating the
automation of function verification while respecting
the crucial principle of requirement-based testing.

The methodology implements a number of
standard tickets with JIRA. The tickets represent a set
of development activities to be carried out
corresponding to the writing of requirements, test
cases or source code. In addition to the specification
of activities, they designate one or more activity and
review managers to ensure independence at this level
if necessary.

Different types of tickets are therefore defined, in
relation to the operations they require:
• Type 1: Improvement of a process or a system

(Evolution of certification plans, development
standards or system requirements)

• Type 2: Creation or review criteria (test case) of
software requirements

• Type 3: Definition of software architecture
• Type 4: Definition of the expected behavior of the

various components and test cases (unit tests) to
validate their proper functioning

• Type 5: Writing the source code of the
components and the corresponding unit tests

• Type 6: Code integration and test execution
(integration tests, functional tests and user tests)

15

• Type 7: Management of the different possible

configurations of the software.
• Type 8: Specific management of open problem

report
• Type 9: Delivery

Each ticket is created and written according to the
progress of the project to define the tasks to be carried
out and the people responsible for them, including
actors and reviewers. The edition of a ticket can lead
to the creation of other tickets in connection with the
first and the associated activities will then be carried
out by the assigned personnel.

Each ticket is also characterized by a state, image
of the progress of the activity linked to the ticket. All
of these states make it possible to define the lifecycle
of a ticket or workflow, which is the model for the
evolution of the state of tickets during their
development (see Fig. 11). Thus, the workflow is
defined as a chain of states linked to each other by
transitions (see Fig. 11). Transitions represent the
conditions necessary for a ticket to transit from one
state to another. The crossing of a transition is
therefore directly linked to the actions carried out in
response to the activities described in the ticket.

The principle of the workflow is first of all to
guarantee a chain of states that all the tickets,
whatever their type, will have to follow so that the
related activities are carried out in the right way,
implying respecting requirements related to the
development process and the organization of the
team. This workflow must be simple: states and
transitions are carefully determined, and their number
is minimized; this keeps the work organization
intuitive and easy to follow.
1- New ticket
2- Planning
3- Team takes possession
4- Activity started
5- Rejection
6- Pause
7- End of activity
8- Activity verified
9- Review rejected
10- Verification rejected
11- Ticket reopened
12- Rejection
13- Planning
14- Retrospective done

Fig. 10. Ticket management
workflow

Setting up a process like this one does come at an
initial cost that must be shared as much as possible by
several projects and development teams. Processes
for continuous development are complex due to the
numerous bricks used to automate the tasks.
Moreover, changes in working habits that are brought
by continuous integration process must be
accompanied by training in best practices. Lastly,
certain obstacles must be overcome so that it can be
applied in a certification context. For instance, a lack
of documentation will not be tolerated: the processes
must be stable and certain objectives required by
standard DO-178C must be partially satisfied (i.e.
completeness).

However, the value added for the end user, the
team’s satisfaction with the work done and the image
portrayed to the certification authority is invaluable.
When the solution is evaluated, the maturity can be
seen and means that its release can be authorized with
confidence in the result.

In synthesis, these experiments show there exists
a current industrial trend in safety-critical
development which consists in making the
certification process even more integral to the
development process. They demonstrated that safety
assessments could be continuously performed by the
authorities.
F. Benefits of introducing agility

Agile aims at ensuring that all the customer’s
requirements are met. In terms of software
development for certification, the authority may be
considered as the most important customer that must
be satisfied to respond to airborne safety systems as a
societal challenge. Early integration of its needs
reduces risks and development costs. It boosts the
level of trust by guaranteeing the activities are
conducted at the ideal time, rather than right before
the auditor’s visit just to satisfy them. It facilitates the
sampling stage during certification audits as it allows
for immediate traceability between all data and
systematic saving of proof that the activities required
for certification have been conducted (reviews, test
result, structural coverage rate, performance metrics)

This approach requires automated processes to be
put in place using the right tools, to continuously
carry out the tasks required to satisfy the objectives in
DO-178C, or any other safety-critical software

16

development standard ([IEC 61508 2010], [ISO
26262 2018]). The aim is to reach a “ready for
certification” status before the end of each iteration
for every piece of data or activity produced
(requirement, test, review). Being able to automate
the whole process means that if necessary, the
application can be reworked without difficulty, by
immediately measuring the activities that it is
necessary and sufficient to repeat. Automating all
tests saves a significant amount of time in this stage.
The teams will not be afraid of making changes to the
software and the customer’s and the authority’s needs
will be satisfied at less expense.
G. Issues or potential barriers

The standard DO-178C outlines the objectives to
be met during development phases by implementing
a number of activities. These activities are grouped
according to the type of process. The methods and
tools to organize and deploy the processes and
activities are not specified in DO-178C. The issue
there is defining a workflow that makes it possible to
plan activities and processes in agile iterations, in
compliance with DO-178C, as experimented [Mrabti
2018]. Beyond the specific case of avionics software,
an actual research debate is regarding whether safety-
critical systems are better developed with traditional
waterfall processes (iterative development) or agile
processes (incremental development) that are
purportedly faster and promise to lead to better
products [Tordrup 2018].

In an earlier study, [Weyrauch 2004] considered
the use of Agile for safety critical software
development, identifying not only the issue of
whether agile methods can be used but how they can
be used in the safety-critical world, addressing a
panel of myths, worries, solutions and experiences.
[Douglass 2012] concluded that some key agile
practices can assist in the development of safety-
critical systems, such as incremental development
(evolutionary development with frequent
requirements-based verification), test-driven
development (development and application of unit
tests as the code is developed), continuous integration
(continuously building software and verifying the
various components work together properly),
dynamic planning (updating plans based on
continuously measured “ground truth”) and risk
management (identifying and prioritizing project

risks and reducing them through risk strategies).
[Tordrup 2018] highlighted that, however
incremental development seems better suited than
iterative development, four problems seems to
remain, about documentation, requirements, lifecycle
and testing.

[Coe 2013] attempted examining the agile-
management principles and the basis of DO-178C
and identified four main sources of possible conflict,
outlined in TABLE VI. However, this study seems to
convey a poor interpretation of the agile principles
and also of those promoted by the DO-178C standard.

TABLE VI. AGILE-MANAGEMENT PRINCIPLES VERSUS KEY
RECOMMENDATIONS IN DO-178C (ADAPTED FROM [COE 2013])

Agile-management principles Key recommendations of DO-178C
Individuals and their interactions Processes and tools
Working software Comprehensive documentation
Evolving needs in collaboration
with the customer

Rigorous specification of
requirements

Adapting to change Following a plan

Let us discuss these potential sources of problems.
Individuals and their interactions vs. Processes

and tools
Rather than siloing teams, Agile team complete

everything including design, development, and
testing. This human interaction can benefit to the
production a certifiable software solution, even more
so when the team must present their work to an
auditor. The social dimension is unavoidable in order
to reach a justified level of trust. So that the auditing
is not just a situation to put up with, right from the
beginning of the project the capacity to be audited
should be taken into consideration. A team that is
proud of the work done, comfortable with their
engineering process and which is able to quickly
present all the required proof, naturally inspires trust.

However, unsiloing teams means that there isn’t a
separate team that handles compliance tasks and
there’s no person whose sole job is validation. For
regulated industries, verification, validation,
traceability, and other activities that produce
compliance documents typically falls on quality
assurance members. According to [Krüger 2019], a
simple solution would consist in that some members
of the team will be dedicated this role. [Gardner 2020]
presents the evidence from the literature of the
benefits of agile methods to develop safety-critical
software with regard of the independence of roles.

17

[Van Schooenderwoert 2018] sharing their feedback
on using Agile to develop safety critical complex
systems for medical devices, also noted that Agile is
not only compatible with a critical and complex
environment, but is also extremely effective in
providing an ability to test the product frequently,
with some adaptations, including the definition of
roles as well as the selection of a risk management
method compatible with the standard that will have to
be integrated to Agile.

Working software vs. Comprehensive
documentation

The DO-178C requires three documents to be
delivered: the Plan for Software Aspects of
Certification, the Software Accomplishment
Summary and the Software Configuration Index. The
format of other engineering data is left open. In the
past, industry practice was to work on the documents
in Word or in databases such as Doors, which are not
necessarily suited to consistently satisfying the
objectives of DO-178C. Other digital formats such as
HTML or Markdown appear to be more efficient in
covering traceability and version management of
documentary data.

There is often a confusion about documentation
and traceability. The Agile tenet doesn’t mean
documentation should be eliminated. It recommends
minimum documentation, but this does not mean no
documentation at all. It’s driving towards the
elimination of wasteful documentation. No large-
scale software engineering project can exist without
formalizing the essential technical information. The
certification process does not ask for more than that
essential information, which offers a guarantee that
the behavior implemented in the source code
corresponds to a detailed technical specification apt
for testing. The Agile methodology aims to produce
valuable reports, of which a traceability matrix could
be included if it’s for a regulated industry. For safety-
critical software, with regard to detailed
specifications, there should be no absent or
unintended behavior in the source code. This
necessitates quite a low level of granularity to ensure
there is no possible interpretation of the requirement
by the person in charge of coding it. The agile
principles of iterative functional increments are
perfectly tailored to this requirement. In conclusion,
maintaining concise and well-organized records that

ensures traceability is possible with Agile. Moreover,
a product development solution (such as Helix
ALM), automating the process, which allows both
instantly generating documentation and streamline
operations, can simplify this [Krüger 2019].

Evolving needs vs. Rigorous specification
For a given functional scope, the rigorous

activities required by DO-178C can be carried out in
agile mode so that a certification-ready solution can
be delivered at each iteration. Adding a feature has an
impact on the previously implemented functionality,
so the iteration in question must also take into account
the modifications required for previous artefacts
(specifications, tests, source code). Otherwise, they
have to be programmed during later iterations to
quickly ensure the whole solution is consistent. The
configuration management system should be able to
log the development history. However, overall
performance metrics and the completeness of the
desired behavior can only be established at the end of
the software development.

[Vuori 2011] underlines that organizations can
change their processes to a more agile way without
risking the safety of products. [Hanssen 2018]
provides an overview of agile software development
and how it can be linked to safety and relevant safety
standards. It proposes guidelines and additions to
make Scrum, for instance, both practically useful and
compliant with the additional requirements found in
safety standards.

Adapting to change vs. Following a plan
Finally, the plans must be as stable as possible.

This does not exclude the possibility of modifying
them as part of a controlled continuous improvement
process.

There is, however, another issue to deal with:
contracting this way of working, where the solution
delivered can differ greatly from the functionality
initially stated. In a conventional contract, if the needs
change, the supplier is fully responsible for that risk.
Certain precautions can be taken, but the flexibility of
agile methods will be limited. Some initiatives have
emerged, such as separating each iteration into an
individual flat-rate product, meaning the client can
stop the contract at any point. The principle of
requirement trade-offs involves producing an
unplanned feature in exchange for the removal of

18

another less important, non-priority feature of equal
cost. More traditional methods such as contract riders
allow a certain number of modifiable requirements
(<10%). Certain manufacturers bill customers after
each iteration. Swiftly taking changing needs during
development into account in customer contracts will
become an increasingly large challenge, in particular
when dealing with cyber-security issues, as the cycle
of threats move quicker than current development
cycles.

In addition to this above analysis, there is a point
to which attention must be paid when willing to
introduce agility in the development of safety-critical
software: each agile framework has its own
specificities, and the method chosen for a project
should depend on the context and constraints. For
example, Scrum should not be chosen - at least
without adapting it - to develop software subject to
certification. Scrum recommends that the entire team
be responsible for all tasks; this is not directly
compatible with the independence required in
standards that mean the developing team must be
different to the testing team, and that task managers
be identified and traced. In this example, a lean
management method would be preferable, with each
member of the agile team being responsible for a
task, or else an adapted Scrum method to divide up
tasks and record the identity of the person who
carried out the activity. In synthesis, the point of
using Agile is not to strictly adhere to every bit of it
but to improve the product development process
[Krüger 2019].

VII. CONCLUSION
This article discussed the issue of safety-critical

software certification in avionics from the point of
view of an authority and assessed the state of current
industry practices. It highlighted the difficulties
encountered in companies and offered some leads for
possible improvement of practices through agile
methods. It identified the challenges ahead in the
near future and the fundamental changes and
transformations that are occurring in the field of
safety-critical software engineering, underlining the
need for companies to be ready to adapt their
practices before long.

Certain agile principles, and how they are
interpreted, are not entirely compatible with the
certification process. Agile indeed improves
development. However, in safety-critical
environments, modifications are necessary to ensure
compliance is still met. Because compliance and
safety are cornerstones of regulated industries, it’s
important to identify how critical information will
remain part of an Agile process.

Some industrial initiatives have recently
experimented introducing Agile into the development
process. The results have shown that these new
practices help boost the level of trust and reduce
development costs. They indicate that a widespread
adoption of agile practices in the avionics industry is
feasible and that the authority’s expectations are
compatible with agile development processes.
Delivering certifiable or certification-ready software
more frequently to an end user ensures one
requirement is covered and gives a clear indication on
the progress made in certification to authorities.
Thanks to the convergence of the various
stakeholders’ interests (development team, operators
quality control, certification authorities), the
development process runs more smoothly, efficiently
and collaboratively, to satisfy the societal guarantees
that are needed at the end.

Furthermore, agile methods place a focus on
human values, a crucial aspect in the development of
safety software, which relies on trust. These
initiatives deserve to be encouraged, by positioning
them and adapting them so that they meet
certification requirements.

The avionics industry is leading the way in strict
adherence to standards requirements. This is an
aspect that avionics engineers have long grasped. We
are also seeing new players enter the fields of drones
and autonomous cars, implementing innovative
industrial techniques and technologies such as agile
methods, artificial intelligence, model-based safety
assessment. New technology appears at a fast pace,
which is out of step with the authorities’ capacity to
write them into regulations. The challenge for
authorities is to keep up with these new developments
by giving them a framework and guiding them to
maintain a controlled level of acceptable risk.

19

REFERENCES
[1] [DOD MIL-HDBK-338B 1998] Department of Defense. “Military

Handbook - Electronic Reliability Design Handbook”, 1998.
[2] [Leveson 2003] Leveson, Nancy. “White Paper on Approaches to Safety

Engineering”, April 2003. http:// sunnyday.mit.edu/caib/concepts.pdf
[3] [Rempel 2014] Rempel, Patrick; Mäder, Patrick; Kuschke, Tobias;

Cleland-Huang, Jane. “Mind the Gap: Assessing the Conformance of
Software Traceability to Relevant Guidelines”, International Conference
on Software Engineering (ICSE), New York, USA, ACM: 943–954,
2014.

[4] [Leveson 2004] Leveson Nancy, “A New Accident Model for
Engineering Safer Systems”, Safety Science, Vol. 42, No. 4, April 2004,
pp. 237-270

[5] [Wessiani 2018] Wessiani N.A., Yoshio F., “Failure mode effect analysis
and fault tree analysis as a combined methodology in risk management”,
IOP Conf. Series, April 2018.

[6] [Braun 2009] Braun P., Phillips J., Schatz B., Wagner S., “Model-Based
Safety-Cases for Software-Intensive Systems”, Electronic Notes in
Theoretical Computer Science 238(4):71-77, 2009.

[7] [Gario 2018] Gario, A., Andrews, A., Hagerman, S. “Fail-safe testing of
safety-critical systems: a case study and efficiency analysis”, Software
Qual J 26, 3–48, 2018.

[8] [RTCA DO-178C 2012] RTCA SC-205, EUROCAE WG-12, DO-
178C/ED12C, “Software Considerations in Airborne Systems and
Equipment Certification”, January 2012.

[9] [Kornecki 2008] Kornecki A., Zalewski J., "Software certification for
safety-critical systems: A status report", International Multiconference
on Computer Science and Information Technology, Wisia, pp. 665-672,
2008.

[10] [ARP4754A 2011] Society of Automotive Engineers, Aerospace
Recommended Practice “Guidelines For Development Of Civil Aircraft
and Systems”, November 2011.

[11] [Skokovic 2010] Skokovic P., Rakic-Skokovic, M., “Requirements-based
testing process in practice”, International Journal of Industrial
Engineering and Management, 2010.

[12] [Ebert 2016] C. Ebert, J. Cain, G. Antoniol, S. Counsell and P. Laplante,
"Cyclomatic Complexity," in IEEE Software, vol. 33, no. 6, pp. 27-29,
Nov.-Dec. 2016, doi: 10.1109/MS.2016.147.

[13] [Osetskyi 2018] Osetskyi Victor, “What Technical Debt Is and How to
Calculate It”, Agile Zone, Opinion, July 2018.
https://dzone.com/articles/what-technical-debt-it-and-how-to-calculate-it

[14] [NT DGATA 2016] DGA Techniques aéronautiques, Note Technique 16-
DGATA-P1301261003001-1P-C “Référentiel d’exigences d'ingénierie
des logiciels et composants électroniques complexes pour la prise en
compte de la sûreté de fonctionnement”, 2016.

[15] [Letouzey 2012] J.-L. Letouzey, "The SQALE method for evaluating
technical debt," in Proceedings of the Third International Workshop on
Managing Technical Debt, pp. 31-36, 2012.

[16] [RTCA DO-254 2006] RTCA and EUROCAE, RTCA DO-
254/EUROCAE ED-80 “Design assurance guidance for airborne
electronic hardware”, 2006.

[17] [Hilderman 2009] Hilderman Vince, “DO-178B Costs Versus Benefits”,
HighRely White Paper, 2009. http://www.highrely.com/whitepapers.php

[18] [Düllmann 2018] T. F. Düllmann, C. Paule and A. v. Hoorn, "Exploiting
DevOps Practices for Dependable and Secure Continuous Delivery
Pipelines," 2018 IEEE/ACM 4th International Workshop on Rapid
Continuous Software Engineering (RCoSE), Gothenburg, Sweden, 2018,
pp. 27-30.

[19] [Royce 1998] Royce W, “Software project management: a unified
framework”, September 1998.

[20] [Pillou 2018] Pillou J.F., “Concept de l’Intégration Continue”, issu de
CommentCaMarche, 2018. https://www.commentcamarche.net/

[21] [Fowler 2006] Fowler M., Continuous Integration,
https://martinfowler.com/articles/continuousIntegration.html, 2006.

[22] [Duvall 2007] Duvall Paul, Matyas Steve, Glover Andrew. “Continuous
Integration: Improving Software Quality and Reducing Risk”, 2007.

[23] [Fowler 2013] Fowler M., Continuous Delivery, 2013.
https://martinfowler.com/bliki/ContinuousDelivery.html

[24] [Humble 2011] Humble J, Farley D. “Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation”,
2011.

[25] [Louis 2019] Louis V., Baron C., " Vers une certification continue des
logiciels critiques en aéronautique ", Techniques de l’Ingénieur, 27 p,
November 2019.

[26] [Standish Group 2015] Standish Group International, Inc. “Report in
Computer World”, 2015.

[27] [Xue 2017] Xue R., Baron C., Esteban P., “Optimizing product
development in industry by alignment of the ISO/IEC 15288 Systems
Engineering Standard and the PMBoK Guide”, International Journal of
Product Development, vol. 22, issue 1, pp. 65-80, 2017.

[28] [Ninni 2019] Ninni L., Blog Launizo consulting, 2019.
https://www.launizo.com/blog/methodes-et-outils-de-productivite-en-
entreprise-1/post/les-methodes-agiles-3

[29] [Diaz 2017] Diaz Vargas D., Baron C., Esteban P., Gutierrez C., " Is there
any Agility in Systems Engineering?", INSIGHT journal, INCOSE,
December 2017.

[30] [Manifesto 2001] Cunningham W, Beck K., Fowler M, Thomas D,
“Manifesto for Agile Software Development”, August 2001.

[31] [Scrum 2018] Scrum.org, “What is Scrum?”, consulted 02/12/2018.
https://www.scrum.org/resources/what-is-scrum?

[32] [Xu 2009] B. Xu, "Towards High Quality Software Development with
Extreme Programming Methodology: Practices from Real Software
Projects," 2009 International Conference on Management and Service
Science, Wuhan, 2009, pp. 1-4, doi: 10.1109/ICMSS.2009.5302042.

[33] [Leffingwell 2016] Leffingwell D., “SAFe 4.5 Reference Guide: Scaled
Agile Framework for Lean Enterprises “, 2018

[34] [Salma 2018] A. Salma, C. Anas and E. H. Mohammed, "How can Top
management succeed in a lean manufacturing implementation in the small
and medium sized enterprises?," 2018 International Colloquium on
Logistics and Supply Chain Management (LOGISTIQUA), Tangier,
2018, pp. 176-181, doi: 10.1109/LOGISTIQUA.2018.8428287.

[35] [Ahmad 2013] M. O. Ahmad, J. Markkula and M. Oivo, "Kanban in
software development: A systematic literature review," 2013 39th
Euromicro Conference on Software Engineering and Advanced
Applications, Santander, 2013, pp. 9-16, doi: 10.1109/SEAA.2013.28.

[36] [Goudeau 2016] Goudeau Stéphane, Metias Samuel, Découvrir DevOps,
l’essentiel pour tous les métiers, Dunod, Mars 2016.

[37] [Verona 2016] Verona Joakim, “Practical DevOps”, Packt Publishing,
February 2016.

[38] [Saleh 2019] S. M. Saleh, S. M. Huq and M. A. Rahman, "Comparative
Study within Scrum, Kanban, XP Focused on Their Practices," 2019
International Conference on Electrical, Computer and Communication
Engineering (ECCE), Cox'sBazar, Bangladesh, 2019, pp. 1-6, doi:
10.1109/ECACE.2019.8679334.

[39] [Alqudah 2017] M. Alqudah and R. Razali, "A comparison of scrum and
Kanban for identifying their selection factors," 2017 6th International
Conference on Electrical Engineering and Informatics (ICEEI),
Langkawi, 2017, pp. 1-6, doi: 10.1109/ICEEI.2017.8312434.

[40] [Rierson 2013] Rierson L., “Developing Safety-Critical Software: A
Practical Guide for Aviation Software and DO-178C Compliance”,
January 2013.

[41] [Mwadulo 2016] Walowe Mwadulo M., “Suitability of Agile Methods for
Safety-Critical Systems Development: A Survey of Literature”,
International Journal of Computer Applications Technology and Research
Volume 5– Issue 7, 465 - 471, 2016.

[42] [Kasauli 2018] Kasauli R., Knauss E., Kanagwa B., Nilsson A., Calikli
G., “Safety-Critical Systems and Agile Development: A Mapping Study”,
44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), August 2018.

[43] [Wolff 2012] S. Wolff, "Scrum goes formal: Agile methods for safety-
critical systems," International Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches, Zurich, pp. 23-29, 2012.

20

[44] [Lemoussu 2018] Lemoussu S., Chaudemar J.-C., Vingerhoeds R.A.,

“Systems Engineering and Project Management Process Modeling in the
Aeronautics Context: The SMEs Study Case”, International Journal of
Mechanical and Mechatronics Engineering, vol. 12 (n° 2). pp. 88-96,
2018.

[45] [Kornecki 2008] Kornecki A., Zalewski J., "Software certification for
safety-critical systems: A status report”, International Multiconference on
Computer Science and Information Technology, Wisia, pp. 665-672,
2008.

[46] [Youn 2014] Youn W., Yi B-J, “Software and hardware certification of
safety-critical avionic systems: A comparison study”, Computer
Standards & Interfaces, Volume 36, Issue 6, pp. 889-898, 2014.

[47] [Douglass 2020] Douglass B., “Agile analysis practices for safety-critical
software development”, pp 1-14, February 2013. Consulted 9th June
2020, https://www.ibm.com/developerworks/rational/library/agile-
analysis-practices-safety-critical-development/

[48] [Chenu 2013] Chenu E., "Integration Continue” , Séminaire Ingénierie
des Systèmes Complexes à Logiciels Prépondérants, ISCLP, 2013.

[49] [Marsden 2018] Marsden J., Windisch A, Villermin J., Aventini C., Mayo
R., Grossi J., Fabre L., ”ED-12C/DO-178C vs. Agile Manifesto – A
Solution to Agile Development of Certifiable Avionics Systems”,
Conférence Embedded Real Time Software And Systems (ERTS2),
Toulouse, France, Février 2018.

[50] [Vöst 2016] Vöst S., Wagner S., “Towards Continuous Integration and
Continuous Delivery in the Automotive Industry”, 2016.

[51] [Mrabti 2018] Mrabti A., Gautherot D., Brossard V., Moy Y., Pothon F.,
“Safe and Secure Autopilot Software for Drones”, Conférence Embedded
Real Time Software And Systems (ERTS2), Toulouse, France, Février
2018.

[52] [IEC 61508 2010] International Electrotechnical Commission,
“Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems”, https://www.iec.ch/functionalsafety/standards/

[53] [ISO 26262 2018] ISO 26262, ISO TC22/SC3/WG16, “Road vehicles -
Functional safety”, First edition 2011, retrieved 2018,
https://www.iso.org/fr/search.html?q=26262

[54] [Tordrup 2018] Tordrup L., Nielsen P., “A Conceptual Model of Agile
Software Development in a Safety-Critical Context: A Systematic
Literature Review”, Information and Software Technology, 2018.

[55] [Weyrauch 2004] Weyrauch K., Poppendieck M., Morsicato R., Van
Schooenderwoert N., Pyritz B., “Agile Methods for Safety-Critical
Software Development, Extreme Programming and Agile Methods -
XP/Agile Universe”, Lecture Notes in Computer Science, Vol. 3134,
2004.

[56] [Douglass 2012] Powel Douglass B., Ekas L., “Adopting agile methods
for safety-critical systems development”, IBM Software White paper,
October 2012.

[57] [Coe 2013] Coe David J., Kulick Jeffrey H., “A Model-Based Agile
Process for DO-178C Certification”, World Congress in Computer
Science, Computer Engineering, and Applied Computing, Las Vegas,
USA, 2013.

[58] [Krüger 2019] Krüger G., “Agile for Software Development: Safety
Critical-Environments”, November 27, 2019, consulted June 3rd 2020,
https://www.perforce.com/blog/alm/agile-software-development-safety-
critical-environments

[59] [Gardner 2020] Gardner P., “Agile methods and safety critical software –
Are they compatible?”, Adacore, consulted June 4th 2020,
https://fr.slideshare.net/AdaCore/agile-methods-and-safety-critical-
software-peter-gardner

[60] [Van Schooenderwoert 2018] Van Schooenderwoert N., Shoemaker B.,
“Agile Methods for Safety-Critical Systems: A Primer Using Medical
Device Examples”, June 2018.

[61] [Vuori 2011] Vuori M., Agile Development of safety-critical software,
Tampere University of Technology report 14, Tampere, 2011.

[62] [Hanssen 2018] Hanssen G., Stålhane T., Myklebust T., “SafeScrum® –
Agile Development of Safety-Critical Software”, 2018.

