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Abstract 27 

Bacterial pathogens in surface waters threaten human health. The health risk is especially high in 28 

developing countries where sanitation systems are often lacking or deficient. Considering twelve flash-29 

flood events sampled from 2011 to 2015 at the outlet of a 60-ha tropical montane headwater catchment 30 

in Northern Lao PDR, and using Escherichia coli as a fecal indicator bacteria, our objective was to quantify 31 

the contributions of both surface runoff and sub-surface flow to the in-stream concentration of E. coli 32 

during flood events, by (1) investigating E. coli dynamics during flood events and among flood events and 33 

(2) designing and comparing simple statistical and mixing models to predict E. coli concentration in34 

stream flow during flood events. We found that in-stream E. coli concentration is high regardless of the 35 

contributions of both surface runoff and sub-surface flow to the flood event. However, we measured the 36 

highest concentration of E. coli during the flood events that are predominantly driven by surface runoff. 37 

This indicates that surface runoff, and causatively soil surface erosion, are the primary drivers of in-38 

stream E. coli contamination. This was further confirmed by the step-wise regression applied to 39 

instantaneous E. coli concentration measured in individual water samples collected during the flood 40 

events, and by the three models applied to each flood event (linear model, partial least square model, 41 

and mixing model). The three models showed that the percentage of surface runoff in stream flow was 42 

the best predictor of the flood event mean E. coli concentration. The mixing model yielded a Nash-43 

Sutcliffe efficiency of 0.65 and showed that on average, 89% of the in-stream concentration of E. coli 44 

resulted from surface runoff, while the overall contribution of surface runoff to the stream flow was 45 

41%. We also showed that stream flow turbidity and E. coli concentration were positively correlated, but 46 

that turbidity was not a strong predictor of E. coli concentration during flood events. These findings will 47 

help building adequate catchment-scale models to predict E. coli fate and transport, and mapping the 48 

related risk of fecal contamination in a global changing context. 49 

50 
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1. Introduction58 

The presence of bacterial pathogens in surface waters threatens human health. Pathogenic bacteria are 59 

etiological agents of several waterborne diseases such as diarrhea, which is globally a leading cause of 60 

death among all ages (1.31 million deaths in 2015) (Troeger et al., 2017). These bacterial pathogens can 61 

be of fecal origin, e.g. from cattle or from human feces where open defecation is practiced or where 62 

sanitation systems are lacking or deficient (Exley et al., 2015; Tong et al., 2016). In developing countries, 63 

untreated surface water is often used for drinking, cooking, bathing and washing, thus exposing the 64 

population to a high health risk (Boithias et al., 2016).  65 

Catchment microbial response depends on complex interactions between spatial patterns of land use, 66 

soil types, antecedent conditions of soil, and rainfall characteristics (Kim et al., 2018; McKergow and 67 

Davies-Colley, 2010; Pachepsky et al., 2018; Strauch et al., 2014). In the tropics, the presence in stream 68 

water of Fecal Indicator Bacteria (FIB), such as Escherichia coli (E. coli), is known to be partly driven by 69 

surface runoff (Causse et al., 2015; Ribolzi et al., 2016a) and groundwater flow (Chuah and Ziegler, 2018). 70 

However, the underlying mechanisms of FIB dynamics during storms remain to be fully documented. For 71 

example, there is a need to better quantify the respective contributions of surface and sub-surface flows 72 

to stream flow (e.g. using geochemical tracers) to understand and model the transfers of E. coli at the 73 

catchment scale during a flood event (Cho et al., 2016; Kim et al., 2017) and to predict the relative 74 

contributions of surface and sub-surface flows to the overall in-stream E. coli contamination (Chin, 2011). 75 

E. coli is known to be transported in water as free cells or cells attached to particles of soil, manure or76 

sediment (Garcia-Armisen and Servais, 2009; Krometis et al., 2007; Soupir et al., 2010). While stream 77 

flow turbidity is often higher in tropical areas, as compared to temperate areas, suspended sediments 78 

are known to carry E. coli (Nguyen et al., 2016). However, the relationships between stream flow 79 

turbidity, suspended sediments concentration, and E. coli concentration, and their possible hysteretic 80 

patterns during flood events, have not been yet fully explored.  81 
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Several studies in the tropics have investigated the relationships between suspended sediments 82 

concentration and turbidity in rivers and lakes (Martinez et al., 2009; Robert et al., 2017, 2016; Ziegler et 83 

al., 2014), and few studies investigated the relationships between suspended sediments concentration 84 

and E. coli concentration (Boithias et al., 2016; Nguyen et al., 2016). However, to our knowledge, no 85 

study has yet investigated the relationships between turbidity and E. coli concentration. Given that in-86 

stream E. coli concentration can vary rapidly during a flood event, a high-frequency sampling is required 87 

to characterize this variability. The latter is both time consuming and expensive. Therefore, a proxy-88 

based approach is required and there is a need to verify if stream flow turbidity can be used as a proxy of 89 

E. coli concentration during flood events.  90 

In rural Southeast Asia, such as the uplands of Northern Lao PDR, livestock grazing and the lack of 91 

adequate sanitation systems result in high levels of fecal contamination in surface waters during both 92 

high and low flow seasons (Boithias et al., 2016; Nguyen et al., 2016; Rochelle-Newall et al., 2016). In 93 

addition, Northern Lao PDR, like other mountainous regions in South-East Asia, is experiencing rapid 94 

changes in land use (Ribolzi et al., 2017; Turkelboom et al., 2008). Annual crops are replaced by tree 95 

plantations (e.g. teak) with limited understorey and litter coverage. This land-use change decreases soil 96 

water infiltration and increases surface runoff and soil erosion (Lacombe et al., 2018; Ribolzi et al., 2017; 97 

Song et al., 2020; Ziegler et al., 2004), but its impact on bacteria export has not yet been investigated. 98 

Considering twelve flash-flood events sampled from 2011 to 2015 at the outlet of a 60-ha montane 99 

tropical headwater catchment in Northern Lao PDR, our objective was thus to quantify the contributions 100 

of both surface runoff and sub-surface flow to the in-stream concentration of E. coli during flood events, 101 

by (1) investigating E. coli dynamics during flood events and among flood events and (2) designing and 102 

comparing simple statistical and mixing models to predict E. coli concentration in stream flow during 103 

flood events.  104 
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2. Materials and methods 105 

2.1. Study design 106 

In this paper, we quantify the relative roles of both surface runoff and sub-surface flow in the 107 

contamination of stream water by E. coli in a tropical montane catchment. To do so, we measured fine 108 

temporal-scale discharge and stream flow electrical conductivity to calculate the relative contributions of 109 

surface runoff and sub-surface flow to total stream flow. For twelve flash-flood events from 2011 to 110 

2015 (named with the letters A to L), we then investigated statistical relationships between surface 111 

runoff, sub-surface flow, E. coli concentration, together with turbidity, total suspended sediments 112 

concentration, land-use features (areal percentage of land cover and E. coli input), and flood event-113 

integrated variables, i.e. total rainfall, maximum rainfall intensity, rainfall duration, soil antecedent 114 

conditions, peak discharge, total volume of stream water exported during the flood event, and flow 115 

coefficient. For each flood event, we applied a mixing model to calculate the relative contributions of 116 

surface runoff and of sub-surface flow to the overall in-stream contamination by E. coli, by assigning to 117 

each one of these two flow components a characteristic bacteria concentration based on E. coli 118 

measurements in overland flow (overland flow E. coli end-member) and in groundwater (groundwater E. 119 

coli end-member). 120 

2.2. Study area: the Houay Pano catchment 121 

The 0.6 km2 Houay Pano headwater catchment is located 10 km south of Luang Prabang city in Northern 122 

Lao PDR (Fig. 1a), within the 800 000 km2 Mekong basin. This experimental site (Boithias et al., 2020) is 123 

part of the critical zone observatories’ network named Multiscale TROPIcal CatchmentS (M-TROPICS), 124 

which belongs to the French Research Infrastructure OZCAR (Gaillardet et al., 2018). This catchment can 125 

be considered as being representative of the montane agro-ecosystems of South-East Asia. The climate is 126 

sub-tropical humid and is characterized by a monsoon regime with a dry season from November to May, 127 

and a wet season from June to October. The mean annual (2001-2019) temperature is 23.4 °C while the 128 
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mean annual rainfall is 1 366 mm (CV=0.23), about 71 % (CV=0.09) of which falls during the wet season. 129 

Altitude within the catchment is 435-716 m (Fig. 1b) and the slope gradient is 1-135 % (mean=52 %). The 130 

Laksip village, located downstream the S4 station (Fig. 1b), includes 484 inhabitants (Census of 2015).  131 

2.3. Land use and land-use change 132 

Detailed land-cover surveys and mapping were conducted each year from 2011 to 2015 within the 133 

catchment (Boithias et al., 2020). The annual areal percentages of fallow (Fallow), teak trees (Teak), 134 

annual crops (Annual crop), and annual crops grown under young teak trees (Teak+Crop) were calculated 135 

using QGIS 2.6. We assessed the monthly E. coli input from 2011 to 2015 within the catchment with the 136 

monthly counting of human and domestic animal (swine and poultry) traffic within the catchment, with 137 

the daily feces production of humans and domestic animals, and with the E. coli content in their feces 138 

(Causse et al., 2015). 139 

2.4. Rainfall measurements 140 

Rainfall was measured by an automatic weather station (Campbell BWS200 equipped with ARG100, 0.2 141 

mm capacity tipping-bucket) located within the catchment (Fig. 1b). Data was recorded at 6-min time 142 

interval from 2011 to 2012, and at 1-min time interval from 2013 to 2015. Data from 2013 to 2015 was 143 

then cumulated into a 6-min time series for consistency with the 2011-2012 sub-period. 144 

2.5. Flow rate measurements and water quality monitoring 145 

We measured stream water level at the S4 gauging station of the catchment outlet (Fig. 1b) within a V-146 

notch weir equipped with a water level recorder (OTT Thalimedes) connected to a data logger, with 1-147 

mm vertical precision at a minimum of 3-min time interval. To relate water level to discharge, a control 148 

rating curve was determined using both the velocity area method and the salt dilution method by slug 149 

injection. Samples of stream water were collected at S4 gauging station in clean, plastic bottles using an 150 
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automatic sampler (Automatic Pumping Type Sediment Sampler, ICRISAT) for the measurement of Total 151 

Suspended Sediments concentration ([TSS]), turbidity (Turbidity), Electrical Conductivity at 25°C (EC), and 152 

E. coli concentration ([E. coli]). The automatic sampler was triggered by the water level recorder to 153 

collect water after every 2-cm water level change during flood rising and every 5-cm water level change 154 

during flood recession.  155 

[TSS] was measured in each sample after filtration on 0.2 μm porosity cellulose acetate filters (Sartorius) 156 

and evaporation at 105 °C for 48 h. Turbidity was determined with a turbidity meter (EUTECH 157 

Instruments TN-100) and EC with a conductivity meter (WTW340).  158 

For nine flood events (events A, B, F-L), we measured [E. coli] with the standardized microplate method 159 

(ISO 9308-3). A water sub-sample was incubated at four dilution rates (i.e. 1:2, 1:20, 1:200 and 1:2000) in 160 

a 96-well microplate (MUG/EC, BIOKAR DIAGNOSTICS) for 48 h at 44 °C. Ringers’ Lactate solution was 161 

used for the dilutions and one plate was used per sample. The number of positive wells for each 162 

microplate was noted and the Most Probable Number (MPN) per 100 mL was determined using the 163 

Poisson distribution. For three flood events (events C-E), we measured [E. coli] following the membrane-164 

filter method (EPA Method 1603). A small quantity of each water sample was filtered through the filter 165 

membrane, which retained the bacterial cells. After filtration, this membrane was placed on a selective 166 

medium (Sartorius NKS Endo nutrient pads), and incubated at 44 °C for 24 h. Shiny green E. coli colonies 167 

were directly counted and expressed as Colony Forming Units (CFU) per 100 mL. Although “colony 168 

forming unit” techniques and “most probable number” techniques are known to give highly correlated 169 

results (e.g. Cho et al., 2010; Lušić et al., 2016; Wohlsen et al., 2006), we previously ensured that the two 170 

methods were consistent in the Houay Pano catchment conditions (unpublished work). 171 

In addition, we monitored surface runoff in the different land uses of the catchment from 2011 to 2015 172 

using 1-m² microplots (Patin et al., 2018). We annually installed between 6 and 29 microplots to collect 173 
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surface runoff water samples during each rainfall event and to measure EC with WTW340. In 2012 and 174 

2014, we used sub-samples of surface runoff water to measure E. coli concentration in surface runoff as 175 

described previously. We calculated the mean concentration of E. coli in surface runoff by weighing the 176 

E. coli concentration exported from each land use by the annual areal percentage of each land use ([E. 177 

coli]OF-TOT). We also measured the E. coli concentration in water samples taken from three piezometers 178 

(Ribolzi et al., 2018) and calculated the mean concentration of E. coli in groundwater ([E. coli]GW-TOT).  179 

2.6. Electrical conductivity-based hydrograph separation 180 

We used a tracer-based approach to separate storm hydrographs into ‘event water’ and ‘pre-event 181 

water’. This approach relies on a simple mixing model with two end-members and EC as a tracer. It is of 182 

relatively low cost compared to e.g. isotopic tracers and was successfully tested in the study catchment 183 

(Ribolzi et al., 2018). Based on previous field observations and measurements performed in the same 184 

study catchment (Patin et al., 2012; Ribolzi et al., 2011; Vigiak et al., 2008), the two end-members of the 185 

model (i.e. overland flow EC end-member in event water, and groundwater EC end-member in pre-event 186 

water) can be interpreted in terms of hydrological processes. Event water mainly includes infiltration 187 

excess that produces overland flow along hillslopes. Pre-event water relates to groundwater that feeds 188 

the stream during the storm event, plus the water in the stream channel prior to the storm event, which 189 

is also related to groundwater outflows. As suggested by Collins and Neal (1998), we verified the linearity 190 

between EC and the concentration of a conservative tracer to control the relevance of the EC-based 191 

approach in our context (Ribolzi et al., 2018). The mixing model applied to individual samples is 192 

described by the following equations: 193 

          Eq. 1 

                       Eq. 2 

where Q is the instantaneous stream water discharge at the catchment outlet (L s-1), QOF is the 194 

instantaneous discharge of overland flow, i.e., event water or surface runoff (L s-1), QGW is the 195 
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instantaneous discharge of groundwater, i.e., pre-event water or sub-surface flow (L s-1), EC is the 196 

instantaneous electrical conductivity measured in the stream (µS cm-1), ECOF is the electrical conductivity 197 

in overland flow (overland flow EC end-member; µS cm-1), approximated from electrical conductivity 198 

measurements in samples of overland flow collected at the soil surface on hillslopes draining to the 199 

stream, and ECGW is the electrical conductivity in groundwater (groundwater EC end-member; µS cm-1), 200 

approximated from the stream electrical conductivity at the beginning of the flood event, since 201 

groundwater is the only supply of water to the stream during inter-storm flow periods (Ribolzi et al., 202 

2005). For each individual sample, we calculated the relative contributions of QOF and of QGW to Q based 203 

on Eq. 2, namely QOF% and of QGW% (in %). 204 

We assessed the uncertainty in estimating the contributions of overland flow and groundwater flow to 205 

the total stream flow using the formulation of Genereux (1998), which assigns an uncertainty specific to 206 

each term in Eqs. 1 and 2. The accuracy of Q is considered to be within ±10% of the measured value, 207 

while the uncertainty of EC is approximately ±5% (Ribolzi et al., 2018). The uncertainties of both ECOF and 208 

ECGW are estimated from the coefficients of variation (CV) of overland flow and groundwater samples, 209 

respectively. 210 

2.7. Flood-event variables 211 

For each flood event, the mean concentration of E. coli ([E. coli]mean) is equivalent to the average of the 212 

instantaneous E. coli concentrations ([E. coli]) measured during the event, weighted by the 213 

corresponding measurements of instantaneous discharge. We considered 13 candidate explanatory 214 

variables to predict [E. coli]mean: 215 

- Rainfall duration (RD, in min), total rainfall (RTOT, in mm), maximum rainfall intensity (RIMAX, in mm 216 

h-1); 217 
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- Antecedent Precipitation Index (API, in mm), as a proxy of soil moisture conditions, calculated as 218 

                         where APIn-1 is the antecedent precipitation index prior to 219 

rain event n-1 (mm), Pn-1 is the rainfall precipitated during rain event n-1 (mm), α is the 220 

calibration coefficient usually set at 0.5 (day-1), and t is the duration between Pn and Pn-1 (day) 221 

(Descroix et al., 2002); 222 

- Peak discharge during flood event (QMAX, in L s-1), total volume of stream water during flood 223 

event (QTOT, in m3), total volume of surface runoff, i.e. overland flow, during flood event (QOF-TOT, 224 

in m3) and its contribution to QTOT (QOF-TOT%, in %), and volume of sub-surface flow during flood 225 

event (QGW-TOT, in m3) and its contribution to QTOT (QGW-TOT%, in %); 226 

- Flow coefficient of the flood event (KE, no dimension), calculated as the ratio between QTOT and 227 

RTOT; 228 

- Flood-event mean concentration of total suspended sediments concentration ([TSS]mean, in g L-1), 229 

calculated by weighting [TSS] by the discharge, and flood-event mean turbidity (Turbiditymean, in 230 

NTU), calculated by weighting Turbidity by time. 231 

2.8. Hysteresis 232 

Combined with EC-based hydrograph separation, the analysis of rotational direction, curvature, and 233 

trend of hysteresis relationships can be used to interpret the relative contributions from surface water 234 

and groundwater, and analyte sources (Holz, 2010; Long et al., 2017). Here, we analyzed hysteresis 235 

patterns of EC, Turbidity, [TSS] and [E. coli] against discharge; [TSS], Turbidity and [E. coli] against QOF; 236 

Turbidity and [E. coli] against [TSS]; and [E. coli] against Turbidity. For each flood, we considered straight 237 

relationships when the p-value of the Pearson correlation was below 0.001. The threshold was 238 

voluntarily chosen very demanding to distinguish straight relationships from other hysteretic patterns.  239 
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2.9. Statistical analysis 240 

We calculated correlations and regressions to identify explanatory variables predicting [E. coli] and [E. 241 

coli]mean. Statistics were calculated with R statistical package version 3.4.3 (correlations), Minitab 18.1 242 

(stepwise regression), and XLSTAT 20.1.1 (partial least square regression). An explanatory variable was 243 

considered to be statistically significantly different from zero when its p-value, derived from Student's t-244 

test, was lower than 0.05. 245 

2.9.1. Modelling instantaneous E. coli concentration [E. coli] 246 

We first calculated Pearson correlations between [E. coli] and the eight hydrological variables measured 247 

or calculated for each sample (EC, Q, QOF, QGW, QOF%, QGW%, [TSS], and Turbidity). In addition, to select 248 

the best set of explanatory variables predicting [E. coli], we derived linear regressions from the ‘step-249 

wise regression’ selection algorithm. This selection intended to maximize the prediction R² (R2
pred) 250 

calculated by leave-one-out cross-validations. This performance criterion reflects the ability of the model 251 

to predict observations that were not used in the model calibration. Its maximization leads to greater 252 

parsimony in the number of explanatory variables (Helsel and Hirsch, 2002). We verified the required 253 

homoscedasticity of the model’s residuals by visual inspection. Multi-collinearity among the selected 254 

explanatory variables was avoided by ensuring that the Variance Inflation Factor (VIF) never exceeded 255 

the value of 8 (Helsel and Hirsch, 2002). We didn’t mix instantaneous measurements with flood-event 256 

variables or with variables assessed annually (Annual crop, Teak+Crop, Teak, and Fallow) or monthly (E. 257 

coli input). 258 

2.9.2. Modelling mean concentration of E. coli per flood event [E. coli]mean 259 

We first calculated Pearson correlations between [E. coli]mean and the thirteen hydro-meteorological 260 

variables measured or calculated for each flood event (Table 1) and the five land-use related variables 261 

(Annual crop, Teak+Crop, Teak, Fallow, and E. coli input). In addition, we used Partial Least Square (PLS) 262 



13 
 

regression to detect dependencies between variables. PLS is able to handle datasets with a number of 263 

variables higher than the number of observations. It is also poorly sensitive to multi-collinearity, and 264 

handles missing data by imputation. The importance of each projected variable is estimated by the 265 

Variable Importance in the Projection (VIP). We discarded the variables for which VIP values were below 266 

1 (Ribolzi et al., 2016b; Wold, 1995). 267 

2.10. Mixing model of flood-event mean concentration of E. coli 268 

We applied a simple mixing model with two end-members to predict [E. coli]mean and to separate the 269 

contributions of both ‘event water’ and ‘pre-event water’ to the in-stream E. coli concentrations. Here 270 

the two end-members of the model are E. coli concentration in event water (overland flow E. coli end-271 

member or [E. coli]OF-TOT) and E. coli concentration in pre-event water (groundwater E. coli end-member 272 

or [E. coli]GW-TOT). The mixing model applied to flood-event mean variables is described by the following 273 

equations: 274 

                     Eq. 3 

                                                                Eq. 4 

where QTOT is the total volume of stream water during flood event (m3), QOF-TOT is the total volume of 275 

surface runoff, or overland flow, during flood event (m3), QGW-TOT is the total volume of sub-surface flow, 276 

or groundwater flow, during flood event (m3), [E. coli]mean is the flood-event mean concentration of E. coli 277 

(MPN 100 mL-1), [E. coli]OF-TOT is the mean concentration of E. coli exported in overland flow (MPN 100 278 

mL-1), calculated from E. coli concentration measured in samples of overland flow collected at the soil 279 

surface on hillslopes draining to the stream, and [E. coli]GW-TOT is the mean concentration of E. coli in 280 

groundwater (MPN 100 mL-1), calculated from E. coli concentration measured in groundwater. This 281 

approach was shown to yield a comparable or even higher performance when predicting in-stream 282 

pathogen concentrations compared with more complex fate and transport models (Chin, 2011). We 283 

applied the mixing model to the twelve flood events and compared its performance with the 284 
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performance of the PLS model. For each flood event, we calculated the relative contributions of [E. 285 

coli]OF-TOT and of [E. coli]GW-TOT to [E. coli]mean based on Eq. 4, namely [E. coli]OF-TOT% and of [E. coli]GW-TOT% 286 

(in %).  287 
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3. Results 288 

3.1. E. coli dynamics during flood events and among flood events 289 

The areal percentage of land use evolved from 2011 to 2015 (Fig. SI1): annual crop decreased from 28% 290 

to 4% of the catchment area, and teak and annual crop decreased from 12% to 0%, while teak increased 291 

from 18% to 36%, and fallow increased from 29% to 46%. Areal percentage of forest was constant at 8%. 292 

The E. coli input into the catchment decreased from a monthly average of 2x1015 in 2011 to a monthly 293 

average of 3x1014 in 2015 (Fig. SI2). Over the 2011-2015 period, the cumulated E. coli input for swine and 294 

poultry accounted for 0.01-0.38 % of the total E. coli input.  295 

In the meantime, a total of 294 discharge peaks were recorded between January 1, 2011, and December 296 

31, 2015 (Fig. 2), in response to a range of rainfall events (Fig. SI3, see interquartile ranges): 50 % of RTOT 297 

ranged between 7 and 22 mm, 50 % of RIMAX ranged between 24 and 60 mm h-1, and 50 % of RD ranged 298 

between 49 and 235 min. Q ranged from 0 to 1 807.6 L s-1 (30 L s-1 ha-1), with a mean Q of 33.3 L s-1. 299 

We monitored twelve flood events (A to L) for stream water quality. Datasets for each of the twelve 300 

flood events are complete except EC measurements lacking for event A and Turbidity measurements 301 

lacking for event G, due to measurement devices’ breakdown. A total of 99 stream water samples was 302 

collected: [TSS] ranged from 0.02 to 25.7 g L-1 while Turbidity ranged from 191.8 to 13 480 NTU (Fig. 3). 303 

E. coli were detected in all samples and [E. coli] ranged between 160 and 74 000 MPN 100 mL-1 (Fig. 3). 304 

For the twelve flood events, rainfall was followed by an increase of Q, Turbidity, [TSS] and [E. coli] (Fig. 305 

3). However, the peaks of Q, Turbidity, [TSS] and [E. coli] were often asynchronous (full description is 306 

given in the supplementary information). Hysteresis loops showed complex patterns mixing straight 307 

lines, simple clockwise or anti-clockwise loops, figures-of-eight or multiple hysteresis loops (summary is 308 

presented in Table SI1, full description is given in the supplementary information, including Figs. SI4-SI7). 309 
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The uncertainty bands enclosing QOF and QGW in Fig. 3 show that the hydrograph could be clearly 310 

separated for each flood event. Flood event C was the only event where the stream flow was virtually 311 

100% groundwater flow. Excluding flood event C, QOF-TOT% ranged between 17 and 80% (Fig. 4a). The 312 

average QOF-TOT% was 41% (CV=0.59). 313 

The twelve flood events corresponded to a range of storm characteristics in terms of RTOT, RIMAX and RD 314 

(Fig. SI3, Fig. 2). QMAX ranged from 31.7 to 967.9 L s-1 (Table 1, Fig. 3). Three flood events occurred after 315 

dry periods (events B, G, and I: API<10), whereas others occurred shortly after a previous flood event 316 

(events D, E, and J: API>30) or later (events A, C, F, H, K, and L: 10<API<20) (Table 1). [E. coli]mean ranged 317 

from 1 125 and 27 375 MPN 100 mL-1. 318 

Mean ECOF was 55 µS cm-1 (CV=0.7) over the 2011-2015 period (65 surface runoff water samples). Mean 319 

ECGW was 256 µS cm-1 (CV=0.42) among the twelve flood events. [E. coli]OF-TOT was 24 880, 27 292, 27 441, 320 

26 987, and 26 935 MPN 100 mL-1 in 2011, 2012, 2013, 2014, and 2015, respectively (26 surface runoff 321 

water samples). [E. coli]GW-TOT was 277 MPN 100 mL-1 (6 groundwater samples). 322 

3.2. Statistical analysis 323 

3.2.1. Modelling instantaneous E. coli concentration [E. coli] 324 

Considering all water samples collected during the flood events (Fig. SI8), [E. coli] was positively 325 

correlated to Q (r=0.54, p<0.001), QOF (r=0.56, p<0.001), QOF% (r=0.51, p<0.001), [TSS] (r=0.43, p<0.001), 326 

and Turbidity (r=0.43, p<0.001), and was negatively correlated to EC (r=-0.31, p=0.003), and to QGW% (r=-327 

0.51, p<0.001). Turbidity was positively correlated to [TSS] (r=0.82, p<0.001).  328 

From the stepwise regression, [E. coli] was best predicted by [TSS] and QOF (Eq. 5): 329 

                               Eq. 5 
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T-values and p-values of the coefficients are given in Table SI2. The R² of the model is 35.3 % and the 330 

R2
pred is 24.42 %. 331 

3.2.2. Modelling mean concentration of E. coli per flood event [E. coli]mean 332 

[E. coli]mean was positively correlated to QMAX (r=0.71, p=0.009), QTOT (r=0.59, p=0.042), QOF-TOT (r=0.72, 333 

p=0.012), and QOF-TOT% (r=0.93, p<0.001), and was negatively correlated to QGW-TOT% (r=-0.93, p<0.001) 334 

(Fig. SI9).  335 

From the above, we found that QOF-TOT% was the variable the most positively correlated to [E. coli]mean. 336 

The linear model is: 337 

                                Eq. 6 

The R² between predicted and observed [E. coli]mean was 0.87 while the Nash-Sutcliffe efficiency (NSE) 338 

was 0.84 (Fig. 5a). Excluding event C that was driven by groundwater flow only (and for which the linear 339 

model predicted a negative value), [E. coli]mean predicted by the linear model ranged from 1 981 to 22 340 

825 MPN 100 mL-1.  341 

These latter trends are confirmed by the PLS regression (Fig. 6a), which shows that Axis 1 mostly explains 342 

the variables QOF-TOT% (r=0.863), QGW-TOT% (r=-0.863), QMAX (r= 0.859), and QOF-TOT (r=0.815) whereas Axis 2 343 

mostly explains the variable RIMAX (r=0.563). Hence, Axis 1 corresponds to variables that are strongly 344 

related to stream water whereas Axis 2 corresponds to variables describing rainfall and soil moisture 345 

conditions. Accordingly, the twelve flood events were scattered along the two axes, with the flood 346 

events of highest [E. coli]mean in the right panel (Fig. 6b). The variables with VIP values above 1 were QOF-347 

TOT%, QGW-TOT%, QMAX, QOF-TOT, and QTOT when considering one component and QOF-TOT%, QGW-TOT%, 348 

[TSS]mean, QMAX, and QOF-TOT when considering two components (Fig. 6c; Table SI3). The statistical model 349 

given by the PLS is given in Table SI3. The R² between predicted and observed [E. coli]mean was 0.83 while 350 

the NSE was 0.78 (Fig. 5b). Excluding event C that was driven by groundwater flow only (and for which 351 
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the PLS model predicted a negative value), [E. coli]mean predicted by the PLS model ranged from 1 067 to 352 

23 237 MPN 100 mL-1. 353 

[E. coli]mean predicted by the mixing model ranged from 277 to 21 572 MPN 100 mL-1. The R² between 354 

predicted and observed [E. coli]mean was 0.86 while the NSE was 0.65 (Fig. 5c). Flood event C was the only 355 

event where the percentage of E. coli was 100% from groundwater flow. Excluding flood event C, [E. 356 

coli]OF-TOT% ranged from 95 to virtually 100% (Fig. 4b). The average [E. coli]OF-TOT% was 89% (CV=0.33).  357 

 358 

  359 
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4. Discussion 360 

4.1. High E. coli concentration pulses match high overland flow pulses 361 

The analysis of the twelve monitored flood events (Table 1) shows that [E. coli]mean was high regardless of 362 

the flood event characteristics: [E. coli]mean ranged between 1 125 and 27 375 MPN 100 mL-1. The order of 363 

magnitude of the maximum [E. coli] is about 105 MPN 100 mL-1. All these values exceed the 1 000 364 

MPN 100 mL-1 threshold provided by e.g. the European Directive 2006/7/EC for bathing water quality.  365 

Although rainfall is known to reactivate hydrological connectivity (Bracken et al., 2013), rainfall 366 

characteristics such as RT0T, RIMAX, and RD, did not appear as strong explanatory variables of [E. coli]mean 367 

(Fig. 6 and Fig. SI9). Variations in [E. coli] and [E. coli]mean between flood events may be explained by 368 

rainfall spatial distribution and the timing between rainfall events: the rainfall distribution will determine 369 

which areas draining animal and human manure are activated, whereas the timing between events may 370 

indicate which catchment microbial stocks have accumulated to high levels (McKergow and Davies-371 

Colley, 2010). In Houay Pano catchment, variations in concentration between flood events may also be 372 

explained by E. coli input distribution at the soil surface, as the land use is mixed (Fig. SI1). Indeed, based 373 

on this twelve-event dataset and hysteresis analysis, we could not find any clear, consistent trend at the 374 

outlet of the Houay Pano catchment (Table SI1) and we thus could not identify any primary bacteria 375 

source.  376 

The land use change in Houay Pano catchment was rapid and led to the simultaneous increase of teak 377 

tree plantations and of fallow areas (Ribolzi et al., 2017). Previous plot- and catchment-scale results 378 

showed higher surface runoff and suspended matter export when teak tree plantations increased 379 

(Lacombe et al., 2018; Mügler et al., 2019; Ribolzi et al., 2017; Song et al., 2020), suggesting that higher 380 

numbers of E. coli could be transferred to the river. However, land use characteristics such as land use 381 

variables (Annual crop, Teak+Crop, Teak, Fallow, and E. coli input) did not appear as strong explanatory 382 
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variables of [E. coli]mean (Fig. 6 and Fig. SI10). Growing teak trees and fallow requires less people in the 383 

field compared to annual crops. Since field workers practice open defecation, less workers imply lower 384 

input of E. coli into the catchment. The contribution of domestic animals to the overall E. coli input being 385 

only 0.01-0.38 % of the total E. coli input, the consequence of the extension of teak tree plantation and 386 

of fallow in Houay Pano from 2011 to 2015 (Fig. SI1) is the overall decrease of the E. coli input into the 387 

catchment over the same period (Fig. SI2). 388 

The highest [E. coli]mean was often associated to flood events with highest QMAX (events J and L) and 389 

dominant surface runoff (QOF-TOT%>50: events D, and I-L), confirming the role of surface runoff, and 390 

subsequent soil surface erosion, in E. coli transfers to the stream (Causse et al., 2015) (Table 1, Fig. 6). 391 

For flood events where sub-surface flow was dominating (QOF-TOT%<50: events B, C, and E-H), [E. coli]mean 392 

was in general lower, although exceeding 1 000 MPN 100 mL-1. High E. coli concentrations even when 393 

sub-surface flow was dominating suggest that streambanks and the streambed may release stored E. coli 394 

(Chu et al., 2011; Park et al., 2017; Stocker et al., 2018) since sediment deposited at the bottom of the 395 

stream may act as an E. coli reservoir (Pachepsky et al., 2017; Rochelle-Newall et al., 2015; Smith et al., 396 

2008). In fact, the concentration of E. coli in Houay Pano streambed sediment is about 40 000 MPN g-1 397 

(Ribolzi et al., 2016a), but we cannot exclude that E. coli is simultaneously transferred from the hillslope 398 

with surface runoff, if hillslope soil surface is highly contaminated. We also found both clockwise and 399 

anti-clockwise [E. coli]-[TSS] and [E. coli]-Turbidity hysteresis loops, and in some cases figure-of-eight 400 

patterns (Table SI1, Fig. SI6 and Fig. SI7). This further suggests that the erosion of bacteria stores is not 401 

strictly driven by soil erosion, but also by in-stream sediment resuspension (Evrard et al., 2016; Gourdin 402 

et al., 2015; Huon et al., 2017). In parallel, possibly less E. coli-contaminated sub-surface flow, or return 403 

flow, may dilute in the stream the E. coli concentration originating from surface runoff and thus mitigate 404 

the in-stream microbial contamination. 405 
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4.2. Predictive models of E. coli concentration: performances and usefulness 406 

To our knowledge, few studies have reported predictive models using independent variables to explain 407 

E. coli concentration and, to the best of our knowledge, they were all developed in temperate areas408 

(Chen and Chang, 2014; Hathaway et al., 2010). The models suggested by Chen and Chang (2014) 409 

included antecedent precipitation, stream temperature, and TSS concentration, and gave an R² of 0.27-410 

0.61 depending on the season and the catchment. The model suggested by Hathaway et al. (2010) 411 

included temperature, rainfall, and humidity, and had an R² of 0.7462. The variety of explanatory 412 

variables among models reflects the variety of driving processes driving E. coli fate and transport among 413 

catchments.  414 

4.2.1. Modelling instantaneous E. coli concentration [E. coli] 415 

[E. coli] was equally correlated to both [TSS] and Turbidity (r=0.43, p<0.001; Fig. SI8) while Turbidity was 416 

correlated with [TSS] (r=0.82, p<0.001, Fig. SI8). The strong correlation between Turbidity and [TSS] is in 417 

line with the results obtained in other studies in tropical areas, such as Ziegler et al. (2014) for rivers in 418 

Thailand and Robert et al. (2017) in West African lakes and ponds. The relationships between [TSS] and 419 

[E. coli] and between Turbidity and [E. coli] are qualified by hysteretic trends (Figs. SI6 and SI7, 420 

respectively) during flood events. Notably, little hysteresis is observed between [TSS] and Turbidity (Fig. 421 

SI6). Hysteretic trends may illustrate the uncertainty when predicting E. coli by a proxy such as turbidity: 422 

sources of sediments may not exactly coincide with sources of E. coli. For example, these relationships 423 

may not apply in large mixed-land use catchments, because of the multiple, geographically separated, E. 424 

coli and turbidity sources. This may limit the usefulness of using turbidity as a proxy of E. coli near the 425 

catchment outlet (McKergow and Davies-Colley, 2010). Another explanation of the hysteresis is the 426 

nature and the properties of the suspended sediments, that may change during the flood event: bacteria 427 

may be less prone to attach to sand-rich suspended particles (Oliver et al., 2007). Similarly, hysteresis in 428 

Turbidity-[TSS] relationships may be explained by changing reflectance properties of the suspended 429 
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sediments depending on particle size, shape, mineralogy, aggregation/flocculation, dissolved light-430 

absorbing matter and bubbles, because of the spatial heterogeneity of rainfall and suspended sediment 431 

sources at the catchment scale (Navratil et al., 2011; Ziegler et al., 2014). A last uncertainty source in the 432 

relationships between [E. coli], [TSS], and Turbidity, is the possible exhaustion of the E. coli stock within 433 

the catchment after a succession of flood events. 434 

From the step-wise regression analysis, the predictive model for [E. coli] includes [TSS] and QOF as 435 

explanatory variables (Eq. 5). The two explanatory variables reflect the two processes driving E. coli 436 

transport within the catchment: QOF reflects the mobilization of E. coli with relative contributions of 437 

surface and sub-surface flows along the flood event, whereas [TSS] reflects the attachment of E. coli to 438 

soil particles and/or streambed resuspended sediments (Garcia-Armisen and Servais, 2009; Nguyen et 439 

al., 2016). Overall, higher E. coli concentration is related to higher surface runoff and higher suspended 440 

matter in the stream flow. The value of the intercept term in Eq. 5 corresponds to E. coli concentration 441 

during base flow (Boithias et al., 2016; Kim et al., 2018), i.e. when [TSS] and QOF tend to zero because 442 

there is no surface runoff during inter-storm periods, in other words when groundwater is the only 443 

supply to stream flow and EC tends to ECGW. 444 

The two variables best predicting [E. coli], namely [TSS] and QOF, can be assessed with proxies. [TSS] 445 

could be interchanged with Turbidity, since [TSS] and Turbidity are correlated, as discussed above. 446 

Similarly, EC appears strongly related to QOF (and Q) by a hyperbolic function (Fig. SI8). Using EC as a 447 

proxy of Q has already been proposed in Alpine headwaters (Cano-Paoli et al., 2019). Both of these 448 

proxies can be monitored in situ at high frequencies.  449 

4.2.2. Modelling mean concentration of E. coli per flood event [E. coli]mean 450 

The PLS regression analysis (Table SI3) confirmed the analysis of the correlation matrix (Fig. SI9): QOF-TOT% 451 

and QGW-TOT% were the best predictors of [E. coli]mean (r= 0.93 and -0.93, respectively). Land uses that 452 
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favor higher QOF-TOT% or lower QGW-TOT%, such as erosion-prone teak trees plantations (Lacombe et al., 453 

2016; Ribolzi et al., 2017), or more intense rainfall events, will lead to higher in-stream concentrations of 454 

E. coli (Fig. 6a and Fig. SI10) and thus higher fecal contamination risk. Hence, a model based on QOF-TOT% 455 

or QGW-TOT% appears relevant to predict [E. coli]mean. Such a basic tool may help local and national 456 

stakeholders to assess the fecal contamination risk by testing global change scenarios in target 457 

catchments. 458 

In this study, the mixing model of [E. coli]mean based on QOF-TOT% and QGW-TOT% had a R² of 0.86 and a NSE 459 

of 0.65. The NSE value is lower than the NSE values’ range reported by Chin (2011) in six nested 460 

catchments in Georgia, United-States. However, in our study the values of both overland flow and 461 

groundwater end-members were measured in the field, conversely to Chin (2011) who numerically 462 

optimized the values of the two end-members. The performance of the mixing model is lower in terms of 463 

NSE than those of the PLS and the linear models (NSE = 0.78 and 0.84, respectively). However, the PLS 464 

model is difficult to implement because of the large number of variables it implies, and both the linear 465 

and the PLS models are constrained by their validity domains. 466 

Within a catchment, the sources of E. coli are the E. coli transferred from hillslopes with surface runoff, 467 

as discussed in section 4.1, and the resuspension from the streambed, whereas the sinks of E. coli are the 468 

deposition of the bacterium on the streambed and its decay in the water column. Since rainfall events in 469 

the Houay Pano catchment last 0.5-5 hours, considering a decay rate of 0.3-0.6 d-1 (Nguyen et al., 2016), 470 

the removal of E. coli in the water column from bacteria population decay is negligible during a flood 471 

event. Since the mixing model is able to accurately predict the flood-event mean concentration of E. coli 472 

at the catchment outlet, the deposition of E. coli on the streambed is either negligible or compensated 473 

by the resuspension. The percentage of E. coli resuspended from streambed during a flood is about 11% 474 

(Ribolzi et al., 2016a), which implies that the compensated E. coli deposition, e.g. in small wetlands along 475 

the main stream, is about 11% as well. Finally, since the possible sources and sinks of E. coli are negligible 476 
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compared to the bacterium transport processes during flood events, the approximation of the simple 477 

model that only considers two end-members, namely the E. coli concentration in both surface runoff and 478 

groundwater, is acceptable.  479 

Hence, we could calculate the relative contributions of surface runoff and of sub-surface flow to the in-480 

stream E. coli contamination. Excluding flood event C that was driven by groundwater flow, more than 481 

95% of [E. coli]mean resulted from overland flow, even for flood events where the percentage of overland 482 

flow was small (<20%, events E and G). The average contribution of overland flow to the flood-event 483 

mean concentration of E. coli was 89%, while the average contribution of overland flow to the flood-484 

event mean stream flow was 41% (Fig. 4). In other words, the contribution of groundwater to the in-485 

stream E. coli contamination was low during flood events, even though the contribution of groundwater 486 

to stream water flow was greater than that of overland flow, i.e. when base flow index (BFI) was over 487 

0.5. In comparison, with similar BFI values, Chin (2011) reported bacteria loads from surface runoff in the 488 

range of 80–90%, with the remainder mostly originating from base flow, and negligible background loads 489 

from the catchment.  490 

491 
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5. Conclusion 492 

To our knowledge, few papers have reported the statistical relationships between E. coli and its 493 

environmental drivers (meteorological, hydrological, and land use variables) and the present study is the 494 

first one to investigate E. coli dynamics during flood events in a tropical humid catchment. We conclude 495 

that: 496 

- Regardless of the contribution of sub-surface flow to the flood, in-stream E. coli concentration is 497 

high, suggesting that the streambed E. coli store is high. However, highest concentrations of E. 498 

coli are measured for the flood events that are driven by surface runoff, suggesting that surface 499 

runoff, and consequently soil erosion, are the primary drivers of in-stream E. coli contamination; 500 

- The three predictive models (linear model, partial least square model, and mixing model) show 501 

that the percentage of surface runoff in stream flow is the best predictor of the flood event 502 

mean concentration of E. coli; 503 

- A simple mixing model based on the relative contributions of both overland flow and 504 

groundwater, and on the E. coli concentration in both overland flow and groundwater, is reliable 505 

to predict in-stream flood-event mean E. coli concentration (NSE=0.65). On average, 89% of the 506 

in-stream concentration of E. coli is supplied by surface runoff, while the overall contribution of 507 

surface runoff to the stream flow is 41%. 508 

- Stream flow turbidity and E. coli concentration are positively correlated, but turbidity is not a 509 

strong predictor of E. coli concentration during flood events; 510 

Predictive models based on turbidity and electrical conductivity may be used to provide real-time 511 

estimates of in-stream E. coli concentration, whereas a mixing model may provide flood-event mean 512 

information. Such simple models may help to assess the impact of global change on in-stream E. coli 513 

contamination. They could thus be used to assess the risk of water borne diseases such as diarrhea, in 514 

rural areas where mammals, including humans, practice open defecation, and to design early warning 515 
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systems. Applied over long periods of time, the models might be used to calculate E. coli input-output 516 

load balances. Such basic modelling studies would thus help to assess the long-term impact of land-use 517 

change on the microbial quality of surface water.  518 

Future work is required to better understand the pathways of FIB at catchment scale. For example, there 519 

is a need to characterize the interactions between ground and surface waters, and the role of the 520 

hyporheic zone, as sources of contaminant. Furthermore, the partition between free and particle-521 

attached E. coli should be quantified to better understand and predict the probability that bacteria is 522 

deposited on the streambed during the flood recession stage and re-suspended in the water column 523 

during the next flood rising stage. These findings are of primary importance to build adequate 524 

catchment-scale models to accurately simulate E. coli fate and transport, and thus better assess fecal 525 

contamination risk in a global changing context. 526 
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List of figures 774 

775 

776 

Fig. 1. (a) Location of the S4 outlet of the Houay Pano catchment in northern Lao PDR; (b) River gauging 777 

and sampling station S4, weather station, and altitudes. Altitudes are given in meters above sea level (m 778 

a.s.l.).779 

780 

781 

782 

783 
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784 

Fig. 2. Rainfall (mm h-1) and discharge (Q, in L s-1) for the 2011-2015 period, and E. coli concentration ([E. 785 

coli], in MPN 100 mL-1) for twelve flood events from 2011 to 2015 at the outlet of the Houay Pano 786 

catchment, northern Lao PDR. The flood events of 16-17 June 2012 (C, D, and E) and of 4 August 2015 (I 787 

and J) have been decomposed into 3 and 2 separate flood events. Details of these two flood events is 788 

shown in Fig. 3. Although [E. coli] measures for events C-E were expressed in CFU 100 mL-1, they are 789 

reported as MPN 100 mL-1 for the sake of simplicity. 790 

791 
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 792 



35 

Fig. 3. Monitored flood events from 2011 to 2015 at the outlet of the Houay Pano catchment, northern Lao PDR. Rainfall: rainfall (mm); Q: 793 

discharge (L s-1); QOF: surface runoff (L s-1); QGW: sub-surface flow (L s-1); [TSS]: total suspended sediments concentration (g L-1); Turbidity: turbidity 794 

(NTU); [E. coli]: E. coli concentration (MPN 100 mL-1). Measurements of turbidity were lacking for event G. Although [E. coli] measures for events 795 

C-E were expressed in CFU 100 mL-1, they are reported as MPN 100 mL-1 for the sake of simplicity. Red and green bands for QOF and QGW, 796 

respectively, are uncertainty bands calculated with the Genereux (1998) method. Grey bands for [E. coli] are uncertainty intervals given by 797 

Poisson distribution when using the standardized microplate method. 798 

799 
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 800 

Fig. 4. Contributions (in %) of overland flow and of groundwater flow in (a) flood-event total volume of 801 

stream flow, and in (b) flood-event total E. coli number. The twelve flood events were sampled from 802 

2011 to 2015 at the outlet of the Houay Pano catchment, northern Lao PDR. Measurements of electrical 803 

conductivity were missing for event A. Average QOF-TOT% and average [E. coli]OF-TOT% are the average 804 

contribution of overland flow to the in-stream flow and the average percentage of E. coli resulting from 805 

overland flow, respectively. CV: coefficient of variation. 806 

  807 



37 

808 

Fig. 5. Mean E. coli concentration per flood event ([E. coli]mean): comparison of models’ predictions with 809 

observed values (MPN 100 mL-1). (a) QOF-TOT%-based linear model against observed [E. coli]mean; (b) PLS 810 

model against observed [E. coli]mean; (c) Mixing model against observed [E. coli]mean. R²: coefficient of 811 

determination; NSE: Nash-Sutcliffe Efficiency. The twelve flood events were sampled from 2011 to 2015 812 

at the outlet of the Houay Pano catchment, northern Lao PDR. 813 



38 

814 

Fig. 6. Partial Least Square regression analysis where the flood-event mean concentration of E. coli ([E. 815 

coli]mean) is explained by hydro-meteorological and land-use variables: (a) E. coli located in the 816 

correlations circle with 13 meteorological and hydrological variables and 5 land-use variables; (b) Map of 817 

observations (twelve flood events from 2011 to 2015 at the outlet of the Houay Pano catchment, 818 

northern Lao PDR); (c) Variable Importance in Projection (VIP) of the 18 variables for two components. 819 

RD: event rainfall duration; RTOT: cumulated rainfall over the event; RIMAX: maximum rainfall intensity; API: 820 

antecedent precipitation index; QMAX: peak discharge during the event; QTOT: total volume of stream 821 

water exported during the event; QOF-TOT: total volume of surface runoff exported during the event; QOF-822 

TOT%: percentage of surface runoff during the event calculated as QOF-TOT/QTOT*100; QGW-TOT: total volume 823 
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of sub-surface flow exported during the event; QGW-TOT%: percentage of sub-surface flow during the 824 

event calculated as QGW-TOT/QTOT*100; KE: flow coefficient calculated as QTOT/RTOT; [TSS]mean: flood-event 825 

mean total suspended sediments concentration; Turbiditymean: flood-event mean turbidity; Fallow: 826 

annual percentage of the catchment area covered by fallow; Teak: annual percentage of the catchment 827 

area covered by teak trees; Annual crop: annual percentage of the catchment area covered by annual 828 

crops; Teak+Crop: annual percentage of the catchment area covered by annual crops grown under young 829 

teak trees; E. coli input: monthly E. coli input within the catchment. 830 
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List of tables 831 

Table 1. Hydro-meteorological characteristics of the selected flood events from 2011 to 2015 at the outlet of the Houay Pano catchment, 832 

northern Lao PDR. 833 

Rainfall Discharge Water quality 

Event Start date 
Time 

RD 
(min) 

RTOT 
(mm) 

RIMAX 
(mm h

-1
)

API 
(mm) 

QMAX 
(L s

-1
)

QTOT 
(m

3
)

QOF-TOT 
(m

3
)

QOF-TOT% 
(%) 

KE 

(%) 
n 
(-) 

[TSS]mean 
(g L

-1
)

Turbiditymean 
(NTU) 

[E. coli]mean 
(MPN 100 mL

-1
)

A 05/25/2011 
16:06 

24 22.5 60 15.5 69.1 305.5 2.3 8 1.0 993.6 8388 

B 05/15/2012 
10:18 

42 33.5 75 2.8 80.3 553.4 146.7 27 2.7 10 4.9 5466.0 2672 

C 06/16/2012 
17:48 

54 10.5 40 15.0 35.8 69.7 0.0 0 1.1 6 2.9 594.2 1682 

D 06/17/2012 
00:00 

228 39 25 48.6 242.0 2620.8 1432.4 55 11.2 18 5.3 3252.9 16053 

E 06/17/2012 
03:00 

306 19 25 40.6 168.4 2471.3 440.9 18 21.6 7 4.1 2578.0 2181 

F 06/04/2013 
16:11 

82 14.6 60 12.3 47.0 215.6 103.3 48 2.5 5 2.0 5860.3 11020 

G 06/16/2014 
13:19 

36 15.4 44 9.3 31.7 222.6 38.4 17 2.4 11 0.6 1125 

H 06/12/2015 
02:06 

74 13.2 34 11.1 125.8 308.9 96.4 31 4.0 12 10.1 3696.0 1748 

I 08/04/2015 
13:22 

50 6 44 4.3 95.2 127.4 69.1 54 3.8 4 4.8 6809.8 16776 

J 08/04/2015 
14:49 

131 34.6 46 30.9 967.9 5554.2 3796.0 68 26.7 7 9.8 7790.9 16403 

K 08/11/2015 
21:59 

81 20.8 56 17.4 374.7 1378.9 804.9 58 11.0 9 6.0 5205.8 13112 

L 08/26/2015 
07:48 

116 32.4 54 16.2 849.6 3903.6 3118.3 80 20.0 10 8.2 4822.8 27375 

RD: duration of rainfall event; RTOT: cumulated rainfall of the event; RIMAX: maximum rainfall intensity; API: antecedent precipitation index; QMAX: peak discharge 834 
during the flood event; QTOT: total volume of stream water exported during the event; QOF-TOT: total volume of surface runoff exported during the event; QOF-835 
TOT%: percentage of surface runoff during the event calculated as QOF-TOT/QTOT*100; KE: flow coefficient calculated as QTOT/RTOT; n: sample size; [TSS]mean: flood-836 
event mean total suspended sediments concentration; Turbiditymean: flood-event mean turbidity; [E. coli]mean: flood-event mean E. coli concentration. 837 
Measurements of EC and of Turbidity were lacking for events A and G, respectively. Although E. coli measurements for events C-E were expressed in CFU 100 838 
mL

-1
, they are reported as MPN 100 mL

-1
 for the sake of simplicity. 839 




