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THE PERMUTAHEDRAL VARIETY, MIXED EULERIAN NUMBERS, AND

PRINCIPAL SPECIALIZATIONS OF SCHUBERT POLYNOMIALS

PHILIPPE NADEAU AND VASU TEWARI

Abstract. We compute the expansion of the cohomology class of the permutahedral variety in the
basis of Schubert classes. The resulting structure constants aw are expressed as a sum of normalized
mixed Eulerian numbers indexed naturally by reduced words of w. The description implies that
the aw are positive for all permutations w ∈ Sn of length n − 1, thereby answering a question of
Harada, Horiguchi, Masuda and Park. We use the same expression to establish the invariance of aw
under taking inverses and conjugation by the longest word, and subsequently establish an intriguing
cyclic sum rule for the numbers.

We then move toward a deeper combinatorial understanding for the aw by exploiting in addition
the relation to Postnikov’s divided symmetrization. Finally, we are able to give a combinatorial
interpretation for aw when w is vexillary, in terms of certain tableau descents. It is based in part
on a relation between the aw and principal specializations of Schubert polynomials.

Along the way, we prove results and raise questions of independent interest about the combina-
torics of permutations, Schubert polynomials and related objects. We also sketch how to extend
our approach to other Lie types, highlighting an identity of Klyachko in particular.
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2 PHILIPPE NADEAU AND VASU TEWARI

1. Introduction and statement of results

1.1. Background. The (type A) complete flag variety Flag(n) has been an active area of study
for many decades. In spite of its purely geometric origins, it interacts substantially with repre-
sentation theory and algebraic combinatorics. By way of the intricate combinatorics involved in
the study of its Schubert subvarieties, the study of Flag(n) poses numerous intriguing questions.
The bridge between the geometry and topology of Schubert varieties and the associated algebra
and combinatorics is formed in great part by Schubert polynomials, relying upon seminal work of
Borel [12] and Lascoux-Schützenberger [43], followed by influential work of Billey-Jockusch-Stanley
[11] and Fomin-Stanley [24]. A fundamental open problem at the intersection of algebraic combi-
natorics and enumerative algebraic geometry is that of finding a combinatorial rule for structure
constants cwuv arising in the product of Schubert polynomials SuSv =

∑
w c

w
uvSw. Geometrically,

these constants encode certain intersection numbers of Schubert varieties. We refer to them as the
generalized Littlewood-Richardson (LR) coefficients henceforth.

Hessenberg varieties are a relatively recent family of subvarieties of Flag(n) introduced by De
Mari, Procesi and Shayman [19] with inspiration from numerical analysis. Their study has also
revealed a rich interplay between geometry, representation theory and combinatorics [5, 33, 64],
and the last decade has witnessed an ever-increasing interest with impetus coming from the study
of chromatic quasisymmetric functions and its ramifications for the Stanley-Stembridge conjecture
[31, 59, 60]. The study of the cohomology rings of Hessenberg varieties has been linked to the study
of hyperplane arrangements and representations of the symmetric group [3, 4, 17, 30]. We refer the
reader to Abe and Horiguchi’s excellent survey article [2] and references therein for more details on
the rich vein of mathematics surrounding Hessenberg varieties.

To define a Hessenberg variety H(X,h) in Flag(n), one needs an n×n matrix X and a Hessenberg
function h : [n] → [n], where [n] := {1, . . . , n}. Fix h to be (2, 3, . . . , n, n). The permutahedral
variety Permn is the regular semisimple Hessenberg variety corresponding to this choice of h and
X being a diagonal matrix with distinct entries along the diagonal. This variety is a smooth toric
variety whose fan comprises the Weyl chambers of the type A root system. It appears in many areas
in mathematics [20, 40, 57], and notably is a key player in the Huh-Katz resolution of the Rota-
Welsh conjecture in the representable case [34]. The Peterson variety Petn is the regular nilpotent
Hessenberg variety defined with the same h, and with X chosen to be the nilpotent matrix that has
ones on the upper diagonal and zeros elsewhere. This variety has also garnered plenty of attention
recently; see [18, 21, 32, 35, 36, 38, 58].

It is known that for a given h, all regular Hessenberg varieties have the same class in the rational
cohomology H∗(Flag(n)), see [1]. We let τn be this cohomology class for h = (2, 3, . . . , n, n), so
we have τn = [Permn] = [Petn]. Since Permn and Petn are irreducible subvarieties of Flag(n) of
complex dimension n − 1, the class τn lives in degree (n − 1)(n − 2), and we may consider its
Schubert class expansion

(1.1) τn =
∑
w∈S′n

awσwow,

where S′n denotes the set of permutations in Sn of length n− 1. Given the geometric interpretation
for the aw as certain intersection numbers, it follows that aw ∈ Z≥0.
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1.2. Motivation. The main goal of this article is to develop a concrete understanding of the
coefficients aw in (1.1). To put our results in context, we recall what earlier results say about these
coefficients. In fact, Anderson and Tymoczko [5] give an expansion for [H(X,h)] for arbitrary h
which involves multiplication of Schubert polynomials depending on length-additive factorizations
of a permutation wh attached to h; see Subsection 9.5 for details. In general, transforming this
expression into one in the basis of Schubert polynomials in a combinatorially explicit manner would
require understanding generalized LR coefficients. In fact, the special cases in which Anderson
and Tymoczko provide explicit expansions in terms of Schubert polynomials are those for which
combinatorial rules are indeed known [5, Sections 5 and 6].

The case of τn appears again in work of Harada et al [30, Section 6] as well as Kim [39]. In the
former, τn is expressed as a sum of classes of Richardson varieties [30, Theorem 6.4]. Yet again,
translating this into an explicit expansion in terms of Schubert classes amounts to understanding
certain generalized LR coefficients.

In light of this discussion, we are led to approach the question of providing a meaningful per-
spective on the aw, and thereby τn, via alternative means. To this end we bring together work
of Klyachko [40, 41] and Postnikov [55], and explicitly describe the aw as certain sums of mixed
volumes of hypersimplices. In so doing, we unearth interesting connections between these numbers
and the combinatorics of reduced words, principal specializations of Schubert polynomials, and
enumeration of flagged tableaux. Our work also brings forth certain properties of the aw that we do
not know geometric reasons for. Furthermore, since we bypass the computation of generalized LR
coefficients, our analysis of the aw sheds light on various relations that are imposed between the
two quantities in question. It is our hope that understanding classes of other regular Hessenberg
varieties can advance our understanding of generalized LR coefficients.

1.3. Main results. We proceed to state our main results. The reader is referred to Section 2 for
undefined terminology. Our first main result states that the aw are strictly positive, that is, the
expansion in (1.1) has full support. This answers a problem posed by Harada et al [30, Problem
6.6].

Theorem 1.3.1. For w ∈ S′n, we have that aw > 0 from the explicit formula

aw =
1

(n− 1)!

∑
i∈Red(w)

Ac(i).

Furthermore, the following symmetries hold.

• aw = awowwo where wo denotes the longest word in Sn.
• aw = aw−1.

This theorem is the succinct version of the contents of Proposition 5.1.1, Theorem 5.1.2, and
Corollary 5.1.4. Here Red(w) denotes the set of reduced words of w and the Ac(i) are certain mixed
Eulerian numbers indexed by weak compositions c(i) determined by reduced words for w. These
numbers were introduced by Postnikov [55, Section 16] as mixed volumes of Minkowski sums of
hypersimplices, and they generalize the classical Eulerian numbers. Curiously, while geometry tells
us that the aw are nonnegative integers, our formula expresses them as a sum of positive rational
numbers. That this sum is indeed integral hints at deeper reasons, which is what we explore
subsequently.
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Any permutation has a natural factorization into indecomposable permutations acting on disjoint
intervals, where u ∈ Sp is called indecomposable if the image of [i] does not equal [i] for i =
1, . . . , p− 1; see Section 5.2 for precise definitions. One may rotate such blocks, thus giving rise to
cyclic shifts of the permutation w. Given w ∈ S′n, let w = w(1), w(2), . . . , w(k) be its cyclic shifts.

Our next chief result is a cyclic sum rule:

Theorem 1.3.2. For w ∈ S′n and with the notation just established we have that∑
1≤i≤k

aw(i) = |Red(w)|.

This theorem is stated as Theorem 5.2.1 in Section 5. Again, the appearance of the number of
reduced words on the right hand side is mysterious from a geometric perspective. Furthermore,
what explains the seemingly ad hoc appearance of the cyclic rotations of block factorizations in this
context? Theorem 1.3.2 hints at a potential refinement of the set of reduced words of w that would
provide a combinatorial interpretation to the aw. While we do not have such an interpretation in
general, we obtain interpretations for important classes of permutations; we describe our results
next.

Divided symmetrization is a linear form which acts on the space of polynomials in n indeter-
minates of degree n − 1. This was introduced by Postnikov [55] in the context of computing
volume polynomials of permutahedra. In its most general form, this operator sends a polynomial
f(x1, . . . , xn) to a symmetric polynomial

〈
f(x1, . . . , xn)

〉
n

as follows:〈
f(x1, . . . , xn)

〉
n

:=
∑
w∈Sn

w ·

(
f(x1, . . . , xn)∏

1≤i≤n−1(xi − xi+1)

)
,(1.2)

where Sn acts by permuting variables. For homogeneous f of degree n− 1, its divided symmetriza-
tion

〈
f
〉
n

is a scalar, and it is in this context where our results are primarily set. A computation
starting with the Anderson-Tymoczko class of the Peterson variety [5] leads us to the following con-
clusion already alluded to in the prequel [52] to this article — for w ∈ S′n, we have that aw =

〈
Sw

〉
n

.
We are thus able to leverage our earlier work to obtain a better handle on the aw.

We introduce a class of permutations in S′n for which the corresponding aw are particularly
nice. We refer to these permutations as  Lukasiewicz permutations in view of how they are defined.
The set of  Lukasiewicz permutations has cardinality given by the (n − 1)-th Catalan number. A
characteristic feature of these permutations is that a Schubert polynomial indexed by any such
permutation is a sum of Catalan monomials (see [52]), and thus we have our next result.

Theorem 1.3.3. For w ∈ LPn, we have that

aw = Sw(1, . . . , 1).

In particular, aw equals the number of reduced pipe dreams for any  Lukasiewicz permutation w ∈ S′n.

In particular it follows that for 132-avoiding and 213-avoiding permutations w ∈ S′n, we have that
aw = 1. Another special case concerns Coxeter elements, for which Sw(1, . . . , 1) can be expressed
as the number of permutations in Sn−1 with a given descent set depending on w. Theorem 1.3.3 is
stated as Theorem 6.2.1.

Our final results concern the important class of permutations known as vexillary permutations,
starting with the larger class of quasiindecomposable permutations. To state our results we need
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some more notation. Permutations of the form 1a × u × 1b for u indecomposable and a, b ≥ 0,
are said to be quasiindecomposable. Here 1a × u× 1b denotes the permutation obtained from u by
inserting a fixed points at the beginning and b fixed points at the end.

Set νu(j) := S1j×u(1, 1, . . . ) for j ≥ 0. The following is presented as Theorem 5.2.3 later.

Theorem 1.3.4. Let u ∈ Sp+1 be an indecomposable permutation of length n− 1. We have that

∑
j≥0

νu(j)tj =

n−p−1∑
m=0

a1m×u×1n−p−1−mtm

(1− t)n
,

We now come to our last result, which is of independent interest, making no mention of the
numbers aw. We establish that in the case where u is a vexillary permutation, the quantity νu(j)
is essentially the order polynomial of a model of (P, ω)-partitions for appropriately chosen poset P
and labeling ω. We refer the reader to Section 7 for precise details, wherein the following result is
stated as Theorem 7.4.3.

Theorem 1.3.5. Let u ∈ Sp+1 be an indecomposable vexillary permutation with shape λ ` n − 1.
Then there exist a labeling ωu of λ and an integer Nu ≥ 0 such that

∑
j≥0

νu(j)tj =

∑
T∈SYT(λ)

tdes(T ;ωu)−Nu

(1− t)n
,

where SYT(λ) denotes the set of standard Young tableaux of shape λ.

In conjunction with Theorem 1.3.4 above, this theorem yields a combinatorial interpretation
for aw for w vexillary. In the case u is indecomposable Grassmannian (respectively dominant), the
statistic des(T ;ωu) in the statement of Theorem 1.3.4 coincides with the usual descent (respectively
ascent) statistic on standard Young tableaux for the appropriate choice of ωu.

Outline of the article: Section 2 provides the necessary background on basic combinatorial no-
tions attached to permutations, the cohomology of the flag variety, and some important properties
of Schubert polynomials. Section 3 provides two perspectives on computing aw, the first via Kly-
achko’s investigation of the rational cohomology ring of Permn, and the second via Postnikov’s
divided symmetrization and a formula due to Anderson and Tymoczko. Section 4 introduces
the mixed Eulerian numbers and surveys several of their properties, including a recursion that
uniquely characterizes them. In Section 5, we use results of the preceding section to establish The-
orems 1.3.1, 1.3.2 and 1.3.4. Section 6 discusses combinatorial interpretations for the aw in special
cases. In particular, we discuss the case of  Lukasiewicz permutations, Coxeter elements as well as
Grassmannian permutations, proving Theorem 1.3.3 in particular. Section 7 establishes our most
general result as far as combinatorial interpretations go, by providing a complete understanding of
the aw for vexillary w through Theorem 1.3.5. Section 8 deals with the problem in general type Φ
and includes Klyachko’s reduced word identity for Schubert classes with its application the numbers
aΦ
w. We conclude with various remarks on further avenues and questions in Section 9.
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2. Preliminaries

2.1. Permutations. We denote by Sn the group of permutations of {1, . . . , n}. We write elements
w of Sn in one line notation, that is, as words w(1)w(2) · · ·w(n). The permutation wo = wno is the
element n(n−1) · · · 21. We multiply permutations from right to left: for instance, if w = 3124 then
w4
ow = 2431 while ww4

o = 4213.

Descents: An index 1 ≤ i < n is a descent of w ∈ Sn if w(i) > w(i + 1). The set of such
indices is the descent set Des(w) ⊆ [n − 1] of w. Given S ⊆ [n − 1], define βn(S) to be the
number of permutations w ∈ Sn such that Des(w) = S. If n = 4 and S = {1, 3}, one has
β4(S) = |{2143, 3142, 4132, 3241, 4231}| = 5.

Code and length: The code code(w) of a permutation w ∈ Sn is the sequence (c1, c2, . . . , cn)
where ci = |{j > i | w(j) < w(i)}|. The map w 7→ code(w) is a bijection from Sn to the set
{(c1, . . . , cn) | 0 ≤ ci ≤ n− i, 1 ≤ i ≤ n}. The shape λ(w) is the partition obtained by rearranging
the nonzero elements of code(w) in nonincreasing order. The length `(w) of w is the number of
inversions, i.e. pairs i < j such that w(i) > w(j). It therefore equals the sum of elements in
code(w). For w = 3165274 ∈ S7, one has code (2, 0, 3, 2, 0, 1, 0), λ(w) = (3, 2, 2, 1) and `(w) = 8.

Let us recall from the introduction the set S′n, whose elements index the coefficients aw:

(2.1) S′n := {w ∈ Sn | `(w) = n− 1}.

The cardinality of S′n for n = 1, . . . , 10 is |S′n| = 1, 1, 2, 6, 20, 71, 259, 961, 3606, 13640. The sequence
occurs as number A000707 in the Online Encyclopaedia of Integer Sequences [61].

Pattern avoidance: Let u ∈ Sk and w ∈ Sn where k ≤ n. An occurrence of the pattern u in w is a
sequence 1 ≤ i1 < · · · < ik ≤ n such that u(r) < u(s) if and only if w(ir) < w(is). We say w avoids
the pattern u if it has no occurrence of u, and we refer to w as u-avoiding. For instance, 35124 has
two occurrences of the pattern 213 at positions 1 < 3 < 5 and 1 < 4 < 5. It is 321-avoiding.

Reduced words: Sn is generated by simple transpositions si = (i, i+ 1) for 1 ≤ i ≤ n− 1. Given
w ∈ Sn, the minimum length of a word si1 · · · sil in the si’s representing w equals `(w) defined above,
and such a word is called a reduced expression for w. Denote by Red(w) the set of all reduced words,
where i1 · · · il is a reduced word for w if si1 · · · sil is a reduced expression of w. For w = 3241 of length
4, Red(w) = {1231, 1213, 2123}. With these generators, Sn has a well-known Coxeter presentation
given by the relations s2

i = 1 for all i, sisj = sjsi if |j − i| > 1 and sisi+1si = si+1sisi+1 for
i < n− 1. These last two sets of relations are called the commutation relations and braid relations
respectively. Note that 321-avoiding permutations can be characterized as fully commutative: any
two of their reduced expressions are linked by commutation relations [11].

The limit S∞: One has natural monomorphisms ιn : Sn → Sn+1 given by adding the fixed point
n + 1. One can then consider the direct limit of the groups Sn, denoted by S∞: it is naturally
realized as the set of permutations w of {1, 2, 3, . . .} such that {i | w(i) 6= i} is finite. Any Sn thus
injects naturally in S∞ by restricting to permutations for which all i > n are fixed points.

Most of the notions defined above for w ∈ Sn are well defined for S∞. The code extends naturally
to w ∈ S∞ by defining ci = |{j > i | w(j) < w(i)}| for all i ≥ 1, and it gives a bijection between
S∞ and the set of sequences (ci)i≥1 such that {i | ci > 0} is finite. The length is thus well defined.
Occurrences of u ∈ Sk are well defined in S∞ if u(k) 6= k.1 Reduced words extend naturally.

1This restriction is necessary since for instance 4321 avoids 213 but 43215 = ι4(4321) does not.
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2.2. Flag variety, cohomology and Schubert polynomials. Here we review standard material
that can be found for instance in [16, 26, 48] and the references therein.

The flag variety Flag(n) is defined as the set of complete flags V• = (V0 = {0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂
Vn = Cn) where Vi is a linear subspace of Cn of dimension i for all i. For example, V std

• , V opp
• are

the standard and opposite flags given by V std
i = span(e1, . . . , ei) and V opp

i = span(en−i+1, . . . , en)
respectively. Flag(n) has a natural structure of a smooth projective variety of dimension

(
n
2

)
. It

admits a natural transitive action of GLn via g · V• = ({0} ⊂ g(V1) ⊂ g(V2) ⊂ · · · ⊂ Cn).
In fact Flag(n) is part of the family of generalized flag varieties G/B, with G a connected

reductive group and B a Borel subgroup. In this context, Flag(n) corresponds to the type A case,
with G = GLn and B the group of upper triangular matrices. We will consider the general case n
Section 8 only.

Given any fixed reference flag V ref
• , Flag(n) has a natural affine paving given by Schubert cells

Ωw(V ref
• ) indexed by permutations w ∈ Sn. As algebraic varieties one has Ωw(V ref

• ) ' C`(w). By

taking closures of these cells, one gets the family of Schubert varieties Xw(V ref
• ).

The cohomology ring H∗(Flag(n)) with rational coefficients is a well-studied graded commu-
tative ring that we now to describe. To any irreducible subvariety Y ⊂ Flag(n) of dimension

d can be associated a fundamental class [Y ] ∈ Hn(n−1)−2d(Flag(n)). In particular there are

classes [Xw(V ref
• )] ∈ Hn(n−1)−2`(w). These classes do not in fact depend on V ref

• , and we write

σw := [Xwow(V ref
• )] ∈ H2`(w)(Flag(n)). The affine paving by Schubert cells implies that these

Schubert classes σw form a linear basis of H∗(Flag(n)):

(2.2) H∗(Flag(n)) =
⊕
w∈Sn

Qσw.

We thus have an expansion of the fundamental class [Y ]:

(2.3) [Y ] =
∑
w

bwσw,

where the sum is over permutations of length `(wo) − d. Now, an important fact is that bw is a
nonnegative integer. Indeed, bw can be interpreted as the number of points in the intersection of

Y with Xw(V ref
• ) where V ref

• is a generic flag.
One of the most important problems is to give a combinatorial interpretation to the coefficients

in the case of the Richardson variety Y = Xu(V std
• )∩Xwov(V

opp
• ) with u, v ∈ Sn. The coefficients bw

in this case are exactly the generalized LR coefficients cwuv encoding the cup product in cohomology:

(2.4) σu ∪ σv =
∑
w∈Sn

cwuvσw.

2.3. Borel presentation and Schubert polynomials. Let Q[xn] := Q[x1, . . . , xn] be the poly-
nomial ring in n variables. We denote the space of homogeneous polynomials of degree k ≥ 0 in
Q[xn] by Q(k)[xn]. Let Λn ⊆ Q[xn] be the subring of symmetric polynomials in x1, . . . , xn, and
In be the ideal of Q[xn] generated by elements f ∈ Λn satisfying f(0) = 0. The quotient ring
Rn = Q[xn]/In is the coinvariant ring.

Let di be the divided difference operator on Q[xn], given by

(2.5) di(f) =
f − si · f
xi − xi+1

.
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Define the Schubert polynomials for w ∈ Sn as follows: Swo = xn−1
1 xn−2

2 · · ·xn−1, while if i is a
descent of w, let Swsi = diSw. These are well defined since the di satisfy the braid relations, and
by the same token one can unambiguously define dw = di1di2 · · · dil for any reduced word i1i2 · · · il
of w ∈ Sn. The Schubert polynomial Sw is homogeneous of degree `(w) in Q[xn]. In fact Schubert
polynomials are well defined for w ∈ S∞. Moreover, when w ∈ S∞ runs through all permutations
whose largest descent is at most n, the Schubert polynomials Sw form a basis for Q[xn].

Now consider the ring homomorphism

(2.6) jn : Q[xn]→ H∗(Flag(n))

given by jn(x1) = σs1 , jn(xn) = −σsn−1 and jn(xi) = σsi − σsi−1 for i = 2, . . . , n− 1. Then we have
the following theorem, grouping famous results of Borel [12] and Lascoux-Schützenberger [43]; see
also [48, Section 3.6].

Theorem 2.3.1. The map jn is surjective and its kernel is In. Therefore H∗(Flag(n)) is isomorphic
as an algebra to Rn. Furthermore, jn(Sw) = σw if w ∈ Sn, and jn(Sw) = 0 if w ∈ S∞ − Sn has
largest descent at most n.

It follows that the product of Schubert polynomials is given by the structure coefficients in (2.4):
If u, v ∈ Sn, then

(2.7) SuSv =
∑
w∈Sn

cwuvSw mod In.

It is also possible to work directly in Q[xn] and not the quotient Rn: the coefficients cwuv are well
defined for u, v, w ∈ S∞, and one has

(2.8) SuSv =
∑
w∈S∞

cwuvSw.

2.4. Expansion in Schubert classes and degree polynomials. Given β ∈ H∗(Flag(n)), let∫
β be the coefficient of σwo in the Schubert class expansion. Then we have the natural Poincaré

duality pairing on H∗(Flag(n)) given by (α, β) 7→
∫

(α ∪ β). Schubert classes are known to satisfy∫
σu ∪σv = 1 if u = wov and 0 otherwise, so the pairing is nondegenerate. If A,B ∈ Q[xn] are such

that jn(A) = α, jn(B) = β, then one can compute the pairing explicitly by:

(2.9)

∫
(α ∪ β) = dwo(AB)(0),

where the right hand side denotes the constant term in dwo(AB).
The rest of this section is certainly well known to specialists, though perhaps not presented in

this form. We simply point out that given a cohomology class, computing both its Schubert class
expansion and its degree polynomial corresponds to evaluating a given linear form on two different
families of polynomials.

Fix α ∈ Hn(n−1)−2p(Flag(n)). Our main interest is when α = [Y ] with Y an irreducible closed
subvariety of Flag(n) of dimension p. Associated to α is the linear form ψα : β 7→

∫
(α∪ β) defined

on H∗(Flag(n)). It vanishes if β is homogeneous of degree 6= 2p, leading us to the definition next.

Definition 2.4.1. Given α ∈ Hn(n−1)−2p(Flag(n)) define the linear form φα : Q(p)[xn] → Q by
φα(P ) = ψα(jn(P )) where jn is the Borel morphism defined earlier.
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Note that by definition, φα vanishes on Q(p)[xn] ∩ In. For polynomials A,P ∈ Q[xn] such that
jn(A) = α, by (2.9) we have

(2.10) φα(P ) = dwo(AP )(0).

The coefficient bw in the expansion α =
∑

w bwσw is given by

(2.11) bw = φα(Swow) = dwo(SwowA)(0).

Indeed jn(Swow) = σwow by Theorem 2.3.1, and we use the duality of Schubert classes
∫
σu∪σv = 0

unless v = wou where it is 1.
The degree polynomial of α (see [30, 56]) is defined by

φα((λ1x1 + · · ·+ λnxn)p).

It is a polynomial in λ = (λ1, . . . , λn), where coefficients are given by applying φα to a monomial.
When α = [Y ] for a subvariety Y , and λ ∈ Qn is a strictly dominant weight λ1 > · · · > λn ≥ 0, the
degree polynomial gives the degree of Y in its embedding in P(Vλ) where Vλ denotes the irreducible
representation of GLn with highest weight λ. The degree polynomials Dw(λ1, . . . , λn) of Schubert
classes σw are studied in [56]. Note that if α =

∑
w bwσw as before, then by linearity the degree

polynomial of α is
∑

w bwDw(λ1, . . . , λn).

2.5. Pipe dreams. The BJS formula of Billey, Jockusch and Stanley [11] is an explicit nonnegative
expansion of Sw in the monomial basis:

(2.12) Sw(x1, . . . , xn) =
∑

i∈Red(w)

∑
b∈C(i)

xb,

where C(i) is the set of compositions b1 ≤ . . . ≤ bl such that 1 ≤ bj ≤ ij , and bj < bj+1 whenever

ij < ij+1. Additionally, xb is the monomial xb11 · · ·x
bl
l .

The expansion in (2.12) has a nice combinatorial version with pipe dreams (also known as rc-
graphs), which we now describe. Let Z>0×Z>0 be the semi-infinite grid, starting from the northwest
corner. Let (i, j) indicate the position at the ith row from the top and the jth column from the

left. A pipe dream is a tiling of this grid with +’s (pluses) and ’s (elbows) with a finite number
of +’s. The size |γ| of a pipe dream γ is the number of +’s.

Any pipe dream can be viewed as composed of strands, which cross at the +’s. Strands bijectively
connect rows on the left edge of the grid and columns along the top. Indeed, define wγ ∈ S∞ by
declaring wγ(i) = j if the ith row is connected to the jth column.

Say that γ is reduced if |γ| = `(wγ); equivalently, any two strands cross at most once. Let
PD(w) be the set of reduced pipe dreams γ such that wγ = w. Figure 1 depicts two elements in
PD(2417365). Notice that if w ∈ Sn then the +’s in any γ ∈ PD(w) can only occur in positions
(i, j) with i+ j < n, so we can restrict the grid to such positions.

Given γ ∈ PD(w), define its weight c(γ) := (c1, c2, . . .) where ci is the number of +’s on the ith
row of γ. Then the BJS expansion (2.12) can be rewritten as follows [11, 48]:

(2.13) Sw =
∑

γ∈PD(w)

xc(γ).
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1
2
3
4

6
5

7

1 2 3 4 65 7
1
2
3
4

6
5

7

1 2 3 4 65 7

Figure 1. Two reduced pipe dreams with permutation wγ = 2417365.

k {
k = 0

Ladder move

Simple move

Given w ∈ S∞, let (c1, c2, . . .) = code(w). The bottom pipe dream
γw ∈ PD(w) consists of +′s in columns 1, . . . , ci for row i = 1, 2, . . . .
It is easily checked that c(γw) = code(w). On the right in Figure 1
is the bottom pipe dream for 2417365.

A ladder move is an operation on pipe dreams involving a partic-
ular subconfiguration on k + 2 consecutive rows and 2 consecutive
columns, illustrated on the right. Here k is any nonnegative integer.
The case k = 0 gives a simple ladder move. The next result shows
how to generate all reduced pipe dreams for a given permutation.

Theorem 2.5.1. ([6, Theorem 3.7]) Let w ∈ Sn. Any γ ∈ PD(w) can be obtained from γw by a
sequence of ladder moves.

It is natural to inquire about the cardinality of PD(w) for a given w. To this end, we introduce:

Definition 2.5.2. For w ∈ S∞, define the principal specialization νw of Sw by νw = Sw(1, 1, . . .).

By the expansion (2.13), one has the combinatorial interpretation

(2.14) νw = |PD(w)|.

An alternative expression for νw is given by Macdonald’s reduced word identity [47]

(2.15) νw =
1

`(w)!

∑
i∈Red(w)

i1i2 · · · i`(w).

A deeper study of this identity and its generalizations has seen renewed interest recently. It has
brought forth various interesting aspects of the interplay between Schubert polynomials, combi-
natorics of reduced words, and differential operators on polynomials; see [10, 29, 51, 66] for more
details. As we show in Section 3, an expression rather reminiscent of the right hand side of (2.15)
plays a key role in our quest to obtain the Schubert expansion for τn = [Permn], and its appearance
in this context begs for deeper explanation.

3. Formulas for aw

Recall that we want to investigate the numbers aw occurring in the Schubert class expansion

τn =
∑
w∈S′n

awσwow ∈ H∗(Flag(n)).
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Now τn is the class of the variety Permn, so by classical results from Section 2.2, we know that the
aw are nonnegative integers: namely aw is the number of points in the intersection of Permn with
a Schubert variety Xwow(V•) where V• is a generic flag.

In this section we use two approaches — the first due to Klyachko [40, 41], the second due to
Anderson-Tymoczko [5]— to arrive at algebraic expressions for the aw; see Theorems 3.1.1 and
3.2.1 respectively. Both expressions will be exploited to extract various properties of the aw.

3.1. aw via Klyachko’s approach. We extract our first expression from the results of [40, 41].
Note that [40] is a two page summary of results (in English), while [41] proves these results and
expands on them, and is written in Russian. We describe the two theorems of significance for us
in Section 8, giving a slightly simplified proof for the second one.

Given w ∈ S∞ of length ` = `(w), consider the polynomial in Q[x1, x2, . . .]:

Mw(x1, x2, . . .) :=
∑

i=i1i2···i`∈Red(w)

xi1xi2 · · ·xi` =
∑

i∈Red(w)

xc(i),(3.1)

where c(i) = (c1, c2, . . .) and cj is the number of occurrences of j in i. If w ∈ Sn, then Mw is a
polynomial in x1, . . . , xn−1. Notice that Macdonald’s formula (2.15) states that

Mw(1, 2, . . .) = `! · νw.
For n ≥ 3, let Kn be the commutative Q-algebra with generators u1, . . . , un−1 and defining

relations 
2u2

i = uiui−1 + uiui+1 for 1 < i < n− 1;

2u2
1 = u1u2;

2u2
n−1 = un−1un−2.

Given I = {i1 < · · · < ij} ⊂ [n− 1], define uI := ui1 · · ·uij . Then the elements uI , I ⊂ [n− 1] form

a basis of Kn. Given U =
∑

I cIuI ∈ Kn, let
∫
Kn U be the top coefficient c[n−1].

Theorem 3.1.1. For any w ∈ S′n, we have

aw =

∫
Kn
Mw(u1, u2, . . . , un−1).

Proof. This is a light reformulation of Klyachko’s work [40, 41], specialized to type A. The rational
cohomology ring of Permn is computed in this work. Sn acts on this ring, and the corresponding
subring of invariants is shown to be isomorphic to Kn. In this presentation, the fundamental class
of Permn is represented by u[n−1]/(n− 1)!.

Now the embedding Permn → Flag(n) gives a pullback morphism H∗(Flag(n)) → Kn, under
which the image of the Schubert class σw is Mw(u1, u2, . . . , un−1)/`(w)!. Let w ∈ S′n. We have
aw =

∫
σw ∪ τn =

∫
σw ∪ [Permn]. By pulling back the computation to Kn, we get the result. �

3.2. aw via Anderson–Tymoczko’s approach. We now bring the divided symmetrization op-
erator

〈
·
〉
n

mentioned in the introduction into the picture. This next result follows from Proposi-
tion 3.2.2 below.

Theorem 3.2.1. For any w ∈ S′n, we have

(3.2) aw =
〈
Sw(x1, . . . , xn)

〉
n
.
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We recall some relevant results from [5]. A Hessenberg function h : [n] → [n] is a function
satisfying the condition that i ≤ h(i) for all i ∈ [n] and h(i) ≤ h(j) for all 1 ≤ i < j ≤ n. Given
an n × n matrix X and a Hessenberg function h : [n] → [n], the Hessenberg variety (in type A)
associated with X and h is defined to be

H(X,h) := {V• ∈ Flag(n) | X · Vj ⊂ Vh(j) for all j ∈ [n]}.

We consider H(X,h) for X a regular matrix: this means that X has exactly one Jordan block
attached to each eigenvalue. Since regular Hessenberg varieties form a flat family [1], the class
Σh = [H(X,h)] ∈ H∗(Flag(n)) does not depend on X.

By relating H(X,h) to a degeneracy locus when X is regular semisimple, Anderson and Ty-
moczko [5] express Σh as a specialization of a double Schubert polynomial [48]. Under the identifi-
cation of H∗(Flag(n)) and Rn = Q[xn]/In thanks to Theorem 2.3.1, the main result of [5] may be
stated as

Σh = Swh(x1, · · · , xn;xn, · · · , x1) mod In(3.3)

=
∏

1≤i<j≤n
j>h(i)

(xi − xj) mod In,(3.4)

where wh is the permutation given by code(w−1
h ) = (n − h(1), . . . , n − h(n)). The simple product

form in (3.4) comes from the fact that wh is a dominant permutation, cf. [48, Proposition 2.6.7].

In the case h = (2, 3, . . . , n, n), we have that Σh = τn by definition and thus

τn =
∏

1≤i<j≤n
j>i+1

(xi − xj) mod In.

Following the terminology of Section 2.4, consider the linear form φτn defined on Q(n−1)[xn] by

φτn(P ) = dwo(P
∏

1≤i<j≤n
j>i+1

(xi − xj)).

We know that φτn(Sw) = aw by (2.11), so Theorem 3.2.1 follows immediately from the next
proposition.

Proposition 3.2.2. For any P ∈ Q(n−1)[xn], we have

φτn(P ) =
〈
P
〉
n
.

Proof. Let Antin and Symn denote the antisymmetrizing operator
∑

σ∈Sn
ε(σ)σ and the symmetriz-

ing operator
∑

σ∈Sn
σ acting on Q[xn] respectively. Here the action of the symmetric group per-

mutes indeterminates, and ε(σ) denotes the sign of σ. Let ∆n denote the usual Vandermonde
determinant given by

∏
1≤i<j≤n(xi − xj).

One has dwo = 1
∆n

Antin [48, Proposition 2.3.2] so that
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φτn(P ) =
1

∆n
Antin

P ∏
1≤i<j≤n,j 6=i+1

(xi − xj)

 =
1

∆n
Antin

(
P∆n∏

1≤i≤n−1(xi − xi+1)

)

=
∆n

∆n
Symn

(
P∏

1≤i≤n−1(xi − xi+1)

)
=
〈
P
〉
n
.

Here we used the fact that σ(∆n) = ε(σ)∆n between the first and second lines. �

Remark 3.2.3. There is an alternative way to prove Proposition 3.2.2 (equivalently, Theorem 3.2.1),
which illuminates why the operator of divided symmetrization occurs in our context. The variety
Permn is a smooth toric variety. Therefore its degree in the embedding P(Vλ) for λ strictly dominant
is given by the (normalized) volume of its associated polytope (see [25] for instance). This polytope
is the permutahedron with vertices given by all permutations of (λ1, . . . , λn); see next section for
more details. Now its volume was computed by Postnikov [55, Theorem 3.2] as a polynomial in
(λ1, . . . , λn); his result is that the degree polynomial of τn = [Permn] is

〈
(λ1x1 + · · ·+ λnxn)n−1

〉
n
.

Since this degree polynomial completely characterizes φτn , this proves Proposition 3.2.2.

4. Mixed Eulerian numbers

We turn our attention to an intriguing family of positive integers introduced by Postnikov [55].
These are the mixed Eulerian numbers Ac1,...,cn indexed by weak compositions c := (c1, . . . , cn)

where
∑

1≤i≤n ci = n − 1. We denote the set of such compositions by W ′n. Recall that a weak

composition is simply a sequence of nonnegative integers. A strong composition a = (a1, . . . , ap)
of N is composed of positive integers summing to N , and we denote this by a � N . If c =
(0k−1, n − 1, 0n−k) for some 1 ≤ k ≤ n, then Ac is the classical Eulerian number enumerating
permutations in Sn−1 with k − 1 descents, which explains the name for the Ac in general.

We collect here various aspects of mixed Eulerian numbers that shall play a key role in what
follows, beginning by explaining how they arise in Postnikov’s work.

Given λ := (λ1 ≥ · · · ≥ λn) ∈ Rn, let Pλ be the permutahedron in Rn obtained as the convex hull
of all points in the Sn-orbit of λ. Let Vol(Pλ) denote the usual (n− 1)-dimensional volume of the
polytope obtained by projecting Pλ onto the hyperplane defined by the n-th coordinate equaling 0.

By [55, Theorem 3.1], we have that

(n− 1)! Vol(Pλ) =
〈
(λ1x1 + · · ·+ λnxn)n−1

〉
n
.(4.1)

On setting ui = λi − λi+1 for 1 ≤ i ≤ n− 1, and un = λn, we have∑
1≤i≤n

λixi =
∑

1≤i≤n
ui(x1 + · · ·+ xi).(4.2)

For brevity, set yi equal to x1 + · · ·+ xi, and for c = (c1, . . . , cn) ∈ W ′n define yc :=
∏

1≤i≤n
ycii .

This given, one can rewrite (4.1) as

Vol(Pλ) =
∑
c∈W ′n

〈
yc
〉
n

uc11 . . . ucnn
c1! · · · cn!

.(4.3)
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We define the mixed Eulerian number Ac to be
〈
yc
〉
n
, and note that Postnikov [55, Section 16]

interprets them as certain mixed volumes up to a normalizing factor, see below.
Observe that

〈
yc
〉
n

is equal to 0 if cn > 0 because of the presence of the symmetric factor
(x1 + · · ·+ xn)cn [52, Corollary 3.2]. Hence we may safely restrict our attention to mixed Eulerian
numbers Ac1,...,cn where cn = 0.2 Henceforth, if we index a mixed Eulerian number by an (n− 1)-
tuple summing to n− 1, then it is implicit that cn = 0.

The key fact about the mixed Eulerian numbers A(c1,...,cn−1) pertinent for our purposes is that
they are positive integers. As explained in [55, Section 16], A(c1,...,cn−1) equals the mixed volume
of the Minkowski sum of hypersimplices c1∆1,n + · · · + cn−1∆n−1,n times (n − 1)!, which implies
positivity. By performing a careful analysis of the volume polynomial Vol(Pλ), Postnikov further
provides a combinatorial interpretation for the A(c1,...,cn−1) in terms of weighted binary trees; see
[55, Theorem 17.7]. A more straightforward combinatorial interpretation in terms of certain permu-
tations with a recursive definition is due to Liu [44]. We omit further details and move on to record
some beautiful results due to Petrov [54]. Interestingly, Petrov does not mention mixed Eulerian
numbers in his statements, which we believe deserve to be more widely known in this context.

We begin by listing certain relations that characterize mixed Eulerian numbers uniquely. Observe
in particular the similarity between the third relation below and the presentation for Kn from before.

Lemma 4.0.1 ([54]). For a fixed positive integer n, the mixed Eulerian numbers A(c1,...,cn) are
completely determined by the following relations:

(1) A(c1,...,cn) = 0 if cn > 0.
(2) A(1n−1,0) = (n− 1)!.
(3) 2A(c1,...,cn) = A(c1,...,ci−1+1,ci−1,...,cn) +A(c1,...,ci−1,ci+1+1,...,cn) if i ≤ n− 1 and ci ≥ 2.

In the last relation, we interpret c0 to be cn.

Petrov[54] gives a probabilistic interpretation to these relations, which we generalize in [53]. This
interpretation renders transparent another aspect of the Ac with interesting consequences for us,
as demonstrated in Theorem 5.2.1.

Define the cyclic class Cyc(c) of a sequence c := (c1, . . . , cn) ∈ W ′n to be the set of all sequences
obtained as cyclic rotations of c. One has |Cyc(c)| = n, as all n cyclic rotations of c are necessarily
distinct. If this were not the case, c would be periodic and that cannot be as n and n−1 =

∑
1≤i≤n ci

are coprime.

Proposition 4.0.2. ([55, Theorem 16.4], [54, Theorem 4]) For c ∈ W ′n, we have∑
c′∈Cyc(c)

Ac′

(n− 1)!
= 1.

We conclude this section with a result that is relevant for Theorem 5.2.3. Call c ∈ W ′n connected
if it comprises a solitary contiguous block of positive integers and has 0s elsewhere. For instance
(0, 1, 1, 2, 0) is connected, whereas (0, 1, 0, 3, 0) is not. Recent work of Berget, Spink and Tseng [8,
Section 7] establishes the following, which was proved independently by the authors.

2The reader comparing our notation to that in [55] should note that Postnikov works under the tacit assumption
that cn = 0.
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Proposition 4.0.3. Let a = (a1, . . . , ap) � n− 1. For i, j nonnegative integers let 0ia0j denote the
sequence obtained by appending i 0s before a and j 0s after it. Consider the polynomial

Ãa(t) =

n−p−1∑
m=0

A0ma0n−p−mt
m.

We then have ∑
j≥0

(1 + j)a1(2 + j)a2 · · · (p+ j)aptj =
Ãa(t)

(1− t)n
.

Example 4.0.4. Consider c = (3, 0, 0, 0) ∈ W ′4. Since
∑

j≥0(j + 1)3tj = 1+4t+t2

(1−t)4 , Proposition 4.0.3

tells us that A(3,0,0,0) = 1, A(0,3,0,0) = 4 and A(0,0,3,0) = 1, which are the well-known Eulerian
numbers counting permutations in S3 according to descents.

5. Properties of the numbers aw

We begin by giving a formula for aw in terms of mixed Eulerian numbers (Theorem 5.1.2) using
Klyachko’s Theorem 3.1.1.

5.1. A positive formula for aw and first properties. The following invariance properties of
aw are easily deduced from Theorem 3.1.1:

Proposition 5.1.1. For any w ∈ S′n, we have aw = aw−1 and aw = awowwo.

Proof. We have the equality of polynomials Mw = Mw−1 since i1 . . . in−1 7→ in−1 . . . i1 is a bijection
from Red(w) to Red(w−1), and so we can conclude by Theorem 3.1.1.

Also, i1 · · · in−1 7→ (n− i1) · · · (n− in−1) is a bijection from Red(w) to Red(wowwo), so Mwowwo is
obtained from Mw after the substitution xi 7→ xn−i. Because of the symmetry in the presentation
of Kn, Theorem 3.1.1 gives us again that aw = awowwo . �

The invariance under wo-conjugation is also a special case of [5, Proposition 3.8], which can be
explained geometrically via the duality on Flag(n). The authors know of no such explanation for
the invariance under taking inverses.

We can now state our first formula.

Theorem 5.1.2. For any w ∈ S′n and i ∈ Red(w), let c(i) = (c1, . . . , cn−1) where cj counts the
occurrences of j in i. Then

(5.1) aw =
∑

i∈Red(w)

Ac(i)

(n− 1)!
.

Proof. By Theorem 3.1.1, it is enough to show that, for any weak composition c = (c1, . . . , cn−1)
of n− 1, we have

(5.2)

∫
Kn
uc =

Ac
(n− 1)!

.

We claim that (n − 1)!
∫
Kn u

c satisfies the three conditions of Lemma 4.0.1. The first two are
immediate while the third follows precisely from the relations of Kn. By uniqueness in Lemma 4.0.1,
we have that (n− 1)!

∫
Kn u

c = Ac as wanted.
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Equation (5.2) can also be deduced geometrically from the interpretation of Ac as a normalized
mixed volume, cf. [8, 55]. �

Example 5.1.3. Consider w = 32415 ∈ S′5. It has three reduced words 2123, 1213 and 1231. Given
that A2,1,1,0 = 6 and A1,2,1,0 = 12, we obtain aw = 1

24(12 + 6 + 6) = 1.

Theorem 5.1.2 implies the following corollary answers a question asked in [30, Problem 6.6].

Corollary 5.1.4. For any w ∈ S′n, we have aw > 0.

Proof. This is immediate as (5.1) expresses aw as a nonempty sum of positive rational numbers. �

From Section 4 we know that Ac ≤ (n− 1)! for any c, so that aw ≤ |Red(w)| by Theorem 5.1.2.
We will get a quantitative version of this in Theorem 5.2.1.

Remark 5.1.5. It is worth remarking that if we consider the computation of A(c1,...,cn−1) using its

original definition, we must deal with
〈
yc11 . . . y

cn−1

n−1

〉
n
. By using Monk’s rule [50] repeatedly, we

can write yc11 . . . y
cn−1

n−1 as a positive integral sum of certain Schubert polynomials in x1, . . . , xn−1.
Applying divided symmetrization to the resulting equality results in an expression for A(c1,...,cn−1)

as a positive integral combination of certain aw’s. It appears nontrivial to ‘invert’ this procedure
and thereby obtain Theorem 5.1.2. At any rate, assuming the aforementioned theorem, one does
obtain a curious expression for A(c1,...,cn−1) in terms of other mixed Eulerian numbers with weights
coming from certain chains in Bruhat order. We omit the details.

Let us also mention that the results of this subsection have analogues in other types, see Section 8.

5.2. Indecomposable permutations and sum rules. In this subsection we establish two sum-
matory properties of the numbers aw, based on the notion of factorization of a permutation into
indecomposables, which we now recall.

Let w1, w2 ∈ Sm × Sp with m, p > 0. The concatenation w = w1 × w2 ∈ Sm+p is defined by
w(i) = w1(i) for 1 ≤ i ≤ m and w(m+i) = m+w2(i) for 1 ≤ i ≤ p. This is an associative operation,
sometimes denoted by ⊕ and referred to as connected sum. We call w ∈ Sn indecomposable if it
cannot be written as w = w1 × w2 for any w1, w2 ∈ Sm × Sp with n = m + p. Note that the
unique permutation of 1 ∈ S1 is indecomposable. The indecomposable permutations for n ≤ 3 are
1, 21, 231, 312, 321, and their counting sequence is A003319 in [61]. Permutations can clearly be
uniquely factorized into indecomposables: any w ∈ Sn has a unique factorization

(5.3) w = w1 × w2 × · · · × wk,
where each wi is an indecomposable permutation in Smi for some mi > 0. For instance w =
53124768 ∈ S8 is uniquely factorized as w = 53124× 21× 1. We say that w is quasiindecomposable
if exactly one wi is different from 1. Thus a quasiindecomposable permutation has the form 1i×u×1j

for u indecomposable 6= 1 and integers i, j ≥ 0.
Given w ∈ Sn decomposed as (5.3), its cyclic shifts w(1), . . . , w(k) are given by

(5.4) w(i) = (wi × wi+1 · · · × wk)× (w1 × · · · × wi−1).

The cyclic shifts of w = 53124768, decomposed above, are w(1) = w = 53124768, w(2) = 21386457
and w(3) = 16423587.

These notions are natural in terms of reduced words as well. Let the support of w ∈ Sn be the
set of letters in [n−1] that occur in any reduced word for w. Then w is indecomposable if and only
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if it has full support [n− 1]. It is quasiindecomposable if its support is an interval in Z>0. Finally,
the number k of cyclic shifts of w is equal to n minus the cardinality of the support of w.

Theorem 5.2.1 (Cyclic Sum Rule). Let w ∈ S′n, and consider its cyclic shifts w(1), . . . , w(k) defined
by (5.3) and (5.4). We have

(5.5)
k∑
i=1

aw(i) = |Red(w)|.

Proof. Let i = i1 · · · in−1 be a reduced word for w = w(1). Consider the words i[t] = (i1 −
t) · · · (in−1 − t) for t = 0, . . . , n− 1, where the values ij − t are considered as their residues modulo
n with representatives belonging to [n]. Let 0 = t1 < · · · < tk be the values of t for which n does

not occur in i[t]. Then in the notation of (5.4), we have tj =
∑j−1

i=1 mi. Moreover, i 7→ i[tj ] is a

bijection between Red(w) and Red(w(j)) for any j.

Fix i = i1 · · · in−1 ∈ Red(w), and let c = (c1, . . . , cn) ∈ W ′n where ci counts occurrences of
i in i. For the reduced word i[tj ], the corresponding vector is given by the cyclic shift c[j] =
(ctj+1, . . . , cn, c1, . . . , ctj ). By the definition of the indices tj , the c[j] are exactly the cyclic shifts of
c that have a nonzero last coordinate. Proposition 4.0.2 now gives

k∑
j=1

Ac[j]

(n− 1)!
= 1.(5.6)

If we sum the identity in (5.6) over all reduced words of w, then we obtain (5.5) by applying
Theorem 5.1.2 to each term of the previous sum. �

Example 5.2.2. Let w = 53124768 ∈ S′8 already considered earlier. Then one has |Red(w)| = 63
while aw(1) + aw(2) + aw(3) = 6 + 21 + 36 = 63 as well.

We now present a refined property of the numbers aw when w is quasiindecomposable, giving a
simple way to compute them in terms of principal specializations of Schubert polynomials. Given
a permutation u of length ` and m ≥ 0, consider

(5.7) νu(m) := ν1m×u = S1m×u(1, 1, . . .).

By Macdonald’s identity (2.15) we have

(5.8) νu(m) =
1

`!

∑
i∈Red(u)

(i1 +m)(i2 +m) · · · (i` +m),

which is a polynomial in m of degree `. Therefore (see [62] for instance) there exist integers hum ∈ Z
for m = 0, . . . , ` such that

(5.9)
∑
j≥0

νu(j)tj =

∑`
m=0 h

u
mt

m

(1− t)`+1
.

Moreover, the numbers hum sum to `! times the leading term of νu(m), that is
∑`

m=0 h
u
m = |Red(u)|.

Thus the following theorem refines Theorem 5.2.1 in the case of quasiindecomposable permutations.
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Theorem 5.2.3. Assume that u ∈ Sp+1 is indecomposable of length n− 1. Define quasiindecom-

posable permutations u[m] ∈ S′n for m = 0, . . . , n− p− 1 by u[m] := 1m × u× 1n−p−1−m. Then

hum =

{
au[m] if m < n− p,
0 if m ≥ n− p.

Equivalently, one has

(5.10)
∑
j≥0

νu(j)tj =

∑n−p−1
m=0 au[m]tm

(1− t)n
.

Proof. The map ρm : i1 · · · in−1 7→ (i1 + m) · · · (in−1 + m) is a bijection between Red(u) and

Red(u[m]) for m = 0, . . . , n− p− 1.
Fix i = i1 · · · in−1 ∈ Red(u). Since u is indecomposable, it has full support, so that c(i) has

the form (a1, . . . , ap, 0, 0, . . .) where a = (a1, . . . , ap) � n − 1. Then 0ma is equal to c(ρm(i)) for
m = 0, . . . , n− p− 1. We can apply Proposition 4.0.3 to a, and we get:∑

j≥0

(1 + j)a1(2 + j)a2 · · · (p+ j)aptj =

∑n−p−1
m=0 Ac(ρm(i))t

m

(1− t)n
.(5.11)

We now sum (5.11) over all i ∈ Red(u). On the left hand side, for a fixed j, the coefficients sum to
(n− 1)!νu(j) by Macdonald’s identity (2.15). On the right hand side, for a fixed m, the coefficients
Ac(ρm(i)) sum to (n− 1)!au[m] by Theorem 5.1.2. This completes the proof of (5.10). �

Example 5.2.4. Consider n = 7 and u = 4321 ∈ S4 an indecomposable permutation. We have
that u[0] = 4321567, u[1] = 1543267, u[2] = 1265437, and u[3] = 1237654. It is easily checked that∑

j≥0

νu(j)tj =
1 + 7t+ 7t2 + t3

(1− t)7
.

Note that all coefficients in the numerator on the right hand side are positive, which is a priori not
immediate. Theorem 5.2.3 then tells us that au[0] = 1, au[1] = 7, au[2] = 7, and au[3] = 1. Section 7
offers a complete explanation for why these numbers arise.

Observe that by extracting coefficients, Theorem 5.2.3 gives a signed formula for aw for any
quasiindecomposable w in terms of principal specializations of shifted Schubert polynomials: for
any u ∈ Sp+1 indecomposable of length n− 1, and m = 0, . . . , n− p− 1, we have that

(5.12) au[m] =

n∑
j=0

νu(j)(−1)m−j
(

n

m− j

)
.

A last observation is that the stability properties from Proposition 5.1.1 are nicely reflected
in Theorem 5.2.3. The fact that aw = aw−1 for any w quasiindecomposable is immediate since
νu(j) = νu−1(j) for any j by (5.8), so that the right hand sides in (5.10) for u and u−1 coincide.

The stability under wo-conjugation is more interesting: let ū = wp+1
o uwp+1

o where wp+1
0 denotes

the longest word in Sp+1. Using [62, 4.2.3] we deduce from (5.10) that∑
j≥1

νu(−j)tj = (−1)n−1

∑n−p−1
m=0 au[m]tn−m

(1− t)n
.
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Now νu(−i) = 0 for i = 1, . . . , p since u has full support, so using the change of variables
j 7→ j + p+ 1, we can rewrite the previous equation as∑

j≥0

νu(−j − p− 1)tj = (−1)n−1

∑n−p−1
m=0 au[m]tn−m−p−1

(1− t)n
.

We also have νū(j) = (−1)n−1νu(−j − p − 1) easily from (5.8). Putting these together, we get
aū[m] = au[n−m−p−1] for any m ≤ n − p − 1. This is equivalent to aw = awowwo for any w ∈ S′n
quasiindecomposable.

6. Combinatorial interpretation of aw in special cases

We now identify special classes of permutations for which we have a combinatorial interpretation.
Assume n ≥ 2 throughout this section.

6.1.  Lukasiewicz permutations.

Definition 6.1.1. A weak composition (c1, . . . , cn) ∈ W ′n is  Lukasiewicz if it satisfies c1 + · · ·+ck ≥
k for any k ∈ {1, . . . , n− 1}. A permutation w ∈ S′n is  Lukasiewicz if code(w) is  Lukasiewicz.

We note that c1+· · ·+cn = n−1 since c ∈ W ′n, so the inequality in Definition 6.1.1 fails for k = n.
Let LPn be the set of  Lukasiewicz permutations and LCn the set of  Lukasiewicz compositions. If
Y = {y0, y1, . . .} is an alphabet, then the words yc1yc2 · · · ycn for c ∈ LCn are known as  Lukasiewicz

words in Y [45]. These are known to be counted by Catalan numbers Catn−1 = 1
n

(
2n−2
n−1

)
.

Proposition 6.1.2. For n ≥ 1, we have |LPn| = |LCn| = Catn−1.

Proof. We have already argued that |LCn| = Catn−1. We only need to show that any c ∈ LCn is
the code of a permutation in Sn. Indeed, it must be that ci ≤ n− i for all i since

ci ≤ ci + . . .+ cn = n− 1− (c1 + · · ·+ ci−1) ≤ n− 1− (i− 1) = n− i.
It follows that the code is a bijection from LPn to LCn. �

Example 6.1.3. There are 5 compositions in LC4:

(3, 0, 0, 0), (2, 1, 0, 0), (2, 0, 1, 0), (1, 2, 0, 0), (1, 1, 1, 0).

They correspond to the  Lukasiewicz permutations 4123, 3214, 3142, 2413, 2341.

Our next proposition states that LPn is stable under taking inverses. This claim is a priori not
clear from its definition, as determining code(w−1) from code(w) is a convoluted process. A proof
based on an alternative characterization of LPn is in the appendix.

Proposition 6.1.4. If w ∈ LPn then w−1 ∈ LPn.

6.2. aw for  Lukasiewicz permutations. We recall Postnikov’s result [55] (see also [52, 54]) on

divided symmetrization of monomials. Let c = (c1, . . . , cn) ∈ W ′n. Define the subset Sc ⊆ [n− 1]

by Sc := {k ∈ [n− 1] |
∑k

i=1 ci < k}. Then

(6.1)
〈
xc11 · · ·x

cn
n

〉
n

= (−1)|Sc|βn(Sc),

where βn(S) denotes the number of permutations in Sn with descent set S.
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Now recall from Theorem 3.2.1 that aw =
〈
Sw

〉
n
. By applying (6.1) to each monomial in the

pipe dream expansion (2.13) of Sw, we obtain the formula:

(6.2) aw =
∑

γ∈PD(w)

(−1)|Sc(γ)|βn(Sc(γ)).

In general, this signed sum seems hard to analyze and simplify, and positivity is far from obvious.
The nice case where this approach works corresponds precisely to w ∈ LPn.

Theorem 6.2.1. If w ∈ LPn, then aw = |PD(w)|.

Proof. We examine the expansion (2.13). If γ ∈ PD(w) has weight (c1, . . . , cn), then a ladder move
transforms it into a pipe dream γ′ with weight (c′1, . . . , c

′
n) where c′i = ci + 1, c′j = cj − 1 for some

i < j while c′k = ck for k 6= i, j. In particular (c1, . . . , cn) ∈ LCn implies (c′1, . . . , c
′
n) ∈ LCn.

By definition the bottom pipe dream γw has weight code(w) for any w. Assume w ∈ LPn so
that the weight of γw is in LCn. It then follows from Theorem 2.5.1 that all pipe dreams in the
expansion (2.13) have weight in LCn.

If (c1, . . . , cn) ∈ LCn then Sc = ∅ and so
〈
xc11 · · ·xcnn

〉
n

= 1 because βn(Sc) contains only the
identity of Sn. Putting things together, we have for any w ∈ LPn:

aw =
〈
Sw

〉
n

=
∑

γ∈PD(w)

〈
xc(γ)

〉
n

= |PD(w)|. �

Example 6.2.2. Let w = 31524 ∈ LP5 with code (2, 0, 2, 0, 0). PD(w) consists of 5 elements, and
thus by Theorem 6.2.1 we get aw = 5.

The combinatorial interpretation aw = |PD(w)| shows aw > 0 since PD(w) contains at least the
bottom pipe dream. By Proposition 6.1.4, LPn is stable under inverses, and so the stability under
taking inverses from Proposition 5.1.1 is equivalent in this case to |PD(w)| = |PD(w−1)|. This
follows combinatorially from the transposition of pipe dreams along the diagonal.

Note that LPn is not stable under conjugation by wo: for instance, for the permutation 3214 in
LP4 we have w4

o(3214)w4
o = 1432 /∈ LP4. Thanks to Proposition 5.1.1, we have

Corollary 6.2.3. aw = νwowwo if wowwo ∈ LPn.

So for instance we get a1432 = ν3214 = 1. Notice that this is different from ν1432 = 5.
We record a couple of remarks: the first gives some measure of how many aw are accounted for

combinatorially by Theorem 6.2.1, and the second concerns cases where aw is minimal.

Remark 6.2.4. The cardinality |LPn| = Catn−1 asymptotically equals 4n−1n−3/2/
√
π by Stirling’s

formula. Compared to the asymptotics for |S′n| computed in [49], one sees that the ratio |LPn|/|S′n|
is asymptotically equivalent to C/n for an explicit constant C.

Remark 6.2.5. A dominant permutation is one whose code is a partition, or equivalently a 132-
avoiding permutation [48]. It has a single pipe dream (necessarily its bottom pipe dream), and
so aw = 1 by Theorem 6.2.1 for any dominant w ∈ S′n. By the invariance under wo-conjugation
(Corollary 6.2.3) 213-avoiding permutations w ∈ S′n also satisfy aw = 1. Up to n = 11 these are
the only classes of permutations for which aw is equal to 1.

We now connect  Lukasiewicz permutations with the cyclic shifts of permutations, see (5.4).
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Proposition 6.2.6. For w ∈ S′n, the permutations w(i) are pairwise distinct, and exactly one of
them is  Lukasiewicz.

Proof. Let (c1, . . . , cn) be the code of w. All shifts (cj , cj+1, . . . , cn, c1, . . . , cj−1) for j = 1, . . . , n are
distinct: otherwise (c1, . . . , cn) would be periodic which can not be since n and

∑
i ci = n − 1 are

coprime. The cycle lemma ensures that exactly one of these shifts is in LCn; see for instance [46,
Lemma 9.1.10] with weight δ(k) = k − 1. These shifts are codes of permutations in S′n exactly for

the permutations w(i), which completes the proof. �

As a consequence of Theorems 6.2.1 and 5.2.1, we also have the following corollary.

Corollary 6.2.7. If w ∈ LPn, then |PD(w)| ≤ |Red(w)|.

It would be interesting to find a combinatorial proof, for instance by finding an explicit injection
from PD(w) to Red(w).

6.3. Coxeter elements. This case is a subcase of the previous one with particularly nice combina-
torics. A Coxeter element of Sn is a permutation that can be written in the form sσ(1)sσ(2) · · · sσ(n−1)

for a permutation σ ∈ Sn−1. Let Coxn be the set of all Coxeter elements of Sn. Since their defining
expressions are clearly reduced, we have Coxn ⊆ S′n.

Coxeter elements are naturally indexed by subsets of [n − 2] as follows. For w ∈ Coxn, define
Iw ⊂ [n− 2] by the following rule: i ∈ Iw if and only if i occurs before i+ 1 in a reduced word for
w (equivalently, in all reduced words for w). Conversely any subset of [n− 2] determines a unique
Coxeter element, and therefore we have |Coxn| = 2n−2.

Lemma 6.3.1. Coxn ⊆ LPn.

Proof. We do this by characterizing codes of Coxeter elements. Let w ∈ Coxn, and Iw = {i1 <
. . . < ik} ⊂ [n− 2] as defined above. To Iw corresponds αw = (i1, i2 − i1, . . . , ik − ik−1, n− 1− ik)
a composition of n− 1 using a folklore bijection between subsets and strong compositions. Finally,
writing αw = (α1, . . . , αk+1) � n−1, define the weak composition cw of n−1 with n parts by inserting
αi − 1 zeros after each αi, and append an extra zero at the end. We claim that cw = code(w),
leaving the easy verification to the reader.

To illustrate this result, pick w = 2513746 ∈ Cox7, with 431265 ∈ Red(w). We compute
successively Iw = {1, 4} ⊂ [5], αw = (1, 3, 2) � 6 and finally cw = (1, 3, 0, 0, 2, 0, 0) which is indeed
the code of w. �

It follows that aw = |PD(w)| if w ∈ Coxn by Theorem 6.2.1. We note that Sean Griffin [28] has
managed to give a geometric proof of this fact using Gröbner degeneration techniques.

Proposition 6.3.2. If w ∈ Coxn, then aw = βn−1(Iw).

Proof. It is enough to exhibit a bijection φ between PD(w) and permutations of Sn−1 with descent
set Iw. If n = 2 then w = s1 and we associate to it the identity permutation in S1. Now let
w ∈ Coxn+1 for n ≥ 2. Note that γ ∈ PD(w) has exactly one + in each antidiagonal Ak =
{(i, j) | i+ j = k− 1} for k = 1, . . . , n; we label them +1, . . . ,+n. Removing +n gives γ′ ∈ PD(w′)
for some w′ in Coxn since γ′ has exactly one + in each of the first n−1 antidiagonals. By induction
we can assume that we have constructed σ′ = φ(γ′) ∈ Sn−1 with descent set Iw′ ⊂ [n− 2].

Let i, j be the rows in γ containing +n−1,+n respectively. Define σ by incrementing by 1 all
values in σ′ greater than or equal to n + 1 − j, and then inserting n + 1 − j at the end. By
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immediate induction σ′ is a permutation ending with n + 1 − i, and Des(σ′) = Iw′ . Noting that
Iw = Iw′∪{n−1} if j > i and Iw = Iw′ if j ≤ i, one sees that Des(σ) = Iw. We leave the verification
that this is a bijection to the reader. �

As interesting special cases, consider the Coxeter elements wodd, resp. weven, of Sn defined by the
fact that by Iwodd , resp. Iweven , consists of all odd, resp. even, integers in [n− 2]. Then the number
βn−1(Iwodd) = βn−1(Iweven) is the Euler number En−1 enumerating alternating permutations in
Sn−1. Data up to n = 11 indicates that awodd = aweven = En−1 is the maximal value of aw over S′n,
and is attained at precisely these two permutations.

Remark 6.3.3. Proposition 6.3.2 can also be deduced from Theorem 3.1.1. The latter immediately
gives aw = |Red(w)| for a Coxeter element w as all terms in the sum contribute 1. Now elements
in Red(w) are naturally in one-to-one correspondence with standard tableaux of a ribbon shape
attached to w, themselves in bijection with permutations having descent set Iw.

6.4. Grassmannian permutations. In this subsection we give a combinatorial interpretation of
aw when w is a Grassmannian permutation (Theorem 6.4.2). This case will then be extended to
the much larger class of vexillary permutations in Section 7.

Definition 6.4.1. A permutation in S∞ is Grassmannian if it has a unique descent. It is m-
Grassmannian if this unique descent is m ≥ 1.

The codes (c1, c2, . . .) of m-Grassmannian permutations are characterized by 0 ≤ c1 ≤ c2 ≤ · · · ≤
cm (with cm > 0) while ci = 0 for i > m. A Grassmannian permutation w ∈ S∞ is thus encoded
by the data (m,λ(w)), which must satisfy m ≥ `(λ(w)). Conversely any m,λ that satisfy m ≥ `(λ)
correspond to a permutation in S∞. Moreover, this permutation is in Sn if and only if n ≥ m+λ1.

Recall that a standard Young tableau T of shape λ ` n is a filling of the Young diagram of λ by
distinct integers from {1, . . . , n} that is increasing along rows and columns. A descent of T is an
integer i < n such that i + 1 occurs in a row strictly below i (here we assume the Young diagram
uses the English notation, with weakly decreasing row lengths from top to bottom). As illustrated
below, for the shape (3, 2) there are 5 tableaux, the cells containing descents are shaded.

1 2 3

4 5

1 2

3

4

5

1 2

3 4

5 1

2

3 4

5

1

2

3

4

5

Let SYT(λ) be the set of standard Young tableaux of shape λ and SYT(λ, d) be the subset
thereof containing tableaux with exactly d descents.

Theorem 6.4.2. For w ∈ S′n an m-Grassmannian permutation, we have aw = |SYT(λ(w),m−1)|.

Proof. Let λ := λ(w). The Schubert polynomial Sw in this case is known to be the Schur polynomial
sλ(x1, . . . , xm) [48, Proposition 2.6.8]. We thus have to compute

〈
sλ(x1, . . . , xm)

〉
n
. The theorem

is then a consequence of the results of [52] about divided symmetrizations of (quasi)symmetric
functions: see Proposition 4.4 and Example 4.6 in [52]. �

Example 6.4.3. Consider w1 = 351246 and w2 = 146235, which are the two Grassmannian
permutations in S′6 with shape (3, 2). Note that w1 has descent 2 while w2 has descent 3. So
aw1 = SYT(λ, 1) = 2 and aw2 = SYT(λ, 1) = 3 from the inspection above.
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It is interesting to deduce aw > 0 and the invariance under wo-conjugation (cf. Section 5.1)
for Grassmannian w from this combinatorial interpretation. Positivity of aw can be shown to be
equivalent to the following statement: for any shape λ and any integer d satisfying λ′1 − 1 ≤ d ≤
|λ| − λ1, the set SYT(λ, d) is nonempty. Here we denote the transpose of λ by λ′ and its size by
|λ|. It is indeed possible to construct explicitly a tableau in SYT(λ, d); we omit the details.

Now suppose w is m-Grassmannian with shape λ ` n − 1. Then wowwo is also Grassmannian,
with descent n−m and associated shape λ′. It is then a simple exercise to show that transposing
implies SYT(λ,m− 1) = SYT(λ′, n−m− 1).

Note that the inverse of a Grassmannian permutation is not Grassmannian in general, so at this
stage the invariance under inverses is not apparent.

We finish this section by giving a nice evaluation for a family of mixed Eulerian numbers. Recall
that the content of a cell in the ith row and jth column in λ is defined to be j − i.
Corollary 6.4.4. Let w ∈ S′n be an m-Grassmannian permutation of shape λ ` n − 1. For
i = 1, . . . , n− 1, let ci be the number of cells of λ with content i−m. Then

A(c1,...,cn−1,0) = |SYT(λ,m− 1)|
∏

(i,j)∈λ

h(i, j),

where h(i, j) = λi + λ′j − i− j + 1 is the hook-length of the cell (i, j) in λ.

Proof. Grassmannian permutations are fully commutative as they are 321-avoiding, so all their
reduced expressions have the same c(i). It follows from Theorem 5.1.2 that

aw =
|Red(w)|
(n− 1)!

A(c1,...,cn−1,0).

Now

|Red(w)| = |SYT(λ)| = (n− 1)!∏
(i,j)∈λ h(i, j)

by the hook-length formula. The conclusion follows from Theorem 6.4.2. �

We discuss the fully commutative case in Section 9.

7. The case of vexillary permutations

In this section we give a combinatorial interpretation to aw for w vexillary in S′n.

Definition 7.0.1. A permutation is vexillary if it avoids the pattern 2143.

Vexillary permutations, introduced in [43], form an important class of permutations in relation
to Schubert calculus, containing both dominant and Grassmannian permutations; see [48] and
references therein for more on their relevance.

Proposition 7.0.2. The class of vexillary permutations in Sn is closed under taking inverses, and
under conjugation by wo. Moreover, vexillary permutations are quasiindecomposable.

Proof. Closure under inverses, resp. conjugation by wo, follows immediately from the fact that the
pattern 2143 is an involution, resp. is invariant under conjugation by wo.

Now suppose w ∈ Sn is not quasiindecomposable. Then there exist indecomposable wi, wj 6= 1
with i < j in the factorization (5.3). There exists an inversion in each of wi, wj , and any pair of
such inversions give an occurrence of the pattern 2143 in w, so that w is not vexillary. �
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In this section we will identify a combinatorial interpretation for aw when w is vexillary. The
proof being quite long and fairly technical, let us sketch its structure here:

• In Section 7.1, we recall how Schubert polynomials for vexillary w are given by a sum over
certain flagged tableaux, so that νw counts such tableaux.
• In Section 7.2, we define ε-tableaux, defined by imposing arbitrary strictness conditions

between rows or columns. They fall under Stanley’s (P, ω)-partition theory, and thus one
can enumerate them when an upper bound for entries is fixed, see (7.3).
• In Section 7.3, we construct a bijection between the two sets of tableaux.
• Vexillary permutations being indecomposable by Proposition 7.0.2, we can use Theorem 5.2.3

to finally get the desired combinatorial interpretation for aw in Section 7.4.

7.1. Flagged tableaux for vexillary permutations. It is known [43, 65] that Schubert poly-
nomials of vexillary permutations are flagged Schur functions, which we now describe.

Fix a partition λ with l parts, and let b = (b1, . . . , bl) be a nondecreasing sequence of integers
1 ≤ b1 ≤ . . . ≤ bl. A flagged tableau T of shape λ and flag b is a semistandard Young tableau
(SSYT) of shape λ such that entries in the ith row of T lie in {1, . . . , bi}. Recall that an SSYT is a
filling that increases weakly along rows read from left to right and increase strictly along columns
read from top to bottom. The weight xT of T is the monomial xm1

1 xm2
2 · · · with mi the number of

entries i in T . Let SSYT(λ; b) be the set of flagged tableaux of shape λ and flag b. We then have
the corresponding flagged Schur function:

sλ(x; b) =
∑

T∈SSYT(λ;b)

xT .

Now let w ∈ S∞ be a permutation with code c = code(w). Recall that the shape λ(w) is the
partition obtained by sorting the nonzero entries of c in nonincreasing order. Given i such that
ci > 0, define ei to be the maximal j such that cj ≥ ci. The flag φ(w) of w is defined by ordering
the ei in nondecreasing order.

Equivalently, write λ as (pm1
1 , . . . , pmrr ) with p1 > · · · > pr. For 1 ≤ q ≤ r, let φq be the maximum

index j such that cj ≥ pq. Then φ(w) = (φm1
1 , . . . , φmrr ).

Example 7.1.1. Consider w = 812697354 ∈ S9. Then code(w) = (7, 0, 0, 3, 4, 3, 0, 1, 0). We
compute e1 = 1, e4 = 6, e5 = 5, e6 = 6 and e8 = 8. Thus φ(w) = (1, 5, 6, 6, 8).

Alternatively, λ(w) = (7, 4, 32, 1). Then φ1 = 1, φ2 = 5, φ3 = 6, and φ4 = 8, giving φ(w) as
before.

We note further that an m-Grassmannian permutation has flag φ = (m, . . . ,m), while a dominant
permutation has flag φ = (mm1

1 , (m1 +m2)m2 , . . . , (m1 +m2 + · · ·+mr)
mr).

If w is vexillary of shape λ(w), then Sw = sλ(w)(x, φ(w)) (cf. [43, 65]) and in particular

νw = |SSYT(λ(w);φ(w))|.

Proposition 7.1.2. [43, 47] A vexillary permutation is characterized by the data of its shape and
flag. Moreover, (λ = (pm1

1 , . . . , pmrr ), φ = (φm1
1 , . . . , φmrr )) is equal to (λ(w), φ(w)) for w vexillary if

and only if the following inequalities are satisfied:

φq ≥ m1 + · · ·+mq for q = 1, . . . , r;(7.1)

0 ≤ φq+1 − φq ≤ mq+1 + pq − pq+1 for q = 1, . . . , r − 1.(7.2)
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The first set of inequalities is easy to prove (and valid for any permutation). The second one is
more involved, cf. [47]. It is interesting to consider the extreme cases of each:

• φq = m1 + · · ·+mq for q = 1, . . . , r if and only if w is dominant.
• φq = φq+1 for q = 1, . . . , r − 1 if and only if w is Grassmannian.
• φq+1 − φq = mq+1 + pq − pq+1 for q = 1, . . . , r− 1 if and only if w is inverse Grassmannian,

that is w−1 is Grassmannian.

7.2. Plane partitions with arbitrary strict conditions on rows and columns. We fix λ =
(λ1, . . . , λl), where l is the number of parts. Recall that a plane partition of shape λ is an assignment
Ti,j ∈ {0, 1, 2, . . .} to cells (i, j) ∈ λ that is weakly decreasing along rows and columns. In other
words, if Pλ is the poset of cells of λ in which c ≤ c′ if c is to the northwest of c′, then a plane
partition of shape λ is a Pλ-partition in the sense of Stanley [62, Section 4.5].

Definition 7.2.1. A signature for λ is an ordered pair ε = (e, f) ∈ {0, 1}l−1 × {0, 1}λ1−1.
An ε-partition of shape λ is a plane partition (Ti,j) of shape λ such that for all j, Ti,j > Ti+1,j if

ei = 1, and for all i, Ti,j > Ti,j+1 if fj = 1.

Thus, in an ε-partition entries must decrease strictly between rows (resp. columns) i and i+ 1 if
ei = 1 (resp. fi = 1). Let Ω(λ; ε,N) be the number of ε-partitions of shape λ with maximal entry
at most N . Figure 2 gives an ε-partition for N = 6. Plane partitions of shape λ correspond to
ε = (0l−1, 0λ1−1).

A labeling ω of Pλ is a bijection from Pλ to {1, . . . , |λ|}. Given a signature ε for λ, let ωε
be a compatible labeling, i.e. one that satisfies ωε(i, j) > ωε(i + 1, j) if and only if ei = 1, and
ωε(i, j) > ωε(i, j + 1) if and only if fj = 1.

Such a labeling always exists. Indeed, let Gλ,ε be the directed graph whose underlying undirected
graph is the Hasse diagram of Pλ, and with orientation given by (i, j) → (i + 1, j) if and only if
ei = 1, and (i, j)→ (i, j+1) if and only if fj = 1. The orientation is easily seen to be acyclic, which
ensures the existence of compatible labelings ωε since those are precisely the topological orderings of
Gλ,ε, i.e. the linear orderings of its vertices such that if u→ v then ωε(u) > ωε(v). Such orderings
exist exactly for directed acyclic graphs.
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Figure 2. λ = (7, 7, 6, 3, 3) with signature ε = (0100, 010010). An ε-partition
(left) and a compatible labeling ωε (right).

We now see that an ε-partition of shape λ is precisely a (Pλ, ωε)-partition [63, Section 7.19].
An ωε-descent of T ∈ SYT(λ) is an entry k < |λ| such that ωε(T

−1(k)) > ωε(T
−1(k + 1)). Let
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des(T ;wε) be the number of ωε-descents of T . Then the general theory of (P, ω)-partitions implies

(7.3)
∑
N≥0

Ω(λ; ε,N)tN =

∑
T∈SYT(λ) t

des(T ;wε)

(1− t)|λ|+1
.

7.3. From ε-tableaux to flagged tableaux. Fix λ, ε as before. We will soon see that Ω(λ; ε,N)
naturally enumerates flagged semistandard tableaux. By taking complements Ti,j 7→ N+1−Ti,j , we
have that Ω(λ; ε,N) counts ε-tableaux, defined as fillings of λ with integers in {1, . . . , N+1} weakly
increasing in rows and columns, with strict increases forced by e and f like before. Let T (λ; ε,N)
be the set of ε-tableaux with entries at most N + 1; by definition |T (λ; ε,N)| = Ω(λ; ε,N).

Write λ = (pm1
1 > pm2

2 > · · · > pmrr ) as before, and define Mq = m1 + · · · + mq for q = 1, . . . , r.
Define the partial sums {

Ei = Ei(ε) :=
∑i−1

k=1 ek for i = 1, . . . , l,

Fj = Fj(ε) :=
∑j−1

k=1 fk for j = 1, . . . , λ1.

Also consider Ēi = i− 1− Ei and F̄j = j − 1− Fj . We remark that T (λ; ε,N) 6= ∅ if and only if

(7.4) N ≥ Fpq + EMq for q = 1, . . . , r.

Informally put, the quantity Fpq +EMq counts the number of strict increases that are forced in any
ε-tableau while going from the top left cell of λ to the corner cell in column pq. For the ε-tableau on
the left in Figure 3, the E and F vectors are given by (0, 0, 1, 1, 1) and (0, 0, 1, 1, 1, 2, 2) respectively,
and their barred analogues are given by (0, 1, 1, 2, 3) and (0, 1, 1, 2, 3, 3, 4).

We want to transform tableaux in T (λ; ε,N) into semistandard Young tableaux, or equivalently
(1l−1, 0λ1−1)-tableaux. The general idea is to decrease values in the columns to the right of a strict
condition fj = 1, and to increase values in the rows below a weak condition ei = 0. This leads to
the following definition.

Definition 7.3.1. For T ∈ T (λ; ε,N), define Str(T ) = T ′ to be the filling of λ given by

T ′i,j = Ti,j − Fj + Ēi for all (i, j) ∈ λ.

The ε-tableau on the left in Figure 3 belongs to T (λ; ε,N) for λ = (7, 7, 6, 3, 3), ε = (0100, 010010),
and N = 6. Its image under Str is depicted on the right using the E and F computed earlier.
Proposition 7.3.2 states that Str is bijective between T (λ; ε, 6) and SSYT(λ; (62, 61, 92)).

It is easily checked that T ′ = Str(T ) is a semistandard Young tableau. Indeed the fact that the
columns of T ′ are strictly increasing amounts to the inequalities ei < Ti+1,j − Ti,j + 1, and the
fact that the rows are weakly decreasing is equivalent to the inequalities fj ≤ Ti,j+1 − Ti,j . Both
these sets of inequalities are immediate. We now work out what becomes of the condition that the
maximal entry in T is at most N + 1, under the mapping Str.

Define φε,N := (φm1
1 , . . . , φmrr ) by

(7.5) φq = N + 1− Fpq + ĒMq

for q = 1 . . . , r. We claim that φε,N satisfies the two conditions in Proposition 7.1.2 which charac-
terizes vexillary permutations. Indeed we have that for 1 ≤ q ≤ r − 1,

δq := φq+1 − φq = (ĒMq+1 − ĒMq) + (Fpq − Fpq+1)(7.6)
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Figure 3. The ε-tableau coming from the ε-partition of Figure 2 (left), and its
image under Str (right). The bounds in red indicate constraints on tableaux for
which Str is bijective, cf. Proposition 7.3.2.

is equal to the number of zeros in e between rows Mq and Mq+1 plus the number of ones in f
between columns pq+1 and pq. Therefore φε,N satisfies the inequalities (7.2).

Furthermore, the inequalities (7.4) become φq ≥ 1 + EMq + ĒMq = Mq for q ≥ 1, which is
precisely the inequalities (7.1). We invite the reader to check that in our running example, we have
that φ1 = 7− 2 + 1, φ2 = 7− 2 + 1, and φ3 = 7− 1 + 3. This means that φε,N = (62, 61, 92).

Summarizing the preceding argument we obtain:

Proposition 7.3.2. Given ε and N satisfying (7.4), (λ, φε,N ) corresponds to a vexillary permuta-
tion w. Furthermore, Str is a bijection between T (λ; ε,N) and SSYT(λ;φε,N ).

Proof. The inequalities of Proposition 7.1.2 have been verified under the hypotheses. It is also clear
that Str is well-defined, and that Ui,j 7→ Ui,j + Fj − Ēi provides the desired inverse. �

7.4. Combinatorial interpretation of aw. Let w be a vexillary permutation of shape λ ` n− 1
and flag φ. From Proposition 7.0.2, w = 1m × u with u indecomposable and vexillary. Clearly
λ(u) = λ, while φ(w) is obtained from φ(u) by adding m to each entry; let us write this φ(w) =
m+ φ(u) in short. We thus have

(7.7) νu(m) = |SSYT(λ;m+ φ(u))|.
The next lemma provides some converse to Proposition 7.3.2.

Lemma 7.4.1. Let u be indecomposable and vexillary. There exists a signature εu on λ(u) and a
nonnegative integer Nu such that φ(u) = φεu,Nu. Moreover Nu is given by

Nu = max
q

(Fpq(εu) + EMq(εu)).

Proof. Let φ := φ(u) and λ := λ(u). Also, like before l = `(λ). We claim that there exist
(e1, . . . , el−1) ∈ {0, 1}l−1 and (f1, . . . , fλ1−1) ∈ {0, 1}λ1−1 such that∑

Mq≤i≤Mq+1−1

(1− ei) +
∑

pq+1≤j≤pq−1

fj = φq+1 − φq(7.8)

has solutions for all 1 ≤ q ≤ r − 1. Indeed, as u is vexillary, the inequalities (7.2) state that for
any 1 ≤ q ≤ r − 1, we have φq+1 − φq ≤ mq+1 + pq − pq+1. Now, in (7.8), the first sum runs over
mq+1 elements, whereas the second sum runs over pq − pq+1 elements. It therefore follows that
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we can pick eMq , . . . , eMq+1−1, fpq+1 , . . . , fpq−1 in {0, 1} such that (7.8) is satisfied. There are in
general many such choices. Having made these choices for 1 ≤ q ≤ r − 1, we subsequently pick
e1, . . . , eM1−1, f1, . . . , fp1−1 arbitrarily to obtain (e1, . . . , el−1) and (f1, . . . , fλ1−1).

These choices comprise our signature εu. Indeed, it is readily checked that (7.8) is (7.6) in
disguise. Now define φ′ = φεu,Nu with the value of Nu in the lemma. There is thus an equality
in (7.4) for a certain q ∈ [r], which translates to an equality in (7.1) for the same q. This shows
that the vexillary permutation determined by the flag φ′ does not have 1 as a fixed point. It is
therefore equal to u, and it follows that φ′ = φ as wanted. �

Example 7.4.2. Consider u = 346215 with shape λ = (31, 22, 11) and φ(u) = (31, 32, 41). We
then have (p1, p2, p3) = (3, 2, 1) and (M1,M2,M3) = (1, 3, 4). The sequences (e1, e2, e3) and (f1, f2)
which comprise the signature εu need to satisfy (1− e3) + f1 = 1 and (1− e2) + (1− e1) + f2 = 0.
Thus, we may pick (e1, e2, e3) = (1, 1, 0), and (f1, f2) = (0, 0). The corresponding E and F vectors
are therefore (0, 1, 2, 2) and (0, 0, 0) respectively. It follows that Nu is max {0 + 0, 0 + 2, 0 + 2} = 2.

Theorem 7.4.3. Let u ∈ Sp+1 of shape λ ` n− 1 be an indecomposable vexillary permutation, and
choose εu, Nu as in Lemma 7.4.1. Moreove, let ωu := ωεu be an εu-compatible labeling as defined in
Section 7.2.

Let m ∈ {0, . . . , n − p − 1} and consider the permutation u[m] ∈ S′n defined by u[m] = 1m × u ×
1n−p−1−m. Then we have ∑

j≥0

νu(j)tj =

∑
T∈SYT(λ) t

des(T ;ωu)−Nu

(1− t)n
.

Proof. We have

νu(j) = |SSYT(λ; j + φ(u))| = |SSYT(λ; j + φεu,Nu)| = |SSYT(λ;φεu,j+Nu)|,

and so by Proposition 7.3.2 we get

νu(j) = |T (λ; εu, j +Nu)| = Ω(λ; εu, j +Nu).

Therefore ∑
j≥0

νu(j)tj =
∑
j≥0

Ω(λ; εu, j +Nu)tj = t−Nu
∑
j≥0

Ω(λ; εu, j)t
j ,

because Ω(λ; εu, j) = 0 for j < Nu. From (7.3) the desired identity follows. �

Comparing the content of Theorem 7.4.3 with (5.10) from Theorem 5.2.3 gives the following as
an immediate corollary.

Corollary 7.4.4. Retain notations from Theorem 7.4.3. Then au[m] equals the number of tableaux
T ∈ SYT(λ) with m+Nu ωu-descents.

Example 7.4.5. We follow up on Example 7.4.2. The next figure depicts a possible ωu := ωεu .

5 6 7
3 4
1 2
8
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Here are the three standard Young tableaux with exactly two ωε-descents, coming from the shaded
boxes.

1 2 7
3 4
5 6
8

1 2 5
3 4
6 7
8

1 2 3
4 5
6 7
8

It follows that au[0] = a346215789 = 3. The reader may verify that∑
j≥0

νu(j)tj =
3 + 24t+ 34t2 + 9

(1− t)9
.

To further demonstrate that we have a family of combinatorial interpretations depending on the
choice of εu (and ωu), another legitimate choice for u = 346215 is the signature ((1, 1, 1), (1, 0)), for
which Nu equals max {1 + 0, 1 + 2, 0 + 3} = 3. Suppose we pick ωu to read 738 62 51 4 going top
to bottom, left to right in the Young diagram of shape λ. Here are the three tableaux in SYT(λ)
with exactly three ωu-descents.

1 2 8
3 4
5 6
7

1 2 6
3 4
5 7
8

1 2 4
3 5
6 7
8

Let us revisit the Grassmannian and dominant cases in light of our treatment of the vexillary
case. We borrow notation that we have used throughout this section.

(1) If u is indecomposable Grassmannian, then the signature φ := φ(u) satisfies φq − φq−1 = 0.

It follows that we may pick (e1, . . . , el−1) = (1l−1) and (f1, . . . , fλ1−1) = (0λ1−1). If we pick
ωε to correspond to the filling of λ := λ(w) where we place integers from 1 through |λ|
from bottom to top and left to right, we see that an ωε-descent is the same as a traditional
descent in SYT, thereby recovering Theorem 6.4.2.

(2) Next consider u dominant. One can see that (e1, . . . , el−1) = (0l−1) and (f1, . . . , fλ1−1) =
(0λ1−1) give a valid signature. We pick the natural labeling where we place integers from
1 through |λ| from top to bottom and left to right, so that an ωε-descent is a traditional
ascent of an SYT.

We remark that shifted dominant permutations of the type 1 × u for u dominant occur in a
number of articles [7, 23, 67].

Finally, let us briefly sketch why the invariance properties of Proposition 5.1.1 are apparent in
this combinatorial interpretation. Fix λ ` n−1, and let Hq := mq+1 +pq−pq+1 for q = 1, . . . , r−1
using previously introduced notation. Let u ∈ Sp+1 be an indecomposable vexillary with shape

λ and flag differences δq := φq+1 − φq for q = 1, . . . , r − 1. Define ū = wp+1
o uwp+1

o where wp+1
0

denotes the longest word in Sp+1. Then it follows from [47, Formulas (1.41) and (1.42)] that the
indecomposable vexillary permutations ū and u−1 are characterized as follows:

• ū has shape λ′ and flag differences (δr−q)q=1,...,r−1;
• u−1 has shape λ′ and flag differences (Hr−q − δr−q)q=1,...,r−1.

We fix a signature εu = (e, f) and a labeling ωu for u as in Theorem 7.4.3. Then the following
claims are easily checked:
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• A valid signature for ū is given by εū := (f, e) on λ′. A compatible ωū is defined by
ωū(i, j) := ωu(j, i) for any (i, j) ∈ λ′.
• A valid signature for u−1 is given by εū := (1−f, 1−e) on λ′ where naturally (1−f)j = 1−fj

and (1− e)i = 1− ei. A compatible ωu−1 is defined by ωu−1 = n− ωū.

We leave it to the reader to show the invariance properties of Proposition 5.1.1 from the combina-
torial interpretation in Corollary 7.4.4 (the invariance under conjugation by wo is more involved).

8. Klyachko’s original formula and aw for other types

While the majority of this article is concerned with type A, we now deal with any Lie type Φ.
We want to describe the class of the permutahedral variety in type Φ in terms of mixed Φ-Eulerian
numbers in a manner akin to Theorem 5.1.2.

The starting point is again Klyachko’s work [40, 41]. We state and give Klyachko’s beautiful
“Macdonald-like formula”3 which was first announced in [40] and appeared with a proof some
time later in [41]. Since the latter is in Russian, and for the sake of completeness, we reproduce
Klyachko’s proof here with some slight improvement.

8.1. Klyachko’s theorems. Fix G a complex connected reductive group, B a Borel subgroup
and T a maximal torus inside B. Let Φ be the root system of rank r, and W be the Weyl group
W := NG(T )/T . Let ∆ = {α1, . . . , αr} denote the set of simple roots, Π the corresponding set
of positive roots. Recall that Π is in one-to-one correspondence with the set of reflections of W ,
which we note α 7→ sα. We denote by 〈·, ·〉 the Killing form. We say that i is a descent of w ∈ W
if `(wsαi) = `(w)− 1, and let Des(w) be the set of descents of w.

The cohomology ring H∗(G/B,Q) has a basis given by Schubert classes σw as w ranges over
elements in W . Denote by X = X(Φ) ⊂ G/B the closure of a generic orbit of the maximal torus
T ⊂ G: X is the permutahedral variety of type Φ. It is a smooth projective variety of dimension r.
It is also the toric variety attached to the Coxeter fan of type Φ.

Consider the algebra homomorphism i∗ : H∗(G/B,Q) → H∗(X,Q) induced from the inclusion
X ⊂ G/B . Klyachko [40, 41] shows that the image of i∗ coincides with the algebra of invariants
H∗(X,Q)W , and gives a presentation for this algebra as follows: Denote by LΛ the line bundle on
G/B induced by a weight Λ, that is, a character Λ : B → C∗. Let [Λ] = c1(LΛ|X) ∈ H2(X,Q) be
the first Chern class of the restriction of LΛ to X. Finally denote by Λi, i = 1, . . . r the fundamental
weights of g.

Theorem 8.1.1 ([40, 41]). The algebra H∗(X,Q)W is generated by the classes [Λi], i = 1, . . . , r
subject only to the quadratic relations

(8.1) [Λi][αi] = 0, for 1 ≤ i ≤ r.

It has dimension 2r, with basis given by the squarefree monomials in the generators [Λi].

In type A this recovers the presentation for Kn given in Section 3.1, by writing the roots in terms
of fundamental weights.

We continue to let Red(w) denote the set of reduced words for w ∈W . The next result describes
the image of the Schubert class σw.

3Compare equation (2.15) and the equality in Theorem 8.1.2; see [53].
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Theorem 8.1.2 ([40, 41]). For w ∈W , we have the identity in H∗(X,Q)W

(8.2) i∗(σw) =
1

`(w)!

∑
i1...i`(w)∈Red(w)

[Λi1 ] · · · [Λi`(w)
].

Klyachko establishes this result by verifying that both sides satisfy the same recursion. We give
a simplified version of this argument.4 We need a couple of preliminary results.

Lemma 8.1.3. For any w ∈W , define

Aw = {(αi, β) | i ∈ Des(w), , β ∈ Π \ {αi}, `(wsβsαi) = `(w)},
Bw = {(αi, β) | β ∈ Π, i ∈ Des(wsβ), `(wsβ) = `(w) + 1}.

Then Aw ⊂ Bw and Bw \Aw = {(α, α) | α /∈ Des(w)}.

Proof. This follows from standard arguments in Coxeter theory; see [9, Lemma 2.4] for a proof. �

Let P (w) denote the sum on the right hand side in (8.2).

Proposition 8.1.4. For any weight Λ and any w ∈W , we have in H∗(X,Q)W

[Λ][P (w)] =
1

(`(w) + 1)

∑
β∈Π

`(wsβ)=`(w)+1

〈β̌,Λ〉[P (wsβ)],

where β̌ denotes the coroot attached to β.

Proof. Write ui = [Λi]. We proceed by induction on `(w). The case w = e corresponds to

[Λ] =

r∑
i=1

〈α̌i,Λ〉ui

which holds because of the expansion Λ =
∑r

i=1〈α̌i,Λ〉Λi. Now if `(w) > 0, we have

[Λ][P (w)] =
∑

i∈Des(w)

[Λ]ui[P (wsi)] =
∑

i∈Des(w)

[siΛ]ui[P (wsi)].

The first equality follows by splitting according to the last letter of the reduced expression, and the
second from the relations ui[αi] = 0 in Theorem 8.1.1.

4Klyachko’s proof uses galleries between any two chambers in the Coxeter arrangement. It is actually enough to
consider reduced expressions of w, i.e. minimal galleries starting from the fundamental chamber.
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By induction, we obtain the following sequence of equalities (see explanation below):

`(w)[Λ][P (w)] =
∑

i∈Des(w),γ∈Π
`(wsisγ)=`(w)

〈γ̌, siΛ〉ui[P (wsisγ)]

=
∑

i∈Des(w),β∈siΠ
`(wsβsi)=`(w)

〈β̌,Λ〉ui[P (wsβsi)]

=
∑

i∈Des(w),β∈Π−{αi}
`(wsβsi)=`(w)

〈β̌,Λ〉ui[P (wsβsi)]−
∑

i∈Des(w)

ui〈α̌i,Λ〉[P (w)]

=
∑

β∈Π,i∈Des(wsβ),
`(wsβ)=`(w)+1

〈β̌,Λ〉ui[P (wsβsi)]−
r∑
i=1

ui〈α̌i,Λ〉[P (w)].

The first equality applies induction to [siΛ][P (wsi)] for each i, the second is a change of variables
β = si(γ), the third follows from the decomposition siΠ = Π − {αi} t {−αi}, and the last is
Lemma 8.1.3. �

Proof of Theorem 8.1.2. The Schubert classes σw are known to satisfy

c1(LΛ) ∪ σw =
∑
β∈Π

`(wsβ)=`(w)+1

〈β̌,Λ〉σwsβ ,

in H∗(G/B,Q) for any w ∈ W , cf. [27]. It follows that `(w)! i∗(σw), w ∈ W satisfy the recursion
of Proposition 8.1.4. It thus remains to check the initial conditions P (si) = i∗(σsi)(= [Λi]) for all
i, which is immediate. �

8.2. Application. Let aΦ
w be the coefficients of [X(Φ)] ∈ H∗(G/B,Q) when expanded in the

Schubert basis:
[X(Φ)] =

∑
w∈W ′

aΦ
wσwow,

where W ′ ⊂W consists of the elements of length r. These naturally extend the numbers aw to all
types and are nonnegative numbers since they compute intersections as in type A.

Given a weak composition c = (c1, . . . , cr) of r, let AΦ
c denote the mixed Φ-Eulerian numbers

indexed by c, introduced by Postnikov [55, Definition 18.4]. Like the mixed Eulerian numbers
introduced earlier, the AΦ

c are defined to be mixed volumes of Φ-hypersimplices; equivalently, they
occur as coefficients in the expansion of the volume polynomial of the type Φ-permutahedron. For
a combinatorial description of these numbers in type B, the reader is referred to [44].

There is a well-known relation between degree computations in projective toric varieties and
mixed volumes of the associated polytopes, see [25, Section 5] for a standard reference. It follows
that AΦ

c can be computed as follows: Write ui = [Λi] for the generators of H∗(X,Q)W as in

Theorem 8.1.1. The fundamental class of X is represented by U = det(CΦ)
|W | u1 · · ·ur, where CΦ is

the associated Cartan matrix ([40, Theorem 3]). Then AΦ
c is the coefficient of U in the squarefree

basis expansion of uc11 · · ·ucrr .
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Now as in type A, aΦ
w is equal to the coefficient of U in the expansion of i∗(σw) in H∗(X,Q)W .

Using (8.2), we obtain the following generalization of Theorem 5.1.2:

Theorem 8.2.1. For w ∈ W of length r and i ∈ Red(w), let c(i) = (c1, . . . , cr) where cj counts
occurrences of j in i. Then

(8.3) aΦ
w =

∑
i∈Red(w)

AΦ
c(i)

r!
.

All AΦ
c are positive integers because of their definition as mixed volumes. We thus have:

Corollary 8.2.2. For any w ∈W ′, aΦ
w is positive and satisfies aΦ

w−1 = aΦ
w.

The positivity of aΦ
w solves the problem briefly considered by Harada et al. [30, Remark 6.7]. It

would be interesting to undertake a combinatorial study of the aΦ
w outside of type A.

9. Further remarks

9.1. The original motivation for this paper was to find a combinatorial interpretation for the aw.
From geometry the aw are nonnegative, can we find a family of objects counted by aw? This was
achieved in this work for  Lukasiewicz permutations (Theorem 6.2.1) and vexillary permutations
(Theorem 7.4.3).

The hope is to find a combinatorial interpretation in general, from which the various properties
established in Section 5 would be apparent. Theorem 5.2.1 strongly hints that aw counts a subset
of Red(w), which in turn suggests that the Edelman-Greene correspondence [22] may play a role.

Based on Theorem 5.2.1, it would be interesting to generalize the results in Section 7 to encompass
the whole class of quasiindecomposable permutations.

A natural special case, which generalizes the Grassmannian case, is when w is quasiindecom-
posable and fully commutative. Since Red(w) for such a w is the number of SYTs fλ/µ for an
appropriate connected skew shape λ/µ, and all such i give the same c(i), the question of giving a

combinatorial interpretation for aw amounts to giving one for fλ/µ

(n−1)!Ac(i). Also Sw in this case is a

flagged skew Schur function, so νw counts certain flagged skew tableaux; an approach in the manner
of Section 7 may be successful. As an aside, we remark here that one can derive the hook-content
formula for λ/µ by piecing together our Theorem 5.2.3, Theorem 5.1.2, and Proposition 4.0.3.

9.2. Theorems 5.2.1 and 5.2.3 give pleasant summation formulas for the numbers aw. It would be
interesting to find a common generalization of them. We note that Theorem 5.2.3 fails in general.
In fact, our data show that as soon as u is not indecomposable, the numerator on the right hand
side has at least one negative coefficient.

Another avenue worth exploring, and more in line with the theme of [8] and motivated by Brenti’s
Poset Conjecture [15], is investigating aspects like real-rootedness, unimodality and log-concavity
for the numerators of the right hand side in Theorem 5.2.3. By work of Brenti [15] and Brändén
[13, 14], the Grassmannian case is already well understood.

9.3. Given w ∈ S∞, consider the polynomial M̃w(x1, x2, . . .) defined by

M̃w :=
1

`(w)!
Mw(x1, x1 + x2, x1 + x2 + x3, . . .) =

1

`(w)!

∑
i∈Red(w)

yc(i).
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Now let w ∈ S′n. It is quite striking to compare the formulas from the two approaches of Sec-

tion 3. Indeed by Macdonald’s identity (2.15), we have M̃w(1, 1, . . .) = Sw(1, 1, . . .) = νw. By

Theorems 3.2.1 and 5.1.2, we moreover have
〈
M̃w

〉
n

=
〈
Sw

〉
n

= aw. The coincidence between
these specializations is a reflection of a phenomenon explored in greater generality in [53].

9.4. The summatory results for connected mixed Eulerian numbers (Proposition 4.0.3) and quasi-
indecomposable permutations (Theorem 5.2.3) can be expressed compactly in terms of certain back
stable analogues, inspired by the work of Lam, Lee and Shimozono [42].

Consider the algebra B of bounded degree power series in Q[[xi, i ∈ Z]] that are polynomials in the
xi, i > 0, and symmetric in the xi, i ≤ 0. Thus B identifies naturally with Λ(xi, i ≤ 0)⊗Q[xi, i > 0].

Let f ∈ B be homogeneous of degree n − 1, written f ∈ B(n−1). Following [42], consider the
truncation operator π+(f) := f(. . . , 0, x1, x2, . . .) and the shift operator γ that sends xi 7→ xi+1 for
all i ∈ Z. This given, define f [m] := π+(γm(f)) which is a polynomial in x1, x2, . . ., and let f [m](1)
denote its evaluation when all xi, i > 0 are specialized to 1. Then f [m](1) is a polynomial in m of

degree ≤ n− 1 (easy), and we infer the existence of hfm ∈ Q such that

(9.1)
∑
j≥0

f [j](1)tj =

∑
m≥0 h

f
mtm

(1− t)n
.

Definition 9.4.1. Let Dn be the subspace of f ∈ B(n−1) such that hfm =
〈
f [m]

〉
n

for any m ≥ 0.

We now briefly touch upon some elements that lie in Dn by our results. First, Theorem 5.2.3 says

that the back stable Schubert polynomial
←−
Su [42] is in Dn if u ∈ S′n is indecomposable. Additionally,

if f is a symmetric function in the xi, i < 0, then f [m] is the symmetric polynomial f(x1, . . . , xm).
The fact that f ∈ Dn is one of the main results of [52].

Let ←−yk be the series ←−yk = . . .+ x−2 + x−1 + x0 + . . .+ xk−1 + xk =
∑

i≤k xi. Given a ∈ W(n−1)
p ,

define←−ya =←−y1
a1←−y2

a2 · · ·←−ypap . Then Proposition 4.0.3 says precisely that if a � n−1, then←−ya ∈ Dn.
In view of the aforementioned, the following problem is natural: Characterize the space Dn, for

instance by finding a distinguished basis. By working in an ‘infinite’ version of the algebra Kn
introduced in Section 3.1, we obtain a partial answer to this question in [53].

9.5. By using the known expansion of a double Schubert polynomial in terms of Schubert poly-
nomials (cf. [48]) in the equality in (3.3), we get

(9.2) Σh =
∑

SuSwovw0 mod In,

where the sum ranges over all factorizations v−1u = wh satisfying `(u) + `(v) = `(wh), u, v ∈ Sn.
Recall that wh is the permutation satisfying code(w−1

h ) = (n− h(1), . . . , n− h(n)). Formula 9.2 is
used in [5] to give an explicit expansion of Σh in the Schubert basis in the easy special case where
wh ∈ Sk ⊂ Sn with 2k ≤ n.

In the case h = (2, 3, . . . , n, n), which is the subject of our study, we have wh = wn−1
o , so we get

(9.3) τn =
∑

u,v∈Sn
v−1u=wn−1

o

`(u)+`(v)=(n−1
2 )

σuσwovwo .
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We may simplify the summation range: as shown in [30, Lemma 6.1], the conditions in the last
sum are equivalent to u, v ∈ Sn−1 ⊂ Sn with v = uwn−1

o . Therefore we can write

τn =
∑

u∈Sn−1

σuσ1×(wn−1
o u).

since it is readily checked that wno vw
n
o = wnouw

n−1
o wn−1

o = 1 × (wn−1
o u). Extracting coefficients

gives the summation formula for w ∈ S′n:

(9.4) aw =
∑

u∈Sn−1

cw
u,1×(wn−1

o u)
,

where the structure coefficients cwu,v are defined in (2.8). Together with the combinatorial inter-
pretations (Theorem 6.2.1, Corollary 7.4.4) and our various other results about the aw, Equation
(9.4) gives information about certain coefficients cwuv that may be of interest in the quest to find a
combinatorial interpretation for them.

9.6. To go beyond the focus of this work, a natural endeavour is to compute the coefficients in the
Schubert basis for the other regular Hessenberg classes Σh, see Section 3.2. As mentioned above,
this was done in [5] for the case wh ∈ Sk ⊂ Sn with 2k ≤ n; they also consider the case where
h(i) = n for i > 1. The starting point is the formula (3.3) for Σh.

Let us also mention [37] which gives another polynomial representative for Σh: consider w′h ∈ S2n

given by w′h(i+h(i)) = n+i for i ∈ [n] and put the values 1, . . . , n from left to right in the remaining
places. Then

(9.5) Σh = Sw′h
(x1, . . . , xh(1), x1, xh(1)+1, . . . , xh(2), x2, xh(2)+1, . . . , xh(n), xn) mod In.

Finally, we would also like to emphasize the recent work of Kim [39]: he investigates a larger
family of cohomology classes, in all types, coming from varieties related to the Deligne-Lusztig
varieties. His formulas in type A extend those of [5].

Appendix A. Proof of Proposition 6.1.4

Let w ∈ Sn with code (c1, . . . , cn−1). We define the composition ā(w) = (a1, . . . , an) by

(A.1) ai = |{1 ≤ j ≤ i | cj > i− j}|.

More generally, consider γ ∈ PD(w). Following [66], let a(γ) = (a1, a2, . . . , an) where ak is the
number of +’s on the kth antidiagonal i+ j = k − 1. Then ā(w) = a(γw) where γw is the bottom
pipe dream of w.

Example A.0.1. For w = 153264 we have code(w) = (0, 3, 1, 0, 1, 0) and ā(w) = (0, 1, 2, 1, 1, 0),
while if w = 413265, then code(w) = (3, 0, 1, 0, 1, 0) and ā(w) = (1, 1, 2, 0, 1, 0). For the first
permutation, neither code(w) nor ā(w) are in LCn, while both are in LCn in the second case. Refer
to the diagram that follows.

Proposition A.0.2. For w ∈ S′n, we have that code(w) ∈ LCn if and only if ā(w) ∈ LCn.
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1

2

3

4

6

5

1 2 3 4 65

1

2

3

4

6

5

1 2 3 4 65

Proof. Write code(w) = (c1, . . . , cn) and ā(w) = (a1, . . . , an). For 1 ≤ i ≤ n− 1, we have∑
1≤j≤i

aj =
∑

1≤j≤i
min{cj , i− j + 1} ≤

∑
1≤j≤i

cj .(A.2)

It follows immediately that if ā(w) ∈ LCn then c(w) ∈ LCn.
Conversely, assume ā(w) /∈ LCn, so that there exists 1 ≤ k ≤ n− 1 such that∑

1≤j≤k
aj < k.(A.3)

Let k be the smallest integer with this property. This forces
∑

1≤j≤k−1 aj = k− 1 and ak = 0 (note

that this holds in the special case k = 1 also). By (A.1) this implies in turn that cj ≤ k − j for
j = 1, . . . , k and thus, by using the leftmost equality in (A.2),∑

1≤j≤k
cj =

∑
1≤j≤k

aj = k − 1.(A.4)

Therefore code(w) /∈ LCn, which finishes the proof. �

Proof of Proposition 6.1.4. We use here [66, Lemma 3.6(iii)] which states that for any w ∈ S∞,
a(γw) = a(γw−1), which translates into ā(w) = ā(w−1). We then conclude by Proposition A.0.2. �
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