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Abstract 

Pure and even-aged (PEA) forests of fast growing conifer species have for long been key 

providers of industrial raw material. Despite recent concerns regarding their greater sensitivity 

to major natural disturbances, their impacts onto biodiversity and their funding efficiency, 

PEA conifer forests could remain a major economic target given the ongoing European 

strategy for bioeconomy. These forests are encountered across contrasted climates and in both 

native and introduced contexts across Europe, giving rise to high uncertainties regarding their 

growth responses to current climate change. Using the French National Forest Inventory data, 

we inquired the radial growth of eight major conifer species in European forestry across 16 

regional native and introduced PEA forest systems (n > 10,000 trees). Growth trends over the 

2006-2016 period exhibited a significant negative association with the absolute growth level 

in 2006, with strongest negative growth trends found for emblematic PEA forestry species 

(e.g. Norway spruce and Douglas-fir), and strongest positive trends for pine species (e.g. 

Scots pine). While the greater growth rate advantage of some species may shorten rotation 

and lower risk exposures for future decades, their recent lowered productivity may affect the 

forest sector in the long run. The prevalence of PEA forests across European forest landscapes 

and their increasingly reported lower resilience to climate change compared to more complex 

forest systems call for the establishment of a long-term European forest policy strategy. 

Maintaining the environmental, social and economic benefits of forests should remain a 

priority in the European agenda, regardless of the financial costs at stake.  
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The era of fast growing conifer forests  

Over the past two centuries, fast growing conifer species, under the silvicultural paradigm of 

intensive pure and even-aged (PEA) forestry (1), have turned a key provider of raw material 

for the timber industry owing to their productivity, regular morphology and wood anatomy. 

To further increase productivity potentials and bypass native growth constraints, the forest 

sector has not only introduced conifer species outside their natural range but also exotic 

species (2). Afforestation programs have mainly transferred cold-adapted species into warmer 

regions and drought-adapted species into cooler/wetter regions. Interest for fast growing 

conifer species has also pushed breeding programs towards a continuous genetic improvement 

of productivity rates, resistance to pathogens and material quality (e.g. 3,4). Pro-active 

funding policies have further supported the establishment of monocultures of fast growing 

conifers, increasing their prevalence across European forest landscapes(5,6). Despite recent 

concerns regarding a higher sensitivity to major natural disturbances (7), impacts onto 

biodiversity (8) and funding efficiency (2), PEA conifer forestry (9) could remain a major 

forest type given the ongoing European strategy for bioeconomy (10). Whether climate 

change constitutes a detrimental threat onto PEA forestry and more largely onto the European 

forest sector now comes into debate (e.g., 11,12).  

 

Conifers in France, a demonstrative case study  

In France, PEA conifer forests are encountered across contrasted climatic contexts (oceanic, 

continental and Mediterranean; Fig. 1A) and account for 25% and 40 % of the forest area and 

growing stock, respectively. Over the past 150 years, afforestation programs have triggered a 

doubling of their spatial extent. Norway spruce (Picea abies Karst.) and Scots pine (Pinus 

sylvestris L.), two cold-adapted species native of the French Alps, have been largely 

introduced at low and mid-elevations (e.g. Northern Plains and Massif Central). Maritime 



pine (Pinus pinaster Ait.), native of northern Africa, has also been intensively introduced first 

in the South West, where it has turned into a French emblem of large-scale intensive forestry 

known as “Forêt des Landes”, and then across the Northern Plains. Corsican pine (Pinus nigra 

subsp. laricio Maire), a drought-adapted pine species native from the Mediterranean region, 

has been introduced in the cooler and wetter Northern Plains. Finally, Douglas-fir 

(Pseudotsuga menziesii Mirb. Franco), native from North America, has more recently been 

massively introduced at low and mid-elevations (Northern Plains and Massif Central), to the 

extent that France presents the second highest growing stock of Douglas-fir after the U.S.A. 

These features make this western-European context a perfect case study for observing how 

PEA conifer forests in native and introduced contexts react to ongoing climate change. 

 

Isolating climate effects on growth using National Forest Inventory data 

Using the French National Forest Inventory (NFI) sampling design and data, we studied the 

radial growth of eight conifer species prevalent in European forestry in PEA forests across 

different bioclimatic regions (n > 10,000 trees; Fig. 1). In total, 16 PEA regional forest 

systems were studied (Fig. 1B). Regional forest systems were classified as either native or 

introduced based on distribution maps elaborated by the European Forest Genetic Resources 

program (www.euforgen.org) and on available historical knowledge of species introduction in 

new regional contexts (Table S1). The present study completes a previous research (13) by 

investigating further the origins of growth trends‟ variability observed across PEA conifer 

systems over the 2006-2016 period through the link between growth trends and initial growth 

level in 2006.  

Radial increment series were filtered out from non-climatic signals at the system level using 

linear modeling and an ensemble of 42 predictive tree, stand, soil and long-term climate 

variables (13). Remaining inter-annual radial growth variability, supposed to be primarily 

http://www.euforgen.org/species/


associated with short-term climate variability, was converted into relative growth anomalies 

by expressing the growth deviation of a specific year as a ratio of its residual growth level to 

the residual growth during the reference year 2006. Absolute radial growth chronologies were 

finally obtained by multiplying relative growth anomalies by the average growth level during 

the reference year (Fig. S1). The strength of the herein-developed modeling approach is that 

changing the reference year would neither impact the relative position of growth anomalies, 

nor the relative growth difference (deviation %) between any two years, nor the absolute 

radial growth chronology obtained (in mm) (Fig. S2).  

Regional trends in inter-annual growth anomalies were subsequently regressed against 

regionally-aggregated biotic and short-term seasonal climate predictors. Predictors included 

e.g. the Gini index, a plot-level measure of tree-size heterogeneity derived from tree diameter 

field measurements which value ranges between 0 (perfectly homogeneous stands) and 1 

(singularly heterogeneous stands), water field capacity directly measured in the field and, 

averages and trends in seasonal climate computed over the 2006-2016 period using the 

European E-OBS 0.5° x 0.5° gridded dataset (www.ecad.eu).  

 

Greatest growth declines in fast growing systems 

Analyses revealed that growth trends over the 2006-2016 period exhibited a negative 

association with absolute growth level in 2006 (R² = 0.65, PV < 0.001; Fig. 1B), with 

strongest negative trends undergone by emblematic species of most recent afforestation 

programs (e.g. Norway spruce and Douglas-fir that represent the highest and second highest 

conifer growing stock in France, respectively; www.inventaire-forestier.ign.fr). As a major 

finding, this pattern was also observed across species and across regional samples within 

species (Fig. 1B) suggesting that climate-driven transient conditions of tree growth affect 

tree-specific populations in a universal direction (e.g. regression-to-the mean process (15)), 

https://www.ecad.eu/download/ensembles/ensembles.php
https://inventaire-forestier.ign.fr/spip.php?rubrique91


with fast growing forest systems showing systematically more detrimental growing 

trajectories than slow growing systems regardless of the biological organization level in focus. 

Causal explorations, presented in the previous study by (13), indeed revealed that negative 

growth trends were significantly accentuated by decreasing summer precipitation (R² = 0.51, 

PV = 0.006; Fig. 2A) and by increasing summer temperature (R² = 0.35, PV = 0.033; Fig. 

2B), giving ground to adverse climate change effects onto PEA conifer forests, especially in 

introduced contexts. Yet consistently with the exhibited trade-off (Fig. 1B), greater growth 

declines were found in forest systems with greater water field capacity (R² = 0.52, PV = 

0.001; Fig. 2C), providing a resource-oriented ground to greater growth declines at greater 

initial growth. Lastly, forest systems with greater stand diameter heterogeneity exhibited 

greater growth (R² = 0.29, PV = 0.03; Fig. 2D). 

 

Climate-silviculture interactions: the need to rethink silvicultural paradigms  

Over a period of generalized increasing thermal (between + 0.55 to + 1.72°C in 11 years 

depending on PEA systems; Fig. 2B) and water constraints (Fig. 2A), greater climatic stress 

to tree growth is hence being observed in introduced systems where growth (Fig. 1B) is not 

limited by soil water potential (Fig. 2C) but where competition for resources is greater (Fig. 

2D). The ongoing and forecasted pace of climate change will exacerbate climatic constraints, 

thereby contracting the optimal geographical envelops of many conifer tree species (14). Even 

though greater initial growth potential may persist for a few decades (Fig. 1B) and facilitate 

the shortening of rotations and reduction of forest exposure to sudden disturbance and stress 

exposures, it may also yield to a gradual decrease in productivity (Fig. 1B) with potential 

major impacts on the forest sector on the long term. The challenges of climate change hence 

praise for a shift in the dominant silvicultural paradigm.  



The current forestry interests for fast growing tree-species and homogenous forest structure 

should be urgently revised. Renewed attention on long-term conifer-species selection is 

needed, with slow-growing (e.g. hardy pine) species as possible primary targets as showing 

more resilient to climatic stress (Fig. 1). Although promoting stand heterogenization may 

appear as a path forward to enhance the climatic resilience of PEA forest systems (16), arising 

technical difficulties (e.g. organizing plantations waves and selective harvesting), costs and 

time horizons of implementation make this solution very unlikely to happen on a large 

geographical scale. Furthermore, the recently highlighted greater resilience of more complex 

forest ecosystems (17) rather argues for an urgent amplification of initiated efforts to convert 

PEA forests towards such systems (11). Adaptive forest management as a way to optimize 

resources use and tree-to-tree interactions may provide guiding management principles 

(18,19). We are aware that the implementation of these new paradigms requires substantial 

efforts. Nevertheless, recent climate projections open up the possibility of a 5°C warming by 

the end of the century (20) and seriously question the future of European forests and of the 

environmental, social and economic benefits they provide. The role of a European political 

forest strategy is here heavily stressed to build a climate-resilient forestry (see 12) and 

maintain forest services. 
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Figures 1 

 2 

Figure 1. Recent growth trends of pure and even-aged conifer forests in France under climate change. A. Geographical location and relief 3 

characteristics of bioclimatic regions under study; B. Association between radial growth trends over the 2006-2016 period and average radial 4 

growth in 2006 across the 16 regional pure and even-aged forest systems in focus. Regional forest systems are labeled using their corresponding 5 

regional acronym on panel A. Native and introduced forest systems are displayed using circles and squares, respectively. Standard deviations 6 

(95%) of native and introduced contexts along the x and y spaces are plotted using continuous and dashed segments, respectively. The black line 7 

illustrates the linear regression between regional growth trends and average regional radial growth all forest systems included. The R² and P 8 

value of this regression are displayed on the figure. Colored lines represent the same linear regression but at intra-species level when possible 9 

(more than one regional forest system studied for a given tree species). Radial growth anomaly chronologies from which trends were computed 10 

are presented in Fig. S1. 11 



 12 

Figure 2. Major environmental indicators of the 2006-2016 growth trends of the 16 13 

regional pure and even-aged conifer forest systems under study. Native and introduced 14 

forest systems are displayed using circles and squares, respectively. Regional forest systems 15 

are labeled using their corresponding regional acronym on Fig. 1A. Standard deviations 16 

(95%) of native and introduced systems along the x and y spaces are plotted using continuous 17 

and dashed segments, respectively. Trend in summer precipitation (A) and maximum 18 

temperature (B) were computed over the 2006-2016 period. The black line illustrates the 19 

overall linear regression between growth trends and the regionally-aggregated predictive 20 

variable in focus. The R² and P value of this regression are displayed on each panel. The 21 

results presented in the different panels are reprinted from (13), Copyright (2020), with 22 

permission from Elsevier. 23 


