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Feedback Stabilization of a Class of Diagonal
Infinite-Dimensional Systems with Delay Boundary

Control
Hugo Lhachemi and Christophe Prieur

Abstract—This paper studies the boundary feedback stabi-
lization of a class of diagonal infinite-dimensional boundary
control systems. In the studied setting, the boundary control
input is subject to a constant delay while the open loop system
might exhibit a finite number of unstable modes. The proposed
control design strategy consists in two main steps. First, a finite-
dimensional subsystem is obtained by truncation of the original
Infinite-Dimensional System (IDS) via modal decomposition. It
includes the unstable components of the infinite-dimensional
system and allows the design of a finite-dimensional delay
controller by means of the Artstein transformation and the pole-
shifting theorem. Second, it is shown via the selection of an
adequate Lyapunov function that 1) the finite-dimensional delay
controller successfully stabilizes the original infinite-dimensional
system ; 2) the closed-loop system is exponentially Input-to-State
Stable (ISS) with respect to distributed disturbances. Finally, the
obtained ISS property is used to derive a small gain condition
ensuring the stability of an IDS-ODE interconnection.

Index Terms—Distributed parameter systems, Delay boundary
control, Lyapunov function, PDE-ODE interconnection.

I. INTRODUCTION

Feedback control of finite-dimensional systems in the pres-
ence of input delays has been extensively investigated [1], [20].
The extension of this topic to Infinite-Dimensional Systems
(IDSs), and in particular to Partial Differential Equations
(PDEs), has attracted much attention in the recent years.

There exist essentially two types of control inputs for
infinite-dimensional systems: bounded and unbounded con-
trol operators. The stability of linear and semilinear infinite-
dimensional system under time-varying delayed feedback act-
ing via a bounded linear control operator has been studied,
e.g., in [9], [22]. In this paper, we are interested in the second
type of control, i.e., when the control input acts on the system
via an unbounded operator. For PDEs, such a setting takes the
form of a control acting in the boundary conditions.

Unbounded control operators have been considered in the
stability study of various PDEs. The cases of the heat [17] and
wave [15]–[17] equations were studied via Lyapunov methods
for slow time varying delays. The cases of a parabolic PDE
and a second-order evolution equation were reported in [25]
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and [8], respectively. The extension to a delayed ODE–heat
cascade under actuator saturation was reported in [10].

In this paper, we are interested in the boundary feed-
back stabilization of a class of diagonal infinite-dimensional
boundary control systems in the presence of a constant input
delay. Specifically, we consider the case of a boundary control
system [7] for which the associated disturbance-free operator
is a Riesz-spectral operator admitting a finite number of
unstable eigenvalues. The control design objective consists in
the feedback stabilization of the system by means of a delay
boundary control.

One of the very first contributions on input delayed unstable
PDEs deals with a reaction-diffusion equation [12] where the
controller was designed by resorting to the backstepping tech-
nique. The approach adopted in this paper differs. It relies on
the following three steps procedure initially reported in [21]:
1) obtaining a finite-dimensional subsystem capturing the un-
stable modes by truncation of the original infinite-dimensional
via a modal decomposition ; 2) design of a finite-dimensional
control law that stabilizes the finite-dimensional unstable part
of the system ; 3) use of an adequate Lyapunov function to
assess that the designed control law stabilizes the original
infinite-dimensional system. Such a control design strategy
was successfully applied to the stabilization of semilinear
heat [5] and wave [6] equations via (undelayed) boundary
feedback control. The extension of this design procedure to the
delay feedback control of a linear reaction-diffusion equation
was reported in [19], [24]. The delayed finite-dimensional
model was obtained via spectral reduction. Then, the control
law was computed by applying the Artstein transformation [1],
[20] and by resorting to the classical pole-shifting theorem.
A distinguished feature is that, under the knowledge of the
constant delay D ≥ 0, the obtained finite-dimensional control
law amounts stabilizing the closed-loop system, whatever the
value of the time-delay D may be.

In this context, the contributions of this paper is fourfold.
1) We generalize the approach developed in [19] for the

delay feedback control of a linear reaction-diffusion
equation with one-dimensional control input to the gen-
eral case of the delay boundary feedback stabilization
of a class of diagonal infinite-dimensional boundary
control systems with finitely many unstable modes and
finite-dimensional input. The study of this problem is
motivated by the fact that many applications, including
reaction-diffusion phenomena [5], [19], phase turbu-
lence phenomena [3] and certain models of structural
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vibrations phenomena such as wave [6], [7] and beam
equations [7], [14] in the presence of a damping term,
exhibit such a structure. The control design strategy
relies on the design of a state-feedback control law based
on a finite-dimensional truncated part of the original
system. The truncation is performed via a spectral de-
composition used to capture the unstable modes of the
system. The control law is then obtained based on this
finite-dimensional subsystem with delay control input
by means of the Artstein transformation and the pole-
shifting theorem. The exponential stability of the result-
ing closed-loop infinite-dimensional system is assessed
via the introduction of a suitable Lyapunov function.
This is worth noting that the control design strategy is
presented in a constructive manner, taking the form of
a predictor feedback as the ones classically used for the
control of finite-dimensional LTI systems.

2) In [5], [6], [19] the control design was performed on the
time derivative v = u̇ of the actual input signal u. Thus,
the application of the control law required an a poste-
riori integration of v to obtain the actual control input
u. In this paper, we simply the control law by avoiding
such an a posteriori integration. Such a simplification is
allowed by an adequate spectral decomposition that only
involves the value of the control input while avoiding the
occurrence of its time derivative.

3) We show that the resulting closed-loop system is expo-
nentially Input-to-State Stable (ISS) [23] with respect to
distributed disturbances acting via a bounded operator.

4) Taking advantage of the ISS property of the closed-
loop infinite-dimensional system, we derive a small gain
condition ensuring the stability of an IDS-ODE inter-
connection. We follow here the methodology presented
in [11] that relies on the conversion of the ISS estimates
satisfied by each component of the interconnection into
fading memory estimates [11, Lemma 7.1]. However,
such a conversion does not apply to the studied closed-
loop infinite-dimensional system due to the time-varying
nature of the control strategy. This pitfall is avoided by
working directly with the Lyapunov function instead of
the trajectories of the system.

The remainder of this paper is organized as follows. Both
problem setting and control objectives are introduced in Sec-
tion II. The comprehensive construction of the control strategy
is presented in Section III. The study of the ISS property of
the resulting closed-loop infinite-dimensional system is carried
out via the introduction of an adequate Lyapunov function
in Section IV. We take advantage of these results to derive
in Section V a small gain condition ensuring the stability of
an IDS-ODE interconnection. In Section VI, we check the
assumptions on a IDS-ODE system and in particular the small
gain condition. The obtained numerical results are compliant
with the theoretical predictions. Finally, concluding remarks
are provided in Section VII.

II. PROBLEM SETTING AND CONTROL OBJECTIVE

The sets of non-negative integers, positive integers, real,
non-negative real, positive real, and complex numbers are

denoted by N, N∗, R, R+, R∗+, and C, respectively. Through-
out the paper, we assume that (H, 〈·, ·〉H) is a separable
Hilbert space over the field K, which is either R or C. All
the finite-dimensional spaces Kp are endowed with the usual
euclidean inner product 〈x, y〉 = x∗y and the associated 2-
norm ‖x‖ =

√
〈x, x〉 =

√
x∗x, where x∗ = x>. For any

matrix M ∈ Kp×q , ‖M‖ stands for the induced norm of M
associated with the above 2-norms.

A. Problem setting

We consider the abstract boundary control systems [7] with
delayed boundary control

dX

dt
(t) = AX(t) + d(t), t ≥ 0 (1a)

BX(t) = uD(t) , u(t−D), t ≥ 0 (1b)
X(0) = X0 (1c)

with
• A : D(A) ⊂ H → H a linear (unbounded) operator;
• B : D(B) ⊂ H → Km with D(A) ⊂ D(B) a linear

boundary operator;
• d : R+ → H a distributed disturbance;
• u : [−D,+∞) → Km, with a known constant delay
D > 0 and u|[−D,0) = 0, the boundary control.

We assume that (A,B) is a boundary control system, i.e.,
1) the disturbance-free operator A0, defined on the domain

D(A0) , D(A) ∩ ker(B) by A0 , A|D(A0)
, is the

generator of a C0-semigroup S on H;
2) there exists a bounded operator B ∈ L(Km,H), called

a lifting operator, such that R(B) ⊂ D(A), AB ∈
L(Km,H), and BB = IKm .

It is recalled that ker(B) is the kernel of B while R(B) stands
for the range of B. We make the following assumptions.

Assumption 2.1: The disturbance-free operator A0 is a Riesz
spectral operator [7], i.e., is a linear and closed operator with
simple eigenvalues λn and corresponding eigenvectors φn ∈
D(A0), n ∈ N∗, that satisfy:

1) {φn, n ∈ N∗} is a Riesz basis [4]:
a) spanK

n∈N∗
φn = H;

b) there exist constants mR,MR ∈ R∗+ such that for
all N ∈ N∗ and all α1, . . . , αN ∈ K,

mR

N∑
n=1

|αn|2 ≤

∥∥∥∥∥
N∑
n=1

αnφn

∥∥∥∥∥
2

H

≤MR

N∑
n=1

|αn|2.

(2)
2) The closure of {λn, n ∈ N∗} is totally disconnected,

i.e. for any distinct a, b ∈ {λn, n ∈ N∗}, [a, b] 6⊂
{λn, n ∈ N∗}.

Assumption 2.2: There exist N0 ∈ N∗ and α ∈ R∗+ such
that Reλn ≤ −α for all n ≥ N0 + 1.

Remark 2.3: Note that Assumption 2.2 is equivalent to:
• the number of unstable eigenvalues is finite, i.e.,

Card({λn : Reλn ≥ 0}) <∞ ;
• the set composed of the real part of the stable eigen-

values is not accumulating at 0, i.e., sup{Reλn : n ≥
1, Reλn < 0} < 0.
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Physically meaningful problems that take the form of (1)
and such that Assumptions 2.1 and 2.2 hold include reaction-
diffusion phenomena [5], [19], phase turbulence phenom-
ena [3] and certain models of structural vibrations phenomena
such as wave [6], [7] and beam equations [7], [14].

From the well-known properties of Riesz bases [4], we
introduce {ψn, n ∈ N∗} the biorthogonal sequence associated
with the Riesz basis {φn, n ∈ N∗}, i.e., 〈φk, ψl〉H = δk,l
with δk,l = 1 if k = l while δk,l = 0 if k 6= l. Then, the
series expansion x =

∑
n≥1
〈x, ψn〉H φn holds for all x ∈ H.

Furthermore, as A0 is assumed to be a Riesz-spectral operator,
then ψn is an eigenvector of the adjoint operator A∗0 associated
with the eigenvalue λn.

B. Control objective
The control objective is twofold. First, in the absence of

distributed disturbance (i.e. d = 0), the objective is to design
a control law u that ensure the exponential stability of the
closed-loop system. Second, the control law must ensure the
ISS property of the closed-loop system with respect to the
distributed disturbance d.

Because we are only concerned in controlling the system
from the starting time t = 0, we assume that the system is
uncontrolled for t < 0. This is why it is imposed u|[−D,0) = 0.
Therefore, due to the delay D in the control input of (1), the
system remains open-loop for t < D while the effect of the
control input has an impact on the system only at times t ≥ D.

Note that the N0 ∈ N∗ and α > 0 provided by Assump-
tion 2.2 are not unique. For instance, one could select N0 ∈ N∗
such that λ1, . . . , λN0 are all with non negative real part. In this
case, the control design reduces to stabilize the unstable part
of the system. Nevertheless, one could also want to improve
the decay rate or the damping of certain stable modes. In this
case, λ1, . . . , λN0

would include all the unstable eigenvalues
and certain stable eigenvalues of the open-loop system.

III. CONSTRUCTION OF THE FEEDBACK CONTROL
STRATEGY

In order to derive the control law, we make in this section
the a priori assumption that u ∈ C2([−D,+∞);Km). This
assumption is necessary to ensure the existence of classical
solutions of (1), and thus to proceed to the upcoming compu-
tations (see [7]). Consequently, the construction of the control
law must ensure that such a regularity property holds. For the
proposed control law, this regularity property will be assessed
in the next section in Lemma 4.2. This result will ensure the
validity of the computations reported in this section.

A. Spectral decomposition
Assuming that uD ∈ C2([0,+∞);Km), X0 ∈ D(A) such

that BX0 = uD(0) = 0 (i.e., X0 ∈ D(A0)), and d ∈
C1(R+;H), we denote by X ∈ C0(R+;D(A)) ∩ C1(R+;H)
the unique classical solution of (1). Introducing cn(t) ,
〈X(t), ψn〉H the coefficients of the projection of X(t) into
the Riesz basis {φn, n ∈ N∗}, we have the series expansion:

X(t) =
∑
n≥1

〈X(t), ψn〉H φn =
∑
n≥1

cn(t)φn. (3)

Then cn ∈ C1(R+;K) and, following [13] and introducing
dn(t) , 〈d(t), ψn〉H, we infer from (1) that, for all t ≥ 0,

ċn(t)

= 〈AX(t), ψn〉H + 〈d(t), ψn〉H
= 〈A0 {X(t)−BuD(t)} , ψn〉H + 〈ABuD(t), ψn〉H + dn(t)

= 〈X(t)−BuD(t),A∗0ψn〉H + 〈ABuD(t), ψn〉H + dn(t)

=
〈
X(t)−BuD(t), λnψn

〉
H + 〈ABuD(t), ψn〉H + dn(t)

= λncn(t)− λn 〈BuD(t), ψn〉H + 〈ABuD(t), ψn〉H + dn(t),
(4)

where we used that B {X(t)−BuD(t)} = uD(t)− uD(t) =
0, showing that X(t)−BuD(t) ∈ D(A) ∩ ker(B) = D(A0).

Remark 3.1: The ODE (4) describing the time evolution of
the coefficient cn(t) = 〈X(t), ψn〉H only involves the delayed
control input uD(t) while avoiding the occurrence of its time
derivative u̇D(t). Therefore, whereas it was necessary in [5],
[6], [19], due to the presence of the term u̇D(t) in the ODEs
resulting from the spectral decomposition, to augment the state
of the finite-dimensional subsystem and to use u̇D(t) as a
control input, we avoid here such a procedure. This yields a
simplification of the control law by avoiding an a posteriori
integration of u̇ to obtain the actual control law u.

Let E = (e1, e2, . . . , em) be the canonical basis of Km and
consider the projections u1, u2, . . . , um ∈ C2([−D,+∞);K)
such that:

u =

m∑
k=1

ukek =

u1...
um

 .
Introducing bn,k , −λn 〈Bek, ψn〉H + 〈ABek, ψn〉H, we
obtain from (4) that

ċn(t) = λncn(t) +

m∑
k=1

bn,kuk(t−D) + 〈d(t), ψn〉H .

Then, the following ODE with delay input holds for all t ≥ 0

Ẏ (t) = AN0
Y (t) +BN0

uD(t) +DN0
(t), (5)

where AN0 = diag(λ1, . . . , λN0) ∈ KN0×N0 , BN0 =
(bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m,

Y (t) =

 c1(t)
...

cN0
(t)

 =

 〈X(t), ψ1〉H
...

〈X(t), ψN0
〉H

 ∈ KN0 , (6)

and

DN0
(t) =

 d1(t)
...

dN0
(t)

 =

 〈d(t), ψ1〉H
...

〈d(t), ψN0
〉H

 ∈ KN0 . (7)

Note that the norm of DN0(t) can be bounded above in
function of the norm of the full distributed disturbance d(t)
as follows. For all t ≥ 0, we have

‖DN0
(t)‖2 =

N0∑
k=1

| 〈d(t), ψk〉H |
2 ≤

∑
k≥1

| 〈d(t), ψk〉H |
2

(2)

≤ 1

mR
‖d(t)‖2H. (8)
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The finite-dimensional linear ODE (5) captures the part
of the dynamics of (1) that must be stabilized/controlled by
the feedback control u. The idea consists in first designing
a control law that exponentially stabilizes the linear ODE
(5). Then, we assess that the proposed control law amounts
stabilizing the original infinite-dimensional system (1) by
means of an adequate Lyapunov function.

B. Stabilization of the finite-dimensional subsystem

At this point, we need to design a control law that stabilizes
the linear ODE with input delay (5). First, we resort to the
Artstein model reduction [1], [20] to obtain an equivalent
linear ODE that is free of delay. Specifically, we introduce
for all t ≥ 0

Z(t) = Y (t) +

∫ t

t−D
e(t−s−D)AN0BN0

u(s) ds

= Y (t) +

∫ D

0

e−τAN0BN0
u(t−D + τ) dτ.

Straightforward computations show that we have, for all t ≥ 0,

Ż(t) = AN0
Z(t) + e−DAN0BN0

u(t) +DN0
(t).

As e−DAN0 is invertible and commutes with AN0 , the pair
(AN0 , e

−DAN0BN0) satisfies the Kalman condition if and
only if the pair (AN0

, BN0
) satisfies the Kalman condition.

Consequently, in order to be able to apply the pole-shifting
theorem, we make the following assumption.

Assumption 3.2: (AN0
, BN0

) satisfies the Kalman condition.
Remark 3.3: In the case of a one-dimensional control input,

i.e., m = 1, we have that

det(BN0
, AN0

BN0
, . . . , AN0−1

N0
BN0

)

=

N0∏
n=1

bn,1 ×VdM(λ1, . . . , λN0),

where VdM(λ1, . . . , λN0
) is the Vandermonde determinant

associated with λ1, . . . , λN0
. Therefore, Assumption 3.2 is

fulfilled if and only if λ1, . . . , λN0 are all distinct and bn,1 6= 0
for all 1 ≤ n ≤ N0. In the general case m ≥ 1, we can
easily apply the PBH test [26] due to the diagonal nature
of the matrix AN0

. Assume without loss of generality that
λ1, . . . , λN0

are ordered such that there exist n1, . . . , np ∈ N∗
with n1 + . . . + np = N0 such that 1) for all 1 ≤ l ≤ p,
λsl−1+1 = λsl−1+2 = . . . = λsl ; 2) l1 6= l2 implies λsl1 6=
λsl2 , where sl = n1 +n2 + . . .+nl. Then, Assumption 3.2 is
fulfilled if and only if rank[(bn,k)sl−1+1≤n≤sl,1≤k≤m] = nl
for all 1 ≤ l ≤ p. In particular, it requires the necessary
condition that nl ≤ m for all 1 ≤ l ≤ p.

Remark 3.4: Note that bn,k is computed based on the
selection of a given lifting operator B. Even if such a lifting
operator is not unique, the quantity bn,k is actually independent
of the particularly selected lifting operator. Indeed, let B and
B̃ be two distinct lifting operators associated with (A,B).
Then, introducing B̂ = B − B̃, one has BB̂ = BB − BB̃ =
IKm − IKm = 0. Thus, R(B̂) ⊂ D(A)∩ker(B) = D(A0) and
we obtain that〈
AB̂ek, ψn

〉
H

=
〈
A0B̂ek, ψn

〉
H

=
〈
B̂ek,A∗0ψn

〉
H

=
〈
B̂ek, λnψn

〉
H

= λn

〈
B̂ek, ψn

〉
H
.

We deduce the claimed result, i.e.,

− λn 〈Bek, ψn〉H + 〈ABek, ψn〉H
= −λn

〈
B̃ek, ψn

〉
H

+
〈
AB̃ek, ψn

〉
H
.

Therefore, the commandability property of the pair
(AN0

, BN0
) is an intrinsic property of the boundary

control system (A,B) in the sense that it does not depend on
the selection of a particular lifting operator B.

Assuming that Assumption 3.2 holds, we can find a feed-
back gain K ∈ Km×N0 and P ∈ H+∗

N0
a positive definite

Hermitian matrix such that Acl , AN0 + e−DAN0BN0K is
Hurwitz with desired pole placement and

A∗clP + PAcl = −IN0
.

Then, a natural choice for the control input would be u(t) =
χ[0,+∞)(t)KZ(t). However, the resulting uD(t) = u(t−D) =
χ[D,+∞)(t)KZ(t − D) is discontinuous at t = D while
uD must be of class C2 over R+ to ensure the existence
of a classical solution of (1). Let t0 > 0 be given. We
consider a transition signal (from open loop to closed loop)
ϕ ∈ C2([−D,+∞);R) which is such that 0 ≤ ϕ ≤ 1,
ϕ|[−D,0] = 0, and ϕ|[t0,+∞) = 1. We define the state-
feedback control input u = ϕKZ. It satisfies u|[−D,0] = 0
and, for all t ≥ 0,

u(t) = ϕ(t)KZ(t)

= ϕ(t)KY (t) (9)

+ ϕ(t)K

∫ t

max(t−D,0)
e(t−s−D)AN0BN0

u(s) ds,

where it has been used that the system is uncontrolled for
t ≤ 0. In particular, the control law is such that uD(t) =
u(t−D) = ϕ(t−D)KZ(t−D) with uD(t) = 0 for t ≤ D
and uD(t) = KZ(t−D) for t ≥ D + t0.

Remark 3.5: This is worth noting that the proposed control
law (9) is presented in a constructive manner and takes the
form of a predictor feedback as the ones classically designed
for the control of finite-dimensional LTI systems in the pres-
ence of a delayed control input.

C. Characterization of the control law

In practice, it is convenient to use the control law expressed
under the form (9) since it allows its computation at time t
based on the measure of Y at time t and the past history
of the control law u. To do so, we must show that (9) fully
characterizes u, i.e., the uniqueness of the function u satisfying
the implicit equation (9). In other words, it requires to invert
the Artstein transformation [2] when weighted by the transition
signal ϕ. For any locally integrable function f : I → Km
with either I = R+ or I = [0, T ] for some T > 0, we define
TDf : I → Km as follows:

(TDf)(t) = ϕ(t)K

∫ t

max(t−D,0)
e(t−s−D)AN0BN0

f(s) ds.
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In particular TDf ∈ C0(I;Km), and thus we can consider the
iterations T kDf for any k ∈ N.

Lemma 3.6: Let I be either I = R+ or I = [0, T ] for some
T > 0. Let D > 0, g ∈ C0(I;KN0), and ϕ ∈ C0(I;R) such
that 0 ≤ ϕ ≤ 1 be given. Then, there exists a unique locally
integrable function v defined on I such that, for all t ∈ I ,

v(t) = ϕ(t)Kg(t)

+ ϕ(t)K

∫ t

max(t−D,0)
e(t−s−D)AN0BN0v(s) ds.

Furthermore v ∈ C0(I;Km) and is given by the series ex-
pansion v(t) =

∑
k≥0

(T kD(ϕKg))(t) where the series converge

uniformly over any time interval of finite length.
The inversion of the Artstein transformation in the case ϕ =

1 has been investigated in [2]. The proof of Lemma 3.6 is a
straightfoward extension of theorem 1 in [2] by noting that
v = ϕKg+ TDv, ϕ is a continuous function, and 0 ≤ ϕ ≤ 1.

IV. STUDY OF THE CLOSED-LOOP INFINITE-DIMENSIONAL
SYSTEM

Throughout this section, we assume that Assumptions 2.1,
2.2, and 3.2 hold. Under these conditions, it has been proposed
in Section III to resort to the control law given by (9) to
stabilize the infinite-dimensional system (1). As the control
law has been derived on a finite-dimensional part of the
original infinite-dimensional system, we must guarantee that
the proposed control strategy successfully stabilizes the full
system. Furthermore, in order to make valid the computations
performed in the previous section, we must ensure that the a
priori regularity assumption on the control input u is indeed
satisfied, i.e., u provided by (9) is of class C2.

A. Dynamics of the closed-loop system

Let D, t0 > 0 be given. We consider a given transition
signal ϕ ∈ C2([−D,+∞);R) such that 0 ≤ ϕ ≤ 1,
ϕ|[−D,0] = 0, and ϕ|[t0,+∞) = 1. The closed-loop system
dynamics takes the following form:

dX

dt
(t) = AX(t) + d(t), (10a)

BX(t) = uD(t) = u(t−D), (10b)
u|[−D,0] = 0 (10c)

u(t) = ϕ(t)KY (t) (10d)

+ ϕ(t)K

∫ t

max(t−D,0)
e(t−s−D)AN0BN0u(s) ds,

(10e)
X(0) = X0 (10f)

for any t ≥ 0. The adopted control strategy takes the form of
a state-feedback in which the signal Y (t) is computed based
on the state X(t) via (6). The feedback gain K ∈ Km×N0 is
selected such that Acl , AN0

+ e−DAN0BN0
K is Hurwitz.

Function d : R+ → H represents a distributed disturbance.
Remark 4.1: We assume that the initial control input is

identically zero, i.e., u0 , u|[−D0−δ,0] = 0. This can be
obtained in practice by initially applying a zero control input.

This avoids the necessity of regularity assumptions on u0
and the introduction of compatibility conditions restricting the
admissible initial conditions X0.

B. Well-posedness in terms of classical solutions

The following lemma ensures both the well-posedness of
the closed-loop system in terms of classical solutions and the
sufficient regularity of the control input. The proof is placed
in Annex A.

Lemma 4.2: Let (A,B) be an abstract boundary control
system such that Assumptions 2.1, 2.2, and 3.2 hold. For any
X0 ∈ D(A0) and d ∈ C1(R+;H), the closed-loop system
(10) admits a unique classical solution X ∈ C0(R+;D(A))∩
C1(R+;H). The associated control law u is uniquely defined
and is of class C2([−D,+∞);Km). It can be written under
the form u = ϕKZ with, for all t ≥ 0,

Z(t) , Y (t) +

∫ t

t−D
e(t−s−D)AN0BN0

u(s) ds, (11)

which is such that Z ∈ C2(R+;KN0) and satisfies, for all
t ≥ 0,

Ż(t) = (AN0
+ ϕ(t)e−DAN0BN0

K)Z(t) +DN0
(t), (12)

where DN0
(t) is defined by (7). In particular, for all t ≥ t0,

Ż(t) = AclZ(t) +DN0
(t). (13)

Furthermore, u is also expressed for all t ≥ 0 by:

u(t) =
∑
k≥0

(T kD(ϕKY ))(t),

with uniform convergence over any interval of finite length.

C. Exponential ISS property of the closed-loop system

This section is devoted to the demonstration of the following
stability result.

Theorem 4.3: Let (A,B) be an abstract boundary control
system such that Assumptions 2.1, 2.2, and 3.2 hold. Then the
closed-loop system (10) is exponential ISS in the sense that
there exist constants κ0 > 0 and C1, C2, C3, C4 ∈ R+ such
that, for any X0 ∈ D(A0) and d ∈ C1(R+;H), the classical
solution X of (10) associated with the initial condition X0

and the distributed disturbance d satisfies, for all t ≥ 0,

‖X(t)‖H ≤ C1e
−κ0t‖X0‖H + C2 sup

τ∈[0,t]
‖d(τ)‖H, (14)

and the control law is such that

‖u(t)‖ ≤ C3e
−κ0t‖X0‖H + C4 sup

τ∈[0,t]
‖d(τ)‖H. (15)

Remark 4.4: Theorem 4.3 ensures the stability of the closed-
loop system whatever the value of the delay D > 0 may be.
In particular, the number of modes N0 to be considered in the
control design is only constrained by the number of open-loop
unstable modes via Assumption 2.2, regardless of the value of
the delay D > 0.

To prove the theorem, we consider throughout this section
X0 ∈ D(A0) and d ∈ C1(R+;H) arbitrarily given. Let X ∈
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C0(R+;D(A)) ∩ C1(R+;H) be the classical solution of the
closed-loop system (10) associated with the initial condition
X0 ∈ D(A0) and the distributed disturbance d ∈ C1(R+;H).
We denote by Z the function defined by (11).

1) Definition of the Lyapunov function candidate: The
proof of the theorem relies on the following Lyapunov function
candidate, defined for all t ≥ 0 by

V (t) = γ1

{
Z(t)∗PZ(t) +

∫ t

t−D
ϕ(s)Z(s)∗PZ(s) ds

}
+ γ2ϕ(t−D)Z(t−D)∗PZ(t−D) (16)

+
1

2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2
,

where, because Acl = AN0 + e−DAN0BN0K is Hurwitz, P ∈
H+∗
N0

is a positive definite Hermitian matrix such that

A∗clP + PAcl = −IN0 . (17)

Constant γ1, γ2 ∈ R∗+ are sufficiently large parameters to
be selected latter, independently of the initial condition X0

and the distributed disturbance d. Note that, as a direct
consequence of the definition, one has V (t) ≥ 0 for all t ≥ 0.

Remark 4.5: Function V is well-defined and belongs to
C1(R+;R). Indeed, as ϕ and Z are continuous over R+, the
integral term is finite and, from (2),∑

k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

≤ 1

mR
‖X(t)−BuD(t)‖H <∞.

Thus we have V (t) ∈ R+. The continuous differentiability of
V follows from Annex B and the fact that functions ϕ, X , Z,
and u are of class C1.

Remark 4.6: At this point, it is relevant to discuss the
motivation behind the choice of the different terms of the
Lyapunov function candidate (16).

1) Assuming a zero distributed disturbance (d = 0), the
term Z(t)∗PZ(t) provides, based on (17), a Lyapunov
function for the finite-dimensional system Ż(t) =
AclZ(t). It aims at ensuring the exponential convergence
to zero of the N0 first coefficients 〈X(t), ψn〉H corre-
sponding to the projection of the system trajectory X(t)
into the Riesz basis {φn, n ∈ N∗} (see (3)).

2) In order to ensure the stability of the full infinite-
dimensional system, the Lyapunov function candi-
date V must ensure the convergence of all the
modes of the plant. This includes the coefficients
cn(t) = 〈X(t), ψn〉H, n ≥ N0 + 1, which were not
considered in the synthesis of the control law, but
which are still impacted by the control input u accord-
ing to the dynamics (4). A natural choice to capture
these coefficients would consist in the use of the term
1

2

∑
k≥N0+1

|〈X(t), ψk〉H|
2. However, the ODE describ-

ing the time domain evolution of 〈X(t), ψn〉H given
by (4) shows that the eigenvalue λn appears via the
following term: λn 〈X(t)−BuD(t), ψn〉H. Therefore,
in order to be able to absorb all the occurrences of

the eigenvalue λn, n ≥ N0 + 1, via the inequality
Reλn ≤ −α of Assumption 2.2, we consider the

term
1

2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2 (see (35) for

details).
3) As u = ϕKZ, the introduction of the term uD(t) in the

Lyapunov function candidate V yields the occurrence of
the term Z(t − D). It requires the introduction of the
term ϕ(t−D)Z(t−D)∗PZ(t−D) for compensation
purposes. The switching signal ϕ is used to materialize
the fact that the contribution of this term is relevant only
for t ≥ D.

4) Finally, the contribution of the term∫ t
t−D ϕ(s)Z(s)∗PZ(s) ds is to provide an upper

bound on the norm of the system trajectory X(t) which
only depends on V (t) (see Lemma 4.7).

The detailed properties of the Lyapunov function candidate V
are detailed in the next lemmas.

2) Upper bound on the norm of X: First, we establish a
connection between the norm of the system trajectory X(t)
and the value of the Lyapunov function candidate V (t). To do
so, we define the constant C1 > 0 by

C1 , 2 max
(

1, De2D‖AN0‖ ‖BN0K‖
2
)
. (18)

We denote by λm(P ) > 0 the smallest eigenvalue of P .
Lemma 4.7: Under the assumptions of Theorem 4.3 and for

γ1 > C1/λm(P ) and γ2 > ‖BK‖2/(mRλm(P )) arbitrarily
given, we have, for all t ≥ 0,

‖X(t)‖H ≤ C4

√
V (t), (19)

where C4 =
√

2MR +

√
mR‖BK‖√

γ2mRλm(P )− ‖BK‖2
> 0.

The proof of Lemma 4.7 can be found in Annex C.
3) Exponential convergence of the closed-loop system tra-

jectories: In order to study the exponential decay of V , we
consider the time interval over which the infinite-dimensional
system is fully placed in closed loop, i.e., for t > D + t0
which corresponds to ϕ(t) = 1. For t > D + t0, one has

V (t) = γ1

{
Z(t)∗PZ(t) +

∫ t

t−D
Z(s)∗PZ(s) ds

}
+ γ2Z(t−D)∗PZ(t−D)

+
1

2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉|2 ,

with uD(t) = u(t−D) = KZ(t−D). We also introduce the
positive constant

C5 ,
2m

αmR

m∑
i=1

{
‖ABei‖2H‖Ki‖2 + ‖Bei‖2H‖KiAcl‖2

}
,

(20)
where Ki is the i-th line of the matrix of feedback gain K.
The study of the time derivative V̇ of V for t > D + t0 is
reported in Annex D and yields the following result.

Lemma 4.8: Let β ∈ (0, 1) be arbitrarily
given. Under the assumptions of Theorem 4.3, and
for any arbitrarily given γ1 > C1/λm(P ) and
γ2 > max

(
‖BK‖2/(mRλm(P )), C5/(1− β)

)
, there exist
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constants1 κ0 = κ0(β, γ2) > 0 and C6 = C6(β, γ1, γ2) > 0,
independent of X0 and d, such that we have for all t ≥ D+t0

‖X(t)‖H ≤ C4e
−κ0(t−D−t0)

√
V (D + t0) (21)

+ C4

√
C6

2κ0
sup
τ∈[0,t]

‖d(τ)‖H,

with a control input such that

‖u(t)‖ ≤ ‖K‖√
C2(γ1)

e−κ0(t−D−t0)
√
V (D + t0)

+
‖K‖√
C2(γ1)

√
C6

2κ0
sup
τ∈[0,t]

‖d(τ)‖H. (22)

Remark 4.9: Coefficient β ∈ (0, 1) represents a trade-off
between the guaranteed decay rate κ0 and the coefficient
C6/(2κ0) that reflects the impact of the external disturbance
on the system trajectory. In particular (see (36-37) in Annex D
for details), taking β → 0+ will result in an increase of the
decay rate κ0 but also C6/(2κ0)→ +∞.

4) ISS estimate: In order to complete the proof of Theo-
rem 4.3, we resort to the following lemma that provides an
estimate of V (t) over the time interval [0, D + t0].

Lemma 4.10: Under the assumptions of Theorem 4.3,
there exist constants C9 = C9(γ1, γ2) > 0 and C10 =
C10(γ1, γ2) > 0, independent of X0 and d, such that for all
t ∈ [0, D + t0],

V (t) ≤ C9‖X0‖2 + C10 sup
τ∈[0,t]

‖d(τ)‖2H. (23)

The proof of Lemma 4.10 is in Annex E. We can now
complete the proof of Theorem 4.3. Indeed, for a given
arbitrary β ∈ (0, 1) and by selecting γ1 > C1/λm(P ) and
γ2 > max

(
‖BK‖2/(mRλm(P )), C5/(1− β)

)
, we obtain

from (23) and (39) that the following estimate holds

V (t) ≤ C9e
−2κ0(t−D−t0)‖X0‖2H+

(
C6

2κ0
+ C10

)
sup
τ∈[0,t]

‖d(τ)‖2H,

for all t ≥ 0. From (19), we obtain that, for all t ≥ 0,

‖X(t)‖H ≤
{
C4

√
C9e

κ0(D+t0)
}
e−κ0t‖X0‖H

+ C4

√
C6

2κ0
+ C10 sup

τ∈[0,t]
‖d(τ)‖H.

This shows that the claimed ISS estimate (14) holds. The
estimate of the control input (15) follows from (40), which
concludes the proof of Theorem 4.3.

V. APPLICATION TO THE STABILITY ANALYSIS OF A
CLOSED-LOOP INTERCONECTED IDS-ODE SYSTEM

As an application of the ISS property of the closed-loop
system (10), we propose to study the stability of a related
IDS-ODE interconnection. Specifically, we consider the case
where the external input d depends on the state of an ODE
satisfying a certain ISS estimate. This study is motivated by
the fact that certain physical systems such as chemical reactors
and water tanks are naturally modeled by a coupled PDE-ODE
system as the one studied in this section [11].

1These constants are explicitly given in Annex D by (36-37)

A. Dynamics of the closed-loop interconnected IDS-ODE sys-
tem and well-posedness

Let D, t0 > 0 be given. We consider a given transition sig-
nal ϕ ∈ C2([−D,+∞);R) such that 0 ≤ ϕ ≤ 1, ϕ|[−D,0] =

0, and ϕ|[t0,+∞) = 1. Let f1 ∈ C1(Kn ×H×Kmv ;Kn) and
f2 ∈ C1(Kn × H × Kmv ,H) be two vector fields. We make
the following assumption.

Assumption 5.1:
1) Vector fields f1(x,X, v) and f2(x,X, v) are (globally)

Lipschitz continuous in (x,X) on Kn × H, uniformly
in v over any compact subset of Kmv .

2) There exist constants D1, D2, D3 ≥ 0 such that, for all
x ∈ Kn, X ∈ H, and v ∈ Kmv ,

‖f2(x,X, v)‖H ≤ D1‖x‖+D2‖X‖H +D3‖v‖. (24)

3) The ODE ẋ = f1(x,X, v) is such that there exist
κ̃0 > 0 and C̃0, C̃1, C̃2 ∈ R+ such that, for any
given initial condition x(0) = x0 ∈ Kn and functions
X ∈ C0(R+;H) and v ∈ C0(R+;Kmv ), the following
ISS estimate holds for all t ≥ 0

‖x(t)‖2 ≤ C̃2
0e
−2κ̃0t‖x0‖2+ sup

τ∈[0,t]

{
C̃2

1‖X(τ)‖2H + C̃2
2‖v(τ)‖2

}
.

(25)
Note that the above assumption implies (by taking t = 0,

x0 6= 0 and null X and v) that C̃0 ≥ 1. The considered
closed-loop system takes the following form:

ẋ(t) = f1(x(t), X(t), v(t)), (26a)
dX

dt
(t) = AX(t) + f2(x(t), X(t), v(t)), (26b)

BX(t) = uD(t) = u(t−D), (26c)
u|[−D,0] = 0 (26d)

u(t) = ϕ(t)KY (t) (26e)

+ ϕ(t)K

∫ t

max(t−D,0)
e(t−s−D)AN0BN0

u(s) ds,

x(0) = x0, (26f)
X(0) = X0 (26g)

for t ≥ 0 with Y defined by (6). The feedback gain K ∈
Km×N0 is such that Acl , AN0 + e−DAN0BN0K is Hurwitz.
Function u still represents the control input while function
v : R+ → Kmv represents an external disturbance.

The well-posedness of the closed-loop system (26) is as-
sessed via the following result.

Lemma 5.2: Let (A,B) be an abstract boundary con-
trol system and f1 ∈ C1(Kn × H × Kmv ;Kn) and
f2 ∈ C1(Kn × H × Kmv ,H) be vector fields such
that Assumptions 2.1, 2.2, 3.2, and 5.1 hold. For any
(x0, X0) ∈ Kn × D(A0) and v ∈ C1(R+;Kmv ), the
closed-loop system (26) has a unique classical solution
(x,X) ∈ C1(R+;Kn)×

(
C0(R+;D(A)) ∩ C1(R+;H)

)
. Intro-

ducing d(t) , f2(x(t), X(t), v(t)), we have d ∈ C1(R+;H).
Thus, X is the classical solution of (10) associated with
the initial condition X0 and the distributed disturbance d.
Consequently, both Lemma 4.2 and Theorem 4.3 apply to X .

The proof of Lemma 5.2 follows from the same arguments
as the one used in the proof of Lemma 4.2 and from classical
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theorems on the existence and uniqueness of classical solutions
for lipschitz perturbations of linear evolution equations, see,
e.g., [18, Th. 1.2 and Th. 1.5, Chap. 6].

Remark 5.3: The first point of Assumption 5.1 regarding the
Lipschitz continuity of vector fields f1, f2 is used to ensure
the existence of solutions defined on R+. In particular, it
avoids any potential blow up of the solution in finite time.
If this assumption is removed, the existence of the classical
solution is a priori only guaranteed over a time interval
[0, tmax) with 0 < tmax ≤ +∞. Furthermore, if tmax < +∞,
we have the blow up of the solution in finite time, i.e.,
‖x(t)‖+ ‖X(t)‖H −→

t→(tmax)−
+∞, see, e.g., [18, Th. 1.4 and

Th. 1.5, Chap. 6]. In this case, the reasoning presented next
still applies over the time interval [0, tmax) at the condition
that no blow up occurs over the time interval [0, D+ t0], i.e.,
tmax > D + t0. This can be ensured by assuming that the
following small gain condition holds:

(D1C̃1 +D2)C4

√
C10 < 1. (27)

Indeed, from (19), (23), and (24-25), we obtain that, for all
t ∈ [0, D + t0] ∩ [0, tmax),

‖X(t)‖H ≤ D1C̃0C4

√
C10‖x0‖+ C4

√
C9‖X0‖H

+ (D1C̃1 +D2)C4

√
C10 sup

τ∈[0,t]
‖X(τ)‖H

+ (D1C̃2 +D3)C4

√
C10 sup

τ∈[0,t]
‖v(τ)‖.

Under the small gain assumption (27), we can introduce Γ ,(
1− (D1C̃1 +D2)C4

√
C10

)−1
> 0, which yields

sup
τ∈[0,D+t0]∩[0,tmax)

‖X(τ)‖H

≤ ΓD1C̃0C4

√
C10‖x0‖+ ΓC4

√
C9‖X0‖H

+ Γ(D1C̃2 +D3)C4

√
C10 sup

τ∈[0,D+t0]

‖v(τ)‖

<∞.

From (25) we infer that

sup
τ∈[0,D+t0]∩[0,tmax)

{‖x(τ)‖+ ‖X(τ)‖H} <∞,

and, consequently, tmax > D + t0.

B. Small gain condition ensuring the stability of the IDS-ODE
interconnection

The main result of this section is the following result.
Theorem 5.4: Let (A,B) be an abstract boundary control

system and f1 ∈ C1(Kn ×H×Kmv ;Kn) and f2 ∈ C1(Kn ×
H×Kmv ,H) be vector fields such that Assumptions 2.1, 2.2,
3.2, and 5.1 hold. We assume that the small gain condition

(D1C̃1 +D2)C4

√
C6

2κ0
< 1 (28)

is satisfied. Then, there exist constants δε ∈ (0, κ0) and
Gi, Hi ∈ R+, 0 ≤ i ≤ 3, such that, for any (x0, X0) ∈
Kn × D(A0) and v ∈ C1(R+;Kmv ), the classical solution
(x,X) of (26) associated with the initial condition (x0, X0)

and the disturbance v satisfies for all t ≥ D+ t0 the following
fading memory estimate:

‖x(t)‖+ ‖X(t)‖H ≤ G0e
−δεt(‖x0‖+ ‖X0‖H)

+G1e
−δεt sup

τ∈[0,D+t0]

‖x(τ)‖ (29)

+G2e
−δεt sup

τ∈[0,D+t0]

‖X(τ)‖H

+G3 sup
τ∈[0,t]

e−δε(t−τ)‖v(τ)‖,

and the control law satisfies

‖u(t)‖ ≤ H0e
−δεt(‖x0‖+ ‖X0‖H)

+H1e
−δεt sup

τ∈[0,D+t0]

‖x(τ)‖ (30)

+H2e
−δεt sup

τ∈[0,D+t0]

‖X(τ)‖H

+H3 sup
τ∈[0,t]

e−δε(t−τ)‖v(τ)‖

for all t ≥ D + t0.
The proof of Theorem 5.4 is placed in Annex F. This

consists in an adaptation of the approach presented in [11]
for the study of the stability of IDS-ODE or PDE-PDE
interconnections via a small gain approach.

Remark 5.5: As the system is in open loop over the time
interval [0, D] and then the time interval [D,D + t0] is
employed to switch from open loop to closed loop, we can
interpret x|[0,D+t0]

and X|[0,D+t0]
as initial perturbations. In

this case, (29) can be seen as an ISS estimate with fading
memory with respect to the initial perturbations x|[0,D+t0]

and
X|[0,D+t0]

and the disturbance v.
Remark 5.6: In the context of Remark 5.3, i.e., when

replacing the first point of Assumption 5.1 by the small gain
condition (27), the reasoning reported in Annex F still applies
over the time interval [0, tmax) because tmax > D + t0. In
this case, estimate (29) holds for all t ∈ [D + t0, tmax). As
the supremum of the right-hand side of (29) over any time
interval [D + t0, T ] of finite length is finite, we deduce that
tmax = +∞. Therefore, the conclusion of Theorem 5.4 still
apply.

VI. CASE STUDY

In this section, H denotes the real Hilbert space of square-
integrable functions L2(0, L) endowed with the inner product
〈f, g〉H =

∫ L
0
fg dξ. We consider the following academic

system composed of a one-dimensional ODE and a one-
dimensional reaction-diffusion equation on (0, L) with delayed
Dirichlet boundary controls located at both ends of the domain

ẋ(t) = f1(x(t), y(t, ·), v(t))

yt(t, ξ) = ayξξ(t, ξ) + cy(t, ξ) + f2(x(t), y(t, ·), v(t))[
y(t, 0)
y(t, 1)

]
= u(t−D)

where (t, ξ) ∈ R+ × (0, L), X(t) = y(t, ·) ∈ H, x(t), v(t) ∈
R, and u(t) ∈ R2. The considered coupling functions are

given by f1(x,X, v) = −a1x +
b1
L

∫ L
0
η1X dξ + c1v and
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f2(x,X, v) = a2xθ1 + b2 arctan

(
d2
L

∫ L
0
η2X dξ

)
θ2 + c2vθ3

with a, c, ai, bi, ci, di ∈ R, a, a1 > 0, and ηi, θi ∈ H such that
‖ηi‖H = ‖θi‖H = 1.

We define the operator Af = af ′′ + cf over the do-
main D(A) = H2(0, L) and the boundary operator Bf =
(f(0), f(L)) over the domain D(B) = H1(0, L). We intro-
duce the lifting operator B defined for any (u1, u2) ∈ R2

by {B(u1, u2)}(ξ) = u1 + (u2 − u1)ξ/L with ξ ∈ (0, L).
We have that the disturbance-free operator A0: 1) generates
a C0-semigroup ; 2) is a Riesz-spectral operator with λn =
c − an2π2/L2 and φn(ξ) = ψn(ξ) =

√
2/L sin(nπξ/L),

n ≥ 1. Thus, (A,B) is a boundary control system satisfy-
ing Assumptions 2.1 and 2.2. Furthermore, straightforward
computations show that bn,1 = anπ

√
2/L3 and bn,2 =

(−1)n+1anπ
√

2/L3. Thus, based on Remark 3.3, Assump-
tion 3.2 about the Kalman condition is satisfied.

Finally, with the considered coupling functions f1 and f2,
Assumption 5.1 holds with C̃0 =

√
2, C̃1 = 2|b1|/(a1L),

C̃2 = 2|c1|/a1, D1 = |a2|, D2 = |b2d2|/L, and D3 = |c2|.
For numerical computations, we take L = 2π, D = 0.1 s,

a = 5 and c = 2.5. Thus, we have one unstable mode with
λ1 = 1.25 while λ2 = −2.5 and λ3 = −8.75. For design
purposes, we consider a second order truncated model, i.e.,
N0 = 2 and α = 8.75. Then, the feedback gain matrix
K ∈ R2×2 is computed based on this truncated model such
that the two poles are both placed at −3. Following the
developments of Section IV, the degrees of freedom available
in the choice of the parameters β ∈ (0, 1), γ1 > C1/λm(P ),
and γ2 > max

(
‖BK‖2/(mRλm(P )), C5/(1− β)

)
are used

to minimize the value of the constant C4

√
C6/(2κ0) involved

in the small gain condition (28). With the MATLAB function
fminsearch, we obtain with β = 0.4131, γ1 = 106.3290,
and γ2 = 337.1938 the value C4

√
C6/(2κ0) ≈ 8.6260. Thus,

Theorem 5.4 applies when the vector fields f1 and f2 are such
that 2|b1a2|/a1 + |b2d2| < L/8.6260 ≈ 0.7284.

Consequently, we select for numerical simulations a1 = 1.5,
b1 = 0.5, c1 = 0.2, a2 = 0.7, b2 = 0.55, c2 = 10, d2 = 0.45,
η1 = η2 = θ2 =

√
6ξ(L− ξ)/L3/2, θ1 =

√
2ξ/L, and

θ3 =
√

2(L− ξ)/L. The transition time t0 is set to t0 = 0.2 s
while the switching function ϕ|[0,t0] is selected as the restric-
tion over [0, t0] of the unique quintic polynomial function f
satisfying f(0) = f ′(0) = f ′′(0) = f ′(t0) = f ′′(t0) = 0
and f(t0) = 1. The adopted numerical scheme consists in
the discretization of the reaction-diffusion equation using its
first 10 modes. The evolution of the closed-loop system is
depicted in Figs. 1-3 for the initial condition x0 = −2
and X0(ξ) = −5ξ(L/2 − ξ)(L − ξ), and with the external
disturbance v(t) = sin(2t) sin(5t). The obtained numerical
results are compliant with the theoretical predictions.

VII. CONCLUSION

This paper discussed the feedback stabilization of a class
of diagonal Infinite-Dimensional Systems (IDS) with delay
boundary control. The proposed approach generalizes a design
method formerly reported for a reaction-diffusion equation
while proposing a simplification of the boundary control law.

-50
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t,

)

5

50

Time (s)
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0 0

Fig. 1. Time evolution of the reaction-diffusion part of the closed-loop system
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-2

-1

0

x(
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Fig. 2. Time evolution of the ODE part of the closed-loop system
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-5

0

5
u(
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u1
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Fig. 3. Command effort of the closed-loop system

The method consists, via a spectral decomposition, in the syn-
thesis of a state-feedback for a finite-dimensional subsystem
capturing the unstable dynamics of the plant. Due to the input
delay, the design of the control law on the truncated subsystem
has been carried out by means of the Artstein transformation.
Then, an adequate Lyapunov function has been introduced to
assess that the control law designed on the truncated subsystem
also ensures the stabilization of the original IDS. Furthermore,
it has been shown that this Lyapunov function also allows
the assessment of the Input-to-State Stability (ISS) of the
closed-loop system with respect to distributed disturbances.
Finally, this ISS property has been used to study the stability
of the closed-loop IDS when interconnected with an Ordinary
Differential Equation (ODE) that also satisfies an ISS property.
It has been shown that the satisfaction of a certain small gain
condition ensures the stability of the IDS-ODE loop for the
proposed delayed boundary control law. Future research di-
rections include the evaluation of the robustness of the control
strategy w.r.t modeling uncertainties such as mismatches in the
computation of the vectors of the Riesz-basis.

APPENDIX A
PROOF OF LEMMA 4.2

We first note that, as u|[−D,0] = 0, the two first lines of
(10), along with the initial condition, are equivalent over the
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time interval [0, D] to the following evolution problem:
dX

dt
(t) = A0X(t) + d(t), t ∈ [0, D]

X(0) = X0

As A0 generates a C0-semigroup and d is of class C1, we
deduce (see, e.g., [7]) the existence and the uniqueness of a
classical solution X ∈ C0([0, D];D(A)) ∩ C1([0, D];H) such
that (10) holds over the time interval [0, D] with associated
control input u = 0 ∈ C2([−D, 0];Km).

We now proceed by induction. Assume that, for a given
n ∈ N∗, there exists a unique classical solution X ∈
C0([0, nD];D(A)) ∩ C1([0, nD];H) of (10) over the time in-
terval [0, nD] with associated control input u ∈ C2([−D, (n−
1)D];Km) satisfying u|[−D,0] = 0 and

u(t) = ϕ(t)KY (t) + (TDu)(t) (31)

for all 0 ≤ t ≤ (n− 1)D. We show that there exists a unique
classical solution of (10) over the time interval [0, (n+ 1)D],
denoted by X̃ ∈ C0([0, (n + 1)D];D(A)) ∩ C1([0, (n +
1)D];H), with a uniquely defined associated control input
ũ ∈ C2([−D,nD];Km). In particular, such a solution must
satisfy (10) over the restricted time interval [0, nD]. Thus,
by induction hypothesis, we must have X̃

∣∣∣
[0,nD]

= X .

Furthermore, X̃ must satisfy

dX̃

dt
(t) = AX̃(t) + d(t), t ∈ [nD, (n+ 1)D]

BX̃(t) = ũD(t) = ũ(t−D), t ∈ [nD, (n+ 1)D]

ũ|[−D,0] = 0

ũ(t) = ϕ(t)KY (t) + (TDũ)(t), t ∈ [0, nD]

Y (t) =

 〈X(t), ψ1〉H
...

〈X(t), ψN0
〉H

 , t ∈ [0, nD]

X̃(nD) = X(nD)
(32)

Note that, due to the delay D > 0, the control input ũ is
only defined by X over the time interval [0, nD] and does not
depend on X̃ over [nD, (n + 1)D]. As X ∈ C1([0, nD];H),
we have that Y ∈ C1([0, nD];KN0). Then, according to the
Lemma 3.6, 1) the control ũ is well and uniquely defined on
[−D,nD]; 2) ũ is continuous over [−D,nD]; 3) as both u
and ũ|[−D,(n−1)D] satisfy (31) for all t ∈ [0, (n − 1)D], we
have by uniqueness that ũ|[−D,(n−1)D] = u. Now, we can
write ũ(t) = ϕ(t)KZ(t) with, for all t ∈ [0, nD],

Z(t) = Y (t) +

∫ t

t−D
e(t−s−D)AN0BN0 ũ(s) ds.

Thus, we infer that Z ∈ C1([0, nD];KN0). As X is a classical
solution of (10) over the time interval [0, nD], we obtain with
the same approach used to derive (5) that Y satisfies over the
time interval [0, nD] the following ODE:

Ẏ (t) = AN0Y (t) +BN0 ũ(t−D) +DN0(t),

where DN0
(t) is defined by (7). We have for all t ∈ [0, nD],

Ż(t) = AN0
Z(t) + e−DAN0BN0

ũ(t) +DN0
(t)

= (AN0
+ ϕ(t)e−DAN0BN0

K)Z(t) +DN0
(t).

As d ∈ C1(R+;H), we have DN0 ∈ C1(R+;KN0). We
deduce that Z is of class C2 over [0, nD]. Thus, the control
law satisfies ũ = ϕKZ ∈ C2([−D,nD];Km), showing that
ũD ∈ C2([0, (n+1)D];Km). Furthermore, the distributed dis-
turbance is such that d ∈ C1(R+;H) while the initial condition
of (32) given at t = nD is such that X(nD) ∈ D(A) and
BX(nD) = uD(nD) = ũD(nD). This yields (see, e.g., [7,
Th. 3.3.3]) the existence and uniqueness of a classical solution
X̃
∣∣∣
[nD,(n+1)D]

∈ C0([nD, (n+ 1)D];D(A)) ∩C1([nD, (n+

1)D];H) associated with (32). As X̃(nD) = X(nD) and
(dX̃/dt)(nD) = AX̃(nD) + d(nD) = AX(nD) + d(nD) =
(dX/dt)(nD), it shows that the obtained X̃ is such that
X̃ ∈ C0([0, (n + 1)D];D(A)) ∩ C1([0, (n + 1)D];H) and is
the unique classical solution of (10) over [0, (n + 1)D] with
associated control input ũ ∈ C2([−D,nD];Km). Furthermore,
the obtained X̃ and ũ are extensions of X and u, respectively.

By induction, it shows the existence and uniqueness of both
the classical solution X ∈ C0(R+;D(A)) ∩ C1(R+;H) and
the associated control input u ∈ C2([−D,+∞);Km) for the
closed-loop system (10) associated with X0 ∈ D(A0) and
d ∈ C1(R+;H). The claimed properties for u follow from the
above developments and the application of Lemma 3.6. �

APPENDIX B
REGULARITY AND TIME DERIVATIVE OF AN INFINITE SUM

Let {en, n ∈ N∗} by a Hilbert basis of H. Then,
as {φn, n ∈ N∗} is a Riesz basis with associated
biorthogonal set {ψn, n ∈ N∗}, there exists T ∈ L(H)
such that T−1 ∈ L(H) and, for all n ≥ 1, φn = Ten
and ψn = (T−1)∗en. Let A ∈ C1(R+;H) be given.
We obtain that, for all t ≥ 0,

∑
k≥1
| 〈A(t), ψk〉 |2 =∑

k≥1
|
〈
A(t), (T−1)∗ek

〉
|2 =

∑
k≥1
|
〈
T−1A(t), ek

〉
|2 =

‖T−1A(t)‖2H =
〈
T−1A(t), T−1A(t)

〉
H. Thus∑

k≥1
| 〈A,ψk〉 |2 ∈ C1(R+;R) and we have for all t ≥ 0,

d

dt

1

2

∑
k≥1

|〈A(t), ψk〉H|
2


= Re

〈
T−1

dA

dt
(t), T−1A(t)

〉
H

= Re

〈
T−1

∑
k≥1

〈
dA

dt
(t), ψk

〉
H
φk, T

−1
∑
l≥1

〈A(t), ψl〉H φl

〉
H

=
∑
k,l≥1

Re

{〈
dA

dt
(t), ψk

〉
H
〈A(t), ψl〉H

〈
T−1φk, T

−1φl
〉
H

}
=
∑
k,l≥1

Re

{〈
dA

dt
(t), ψk

〉
H
〈A(t), ψl〉H 〈ek, el〉H

}
=
∑
k≥1

Re

{〈
dA

dt
(t), ψk

〉
H
〈A(t), ψk〉H

}
.

Noting that, for all k ≥ 1,

d

dt

[
1

2
|〈A(t), ψk〉H|

2

]
= Re

{〈
dA

dt
(t), ψk

〉
H
〈A(t), ψk〉H

}
,
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we deduce that
∑

k≥N0+1

| 〈A,ψk〉 |2 ∈ C1(R+;R).

APPENDIX C
PROOF OF LEMMA 4.7

From (11) and using the identity u = ϕKZ, we have
Y (t) = Z(t) −

∫ t
t−D ϕ(s)e(t−s−D)AN0BN0

KZ(s) ds for all
t ≥ 0. Using the Cauchy-Schwarz (C.S.) inequality and the
fact that 0 ≤ ϕ ≤ 1, we deduce that, for all t ≥ 0,

‖Y (t)‖

≤ ‖Z(t)‖+

∥∥∥∥∫ t

t−D
ϕ(s)e(t−s−D)AN0BN0

KZ(s) ds

∥∥∥∥
≤ ‖Z(t)‖+ eD‖AN0‖ ‖BN0

K‖
∫ t

t−D
ϕ(s) ‖Z(s)‖ ds

C.S.
≤ ‖Z(t)‖+

√
DeD‖AN0‖ ‖BN0

K‖

√∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds,

which gives

‖Y (t)‖2

≤ 2 ‖Z(t)‖2 + 2De2D‖AN0‖ ‖BN0K‖
2
∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

≤ C1

{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

}
, (33)

where C1 is defined by (18). Now, from the definition of V
given by (16) and using (2), we have for all t ≥ 0,

V (t) ≥ γ1λm(P )

{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

}
+ γ2λm(P )ϕ(t−D) ‖Z(t−D)‖2

+
1

2MR
‖X(t)−BuD(t)‖2H

− 1

2

N0∑
k=1

|〈X(t)−BuD(t), ψk〉H|
2
.

Recalling that uD(t) = u(t−D) = ϕ(t−D)KZ(t−D) and
0 ≤ ϕ ≤ 1 which gives ϕ2 ≤ ϕ, we have

N0∑
k=1

|〈X(t)−BuD(t), ψk〉H|
2

≤ 2

N0∑
k=1

{
|〈X(t), ψk〉H|

2
+ |〈BuD(t), ψk〉H|

2
}

≤ 2‖Y (t)‖2 + 2
∑
k≥1

|〈BuD(t), ψk〉H|
2

(2)

≤ 2‖Y (t)‖2 +
2

mR
‖BuD(t)‖2H

≤ 2‖Y (t)‖2 +
2‖BK‖2

mR
ϕ(t−D)‖Z(t−D)‖2.

We deduce that

V (t) ≥ γ1λm(P )

{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

}
+

{
γ2λm(P )− ‖BK‖

2

mR

}
ϕ(t−D) ‖Z(t−D)‖2

+
1

2MR
‖X(t)−BuD(t)‖2H − ‖Y (t)‖2.

Using (33), this yields for all t ≥ 0,

V (t) ≥ {γ1λm(P )− C1}
{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

}
+

{
γ2λm(P )− ‖BK‖

2

mR

}
ϕ(t−D) ‖Z(t−D)‖2

+
1

2MR
‖X(t)−BuD(t)‖2H .

As γ1, γ2 ∈ R∗+ are such that γ1 > C1/λm(P ) and γ2 >
‖BK‖2/(mRλm(P )), we have C2(γ1) , γ1λm(P )−C1 > 0

and C3(γ2) , γ2λm(P )− ‖BK‖
2

mR
> 0 are such that

V (t) ≥ C2(γ1)

{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s) ‖Z(s)‖2 ds

}
+ C3(γ2)ϕ(t−D) ‖Z(t−D)‖2 (34)

+
1

2MR
‖X(t)−BuD(t)‖2H .

In particular, this yields for all t ≥ 0,

‖X(t)‖H ≤ ‖X(t)−BuD(t)‖H + ‖BuD(t)‖H
≤
√

2MRV (t) + ‖BK‖ ×
√
ϕ(t−D) ‖Z(t−D)‖

≤

{√
2MR +

‖BK‖√
C3(γ2)

}√
V (t).

Introducing C4 ,
√

2MR +
‖BK‖√
C3(γ2)

> 0, the claimed

inequality (19) holds. �

APPENDIX D
PROOF OF LEMMA 4.8

From the definition of P , we have that for all t > t0,
d

dt
[Z∗PZ] (t)

(13)
= Z(t)∗ [A∗clP + PAcl]Z(t)

+DN0(t)∗PZ(t) + Z(t)∗PDN0(t)

(17)
= −‖Z(t)‖2 +DN0

(t)∗PZ(t) + Z(t)∗PDN0
(t).

Thus, for all t > D + t0,

d

dt

[∫ t

t−D
Z(s)∗PZ(s) ds

]
(t)

= Z(t)∗PZ(t)− Z(t−D)∗PZ(t−D)

= −
∫ t

t−D
‖Z(s)‖2 ds

+

∫ t

t−D
DN0

(s)∗PZ(s) + Z(s)∗PDN0
(s) ds.

Let β ∈ (0, 1) be arbitrarily given. We infer from the Young
inequality (Y.I.) that, for all t > t0,

d

dt
[Z∗PZ] (t)

≤ −‖Z(t)‖2 + 2‖P‖‖DN0(t)‖‖Z(t)‖
Y.I.
≤ −‖Z(t)‖2 + 2

(
β

2
‖Z(t)‖2 +

1

2β
‖P‖2‖DN0

(t)‖2
)
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(8)

≤ −(1− β)‖Z(t)‖2 +
‖P‖2

βmR
‖d(t)‖2H,

and for all t > D + t0,

d

dt

[∫ t

t−D
Z(s)∗PZ(s) ds

]
(t)

≤ −
∫ t

t−D
‖Z(s)‖2 ds+ 2

∫ t

t−D
‖P‖‖DN0

(s)‖‖Z(s)‖ ds

Y.I.
≤ −

∫ t

t−D
‖Z(s)‖2 ds

+ 2

∫ t

t−D

β

2
‖Z(s)‖2 +

1

2β
‖P‖2‖DN0

(s)‖2 ds

(8)

≤ −(1− β)

∫ t

t−D
‖Z(s)‖2 ds+

‖P‖2

βmR

∫ t

t−D
‖d(s)‖2H ds

≤ −(1− β)

∫ t

t−D
‖Z(s)‖2 ds+

D‖P‖2

βmR
sup

τ∈[t−D,t]
‖d(τ)‖2H.

Finally, we have (see Annex B)

d

dt

1

2

∑
k≥N0+1

|〈X −BuD, ψk〉H|
2

 (t)

=
∑

k≥N0+1

Re

{〈
dX

dt
(t)−Bu̇D(t), ψk

〉
H

× 〈X(t)−BuD(t), ψk〉H
}
.

As X is a classical solution of the abstract Cauchy problem,
using (4), Assumption 2.2, and the Young inequality, we have
for k ≥ N0 + 1 that

Re

{〈
dX

dt
(t)−Bu̇D(t), ψk

〉
H
〈X(t)−BuD(t), ψk〉H

}
(4)
= Re(λk) |〈X(t)−BuD(t), ψk〉H|

2 (35)
+ Re {(〈ABuD(t), ψk〉H + dk(t)− 〈Bu̇D(t), ψk〉H)

× 〈X(t)−BuD(t), ψk〉H
}

≤ −α |〈X(t)−BuD(t), ψk〉H|
2

+ {|〈ABuD(t), ψk〉H|+ |dk(t)|+ |〈Bu̇D(t), ψk〉H|}
× |〈X(t)−BuD(t), ψk〉H|

Y.I.
≤ −α

2
|〈X(t)−BuD(t), ψk〉H|

2

+
1

2α
{|〈ABuD(t), ψk〉H|+ |dk(t)|+ |〈Bu̇D(t), ψk〉H|}

2
.

Introducing Ki the i-th line of the matrix of feedback gain K,
one has, for all t > D + t0,

uD(t) = u(t−D) = KZ(t−D) =

m∑
i=1

{KiZ(t−D)} ei

and

u̇D(t) = u̇(t−D) = KŻ(t−D)

(13)
= K(AclZ(t−D) +DN0

(t−D))

=

m∑
i=1

{KiAclZ(t−D)} ei +KDN0(t−D).

This yields

Re

{〈
dX

dt
(t)−Bu̇D(t), ψk

〉
H
〈X(t)−BuD(t), ψk〉H

}
≤ −α

2
|〈X(t)−BuD(t), ψk〉H|

2

+
1

2α
{|〈ABKZ(t−D), ψk〉H|+ |〈BKAclZ(t−D), ψk〉H|

+ |dk(t)|+ |〈BKDN0
(t−D), ψk〉H|}

2

≤ −α
2
|〈X(t)−BuD(t), ψk〉H|

2

+
2

α

{
|〈ABKZ(t−D), ψk〉H|

2
+ |〈BKAclZ(t−D), ψk〉H|

2

+ |dk(t)|2 + |〈BKDN0
(t−D), ψk〉H|

2
}

≤ −α
2
|〈X(t)−BuD(t), ψk〉H|

2

+
2

α

∣∣∣∣∣
m∑
i=1

〈ABei, ψk〉HKiZ(t−D)

∣∣∣∣∣
2

+
2

α

∣∣∣∣∣
m∑
i=1

〈Bei, ψk〉HKiAclZ(t−D)

∣∣∣∣∣
2

+
2

α

{
|dk(t)|2 + |〈BKDN0

(t−D), ψk〉H|
2
}

≤ −α
2
|〈X(t)−BuD(t), ψk〉H|

2

+
2m

α

m∑
i=1

|〈ABei, ψk〉HKiZ(t−D)|2

+
2m

α

m∑
i=1

|〈Bei, ψk〉HKiAclZ(t−D)|2

+
2

α

{
|dk(t)|2 + |〈BKDN0(t−D), ψk〉H|

2
}

≤ −α
2
|〈X(t)−BuD(t), ψk〉H|

2

+
2m

α

{
m∑
i=1

|〈ABei, ψk〉H|
2 ‖Ki‖2

+

m∑
i=1

|〈Bei, ψk〉H|
2 ‖KiAcl‖2

}
‖Z(t−D)‖2

+
2

α

{
|dk(t)|2 + |〈BKDN0

(t−D), ψk〉H|
2
}
.

We deduce that, for t > D + t0,

d

dt

1

2

∑
k≥N0+1

|〈X −BuD, ψk〉H|
2

 (t)

≤ −α
2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

+
2m

α

∑
k≥N0+1

{
m∑
i=1

|〈ABei, ψk〉H|
2 ‖Ki‖2

+

m∑
i=1

|〈Bei, ψk〉H|
2 ‖KiAcl‖2

}
‖Z(t−D)‖2

+
2

α

∑
k≥N0+1

{
|dk(t)|2 + |〈BKDN0

(t−D), ψk〉H|
2
}
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≤ −α
2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

+
2m

α


m∑
i=1

∑
k≥1

|〈ABei, ψk〉H|
2 ‖Ki‖2

+

m∑
i=1

∑
k≥1

|〈Bei, ψk〉H|
2 ‖KiAcl‖2

 ‖Z(t−D)‖2

+
2

α

∑
k≥1

|dk(t)|2 +
2

α

∑
k≥1

|〈BKDN0
(t−D), ψk〉H|

2

(2)

≤ −α
2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

+ C5‖Z(t−D)‖2

+
2

αmR
‖d(t)‖2H +

2‖BK‖2

αm2
R

‖d(t−D)‖2H

with constant C5 given by (20). As γ2 > C5/(1 − β), we
deduce that, for all t > D + t0,

V̇ (t) ≤− γ1(1− β)

{
‖Z(t)‖2 +

∫ t

t−D
‖Z(s)‖2 ds

}
− (γ2(1− β)− C5)‖Z(t−D)‖2

− α

2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

+
1

mR

(
2

α
+
γ1‖P‖2

β

)
‖d(t)‖2H

+
1

mR

(
2‖BK‖2

αmR
+
γ2‖P‖2

β

)
‖d(t−D)‖2H

+
γ1D‖P‖2

βmR
sup

τ∈[t−D,t]
‖d(τ)‖2H

≤− γ1(1− β)

λM (P )

{
Z(t)∗PZ(t) +

∫ t

t−D
Z(s)∗PZ(s) ds

}
− γ2(1− β)− C5

λM (P )
Z(t−D)∗PZ(t−D)

− α

2

∑
k≥N0+1

|〈X(t)−BuD(t), ψk〉H|
2

+
1

mR

(
2(mR + ‖BK‖2)

αmR
+

(γ1(1 +D) + γ2)‖P‖2

β

)
× sup
τ∈[t−D,t]

‖d(τ)‖2H

≤− 2κ0V (t) + C6 sup
τ∈[t−D,t]

‖d(τ)‖2H,

where λM (P ) > 0 stands for the largest eigenvalue of P ,

κ0 ,
1

2
min

(
1− β
λM (P )

,
1− β − C5/γ2

λM (P )
, α

)
> 0, (36)

and

C6 ,
2(mR + ‖BK‖2)

αm2
R

+
(γ1(1 +D) + γ2)‖P‖2

βmR
. (37)

Then, for all t > D + t0,

d

dt

[
e2κ0(·)V

]
(t) ≤ C6e

2κ0t sup
τ∈[t−D,t]

‖d(τ)‖2H. (38)

As V ∈ C1(R+;R), we infer that, for all t ≥ D + t0,

V (t) ≤ e−2κ0(t−D−t0)V (D+ t0)+
C6

2κ0
sup
τ∈[0,t]

‖d(τ)‖2H, (39)

and thus, from (19) and using the inequality
√
a+ b ≤

√
a+√

b for all a, b ≥ 0, we obtain that the claimed estimate (21)
holds for all t ≥ D + t0. Finally, from (34), the control input
is such that, for all t ≥ 0,

‖u(t)‖ ≤ ‖K‖‖Z(t)‖ ≤ ‖K‖√
C2(γ1)

√
V (t), (40)

from which we can deduce that the estimate (22) is also
satisfied for all t ≥ D + t0. �

APPENDIX E
PROOF OF LEMMA 4.10

With W (t) =
1

2
‖Z(t)‖2, the use of Cauchy-Schwarz

inequality, Young’s inequality, (8), and (12) yields

Ẇ (t) ≤ 2C7W (t) +
1

2mR
‖d(t)‖2H

for all t ≥ 0 with C7 , ‖AN0
‖+‖e−DAN0BN0

K‖+1/2 > 0.
Then, for all t ≥ 0,

W (t) ≤ e2C7tW (0) +
1

4mRC7
e2C7t sup

τ∈[0,t]
‖d(τ)‖2H.

Using (2), and, from (11), Z(0) = Y (0), we have ‖Z(0)‖ =
‖Y (0)‖ ≤ ‖X0‖H/

√
mR. We deduce that, for all t ≥ 0,

‖Z(t)‖2 ≤ e2C7t

mR
‖X0‖2+

1

2mRC7
e2C7t sup

τ∈[0,t]
‖d(τ)‖2H. (41)

From uD(t) = u(t−D) = ϕ(t−D)KZ(t−D), we infer
that, for all t ∈ [0, D + t0],

‖uD(t)‖ ≤ ‖K‖e
C7t0

√
mR

‖X0‖H +
‖K‖eC7t0

√
2mRC7

sup
τ∈[0,t]

‖d(τ)‖H
(42)

and, from

u̇D(t) = ϕ̇(t−D)KZ(t−D) + ϕ(t−D)KŻ(t−D)

= ϕ(t−D)K
(
AN0

+ ϕ(t−D)e−DAN0BN0
K
)
Z(t−D)

+ ϕ̇(t−D)KZ(t−D) + ϕ(t−D)KDN0
(t−D),

we obtain that, for all t ∈ [0, D + t0],

‖u̇D(t)‖ ≤ C8e
C7t0

√
mR

‖X0‖H

+
1
√
mR

(
‖K‖+

C8√
2C7

eC7t0

)
sup
τ∈[0,t]

‖d(τ)‖H

(43)

with C8 , ‖ϕ̇‖∞‖K‖+ ‖K‖
(
‖AN0

‖+ ‖e−DAN0BN0
K‖
)
.

To conclude, it is sufficient to note that from (16), we have
for all t ≥ 0,

V (t) ≤ γ1λM (P )

{
‖Z(t)‖2 +

∫ t

t−D
ϕ(s)‖Z(s)‖2 ds

}
+ γ2λM (P )ϕ(t−D)‖Z(t−D)‖2
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+
1

mR
‖X(t)‖2H +

‖B‖2

mR
‖uD(t)‖2H,

where, as X is a classical solution of (10) and noting that
uD(0) = u(−D) = 0, we have

X(t) = S(t)X0 +BuD(t)

+

∫ t

0

S(t− τ) {−Bu̇D(τ) +ABuD(τ) + d(τ)} dτ.

By direct estimation and using (41-43), we deduce that the
conclusion of the lemma holds true. �

APPENDIX F
PROOF OF THEOREM 5.4

In order to be able to apply the results of Section IV, V is
still defined by (16) with γ1, γ2 large enough2.

A. Conversion of the ISS estimates into fading memory esti-
mates

Following the methodology presented in [11] for studying
the stability of IDS-ODE or PDE-PDE interconnections, the
key step relies in the conversion of the ISS estimates satis-
fied by each component of the interconnections into fading
memory estimates via the following lemma [11, Lemma 7.1].

Lemma F.1 (Conversion Lemma): For every σ > 0, M ≥ 1,
and ε > 0, there exists a constant δ ∈ (0, σ) such that for any
continuous functions φ : R+ → R+ and y : R+ → R+ for
which there exists a constant γ ≥ 0 such that the following
inequality holds for all t0 ≥ 0 and t ≥ t0,

φ(t) ≤Me−σ(t−t0)φ(t0) + γ sup
s∈[t0,t]

y(s), (44)

then the following inequality holds for all t ≥ 0:

φ(t) ≤Me−δtφ(0) + γ(1 + ε) sup
s∈[0,t]

e−δ(t−s)y(s).

Even if the trajectories X of (10) satisfy the ISS estimate
(14) provided by Theorem 4.3, we cannot directly apply the
Conversion Lemma because the semigroup property does not
hold. This is due to the time-varying nature of (10) induced
by the transition from open loop to closed loop via ϕ, yielding
uD|[0,D) = 0. Therefore, we cannot directly deduce from
the ISS estimate (14) that an estimate similar to (44) holds
for all t ≥ t0 ≥ 0. In order to avoid this pitfall, we are
not going to apply the Conversion Lemma to the system
trajectories X but to the Lyapunov function V . Indeed, with
d(t) = f2(x(t), X(t), v(t)), we know from Lemma 5.2 that X
is solution of (10) associated with the initial condition X0 and
the distributed disturbance d. Consequently, we deduce from
(38) that, for all t2 ≥ t1 ≥ D + t0,

e2κ0t2V (t2)− e2κ0t1V (t1)

≤ C6

∫ t2

t1

e2κ0s sup
τ∈[s−D,s]

‖d(τ)‖2H ds

≤ C6

2κ0
e2κ0t2 sup

s∈[t1,t2]
sup

τ∈[s−D,s]
‖d(τ)‖2H.

2More precisely, they are selected such that γ1 > C1/λm(P ) and γ2 >
max

(
‖BK‖2/(mRλm(P )), C5/(1− β)

)
.

This yields, for all t2 ≥ t1 ≥ D + t0,

V (t2) ≤ e−2κ0(t2−t1)V (t1)+
C6

2κ0
sup

s∈[t1,t2]
sup

τ∈[s−D,s]
‖d(τ)‖2H.

Introducing κ̂0 = min(κ0, κ̃0) > 0 and noting that C̃0 ≥ 1,
then we have for all t2 ≥ t1 ≥ 0,

V (t2 + (D + t0)) ≤ C̃2
0e
−2κ̂0(t2−t1)V (t1 + (D + t0)) (45)

+
C6

2κ0
sup

s∈[t1,t2]
sup

τ∈[s+t0,s+(D+t0)]

‖d(τ)‖2H.

Furthermore, as the trajectories of the ODE ẋ = f1(x,X, v)
satisfy the semigroup property, we also have from (25) that3

for all t2 ≥ t1 ≥ 0,

‖x(t2)‖2 ≤ C̃2
0e
−2κ̂0(t2−t1)‖x(t1)‖2 (46)

+ sup
τ∈[t1,t2]

{
C̃2

1‖X(τ)‖2H + C̃2
2‖v(τ)‖2

}
.

Remark F.2: The introduction of the constant C̃2
0 ≥ 1

in (45) is motivated by the will to apply the Conversion
Lemma simultaneously to both (45-46). Even if this yields
some conservatism is the estimate with respect to the value of
V at the lower bound of the interval of integration, such an
introduction will have no impact on the conservatism of the
small gain condition (28).

We now apply the Conversion Lemma. For σ = 2κ̂0 and
M = C̃2

0 ≥ 1, we denote by 2δε ∈ (0, 2κ̂0) the constant “δ”
provided by the Conversion Lemma (which is independent of
x0, X0, and v) for any given ε > 0. From the proof of the
Conversion Lemma in [11, Lemma 7.1], we can select δε such
that δε −→

ε→0+
0+.

Applying the Conversion Lemma to (45) with φ(t) =
V (t + (D + t0)), y(t) = sup

τ∈[t+t0,t+(D+t0)]

‖d(τ)‖2H, and

γ = C6/(2κ0), we infer that, for all t ≥ 0,

e2δεtV (t+ (D + t0))

≤ C̃2
0V (D + t0)

+
C6

2κ0
(1 + ε) sup

s∈[0,t]

{
e2δεs sup

τ∈[s+t0,s+(D+t0)]

‖d(τ)‖2H

}
.

Noting that s + t0 ≤ τ implies s ≤ τ − t0 and thus e2δεs ≤
e2δετe−2δεt0 , we obtain for all t ≥ 0,

e2δεtV (t+ (D + t0))

≤ C̃2
0V (D + t0) +

C6

2κ0
(1 + ε)e−2δεt0 sup

τ∈[t0,t+(D+t0)]

e2δετ‖d(τ)‖2H.

(47)

Using (19), we obtain that, for all t ≥ 0,

eδεt ‖X(t+ (D + t0))‖H
≤ C4C̃0

√
V (D + t0) (48)

+ C4

√
C6

2κ0
(1 + ε)e−δεt0 sup

τ∈[t0,t+(D+t0)]

eδετ‖d(τ)‖H.

3We estimate by replacing κ̃0 by κ̂0.
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From the application of the Conversion Lemma to (46) with
φ(t) = ‖x(t)‖2, y(t) = C̃2

1‖X(t)‖2H+ C̃2
2‖v(t)‖2, and γ = 1,

we infer that, for all t ≥ 0,

e2δεt‖x(t)‖2

≤ C̃2
0‖x0‖2 + (1 + ε) sup

τ∈[0,t]
e2δετ

{
C̃2

1‖X(τ)‖2H + C̃2
2‖v(τ)‖2

}
.

This yields, for all t ≥ 0,

eδεt‖x(t)‖ ≤ C̃0‖x0‖+ C̃1

√
1 + ε sup

τ∈[0,t]
eδετ‖X(τ)‖H (49)

+ C̃2

√
1 + ε sup

τ∈[0,t]
eδετ‖v(τ)‖.

B. Stability of the interconnected IDS-ODE

We can now proceed to the proof of Theorem 5.4. From
(24) and (49) we obtain that, for all t ≥ 0,

eδεt‖d(t)‖H
= eδεt‖f2(x(t), X(t), v(t))‖H
≤ D1e

δεt‖x(t)‖+D2e
δεt‖X(t)‖H +D3e

δεt‖v(t)‖
≤ D1C̃0‖x0‖+D1C̃1

√
1 + ε sup

τ∈[0,t]
eδετ‖X(τ)‖H

+D1C̃2

√
1 + ε sup

τ∈[0,t]
eδετ‖v(τ)‖+D2e

δεt‖X(t)‖H

+D3e
δεt‖v(t)‖

≤ D1C̃0‖x0‖+ (D1C̃1

√
1 + ε+D2) sup

τ∈[0,t]
eδετ‖X(τ)‖H

+ (D1C̃2

√
1 + ε+D3) sup

τ∈[0,t]
eδετ‖v(τ)‖. (50)

This yields, for all t ≥ 0,

sup
τ∈[t0,t+(D+t0)]

eδετ‖d(τ)‖H

≤ D1C̃0‖x0‖+ (D1C̃1

√
1 + ε+D2) sup

τ∈[0,t+(D+t0)]

eδετ‖X(τ)‖H

+ (D1C̃2

√
1 + ε+D3) sup

τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖

≤ D1C̃0‖x0‖+ (D1C̃1

√
1 + ε+D2) sup

τ∈[0,D+t0]

eδετ‖X(τ)‖H

+ (D1C̃1

√
1 + ε+D2) sup

τ∈[D+t0,t+(D+t0)]

eδετ‖X(τ)‖H

+ (D1C̃2

√
1 + ε+D3) sup

τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖.

Therefore, we deduce from (48) that, for all t ≥ 0,

sup
τ∈[D+t0,t+(D+t0)]

eδετ‖X(τ)‖H

≤ C4C̃0e
δε(D+t0)

√
V (D + t0)

+D1C̃0C4

√
C6

2κ0
(1 + ε)eδεD‖x0‖

+ (D1C̃1

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD

× sup
τ∈[0,D+t0]

eδετ‖X(τ)‖H

+ (D1C̃1

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD

× sup
τ∈[D+t0,t+(D+t0)]

eδετ‖X(τ)‖H

+ (D1C̃2

√
1 + ε+D3)C4

√
C6

2κ0
(1 + ε)eδεD

× sup
τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖.

As δε −→
ε→0+

0+ and because of the small gain assumption (28),
there exists ε > 0 such that

(D1C̃1

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD < 1.

We fix such ε > 0, which is independent of the initial condition
(x0, X0) and the disturbance v. Therefore, we obtain that, for
all t ≥ 0,

eδε(t+(D+t0))‖X(t+ (D + t0))‖H
≤ sup
τ∈[D+t0,t+(D+t0)]

eδετ‖X(τ)‖H

≤ E1

√
V (D + t0) + E2‖x0‖+ E3 sup

τ∈[0,D+t0]

eδετ‖X(τ)‖H

+ E4 sup
τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖. (51)

where

E1 = ∆C4C̃0e
δε(D+t0),

E2 = ∆D1C̃0C4

√
C6

2κ0
(1 + ε)eδεD,

E3 = ∆(D1C̃1

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD,

E4 = ∆(D1C̃2

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD,

with ∆ > 0 defined by

∆ =

(
1− (D1C̃1

√
1 + ε+D2)C4

√
C6

2κ0
(1 + ε)eδεD

)−1
.

From (49), we have, for all t ≥ 0,

eδε(t+(D+t0))‖x(t+ (D + t0))‖
≤ C̃0‖x0‖+ C̃1

√
1 + ε sup

τ∈[0,D+t0]

eδετ‖X(τ)‖H

+ C̃1

√
1 + ε sup

τ∈[D+t0,t+(D+t0)]

eδετ‖X(τ)‖H

+ C̃2

√
1 + ε sup

τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖

≤ F1

√
V (D + t0) + F2‖x0‖+ F3 sup

τ∈[0,D+t0]

eδετ‖X(τ)‖H

+ F4 sup
τ∈[0,t+(D+t0)]

eδετ‖v(τ)‖, (52)

where F1 = C̃1E1

√
1 + ε, F2 = C̃0 + C̃1E2

√
1 + ε, F3 =

C̃1(1+E3)
√

1 + ε, and F4 = (C̃2+C̃1E4)
√

1 + ε. Combining
(51-52) and noting that (obtained from (23-24))

V (D + t0)

≤ C9‖X0‖2H + C10 sup
τ∈[0,D+t0]

‖d(τ)‖2H

≤ C9‖X0‖2H +D1C10 sup
τ∈[0,D+t0]

‖x(τ)‖2 (53)
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+D2C10 sup
τ∈[0,D+t0]

‖X(τ)‖2H +D3C10 sup
τ∈[0,D+t0]

‖v(τ)‖2,

we obtain the existence of constants Gi ≥ 0, independent of
the initial condition (x0, X0) and the disturbance v, such that
(29) holds for all t ≥ D+ t0. Finally, based on (47) and (40),
we estimate the control input as follows. For all t ≥ 0,

eδεt‖u(t+ (D + t0))‖

≤ ‖K‖√
C2(γ1)

√
V (t+ (D + t0))eδεt

≤ ‖K‖C̃0√
C2(γ1)

√
V (D + t0)

+ ‖K‖

√
C6

2κ0C2(γ1)
(1 + ε)e−δεt0 sup

τ∈[t0,t+(D+t0)]

eδετ‖d(τ)‖H.

Therefore, we infer from (50) and (53) the existence of
constants Hi, independent of the initial condition (x0, X0)
and the disturbance v, such that (30) holds. This concludes
the proof of Theorem 5.4.
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for finite-dimensional linear control systems with input delay,” Systems
& Control Letters, vol. 113, pp. 9–16, 2018.

[3] E. Cerpa, P. Guzmán, and A. Mercado, “On the control of the linear
Kuramoto- Sivashinsky equation,” ESAIM: Control, Optimisation and
Calculus of Variations, vol. 23, no. 1, pp. 165–194, 2017.

[4] O. Christensen et al., An Introduction to Frames and Riesz Bases.
Springer, 2016.
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