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Abstract

Mixtures of 1-alkanols are a textbook example of the concept of
ideal mixtures. Yet, such mixtures have a very strong local order due
to the hydrogen bonding interactions, with a strong tendency for chain
formation. Despite this apparent non-ideality, the Kirkwood-Buff inte-
grals of such system exhibit near ideal behaviour. This dual property
can be used to test the calculations of the Kirkwood-Buff integrals in
a controlled mixing situation, and clarify many points, in particular
the statistical problems that can be encountered. By studying the
methanol-ethanol mixtures, we uncover an interesting physical asym-
metry between low methanol and low ethanol concentrations, which
can produce statistical artifacts in the calculation of Kirkwood-Buff
integrals, illustrating and exemplifying some of the difficulties encoun-
tered in such calculations. Solving liquid state integral equations for
these mixtures demonstrates that thermodynamic ideality hides com-
plex correlations and microscopic non-ideality.
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1 Introduction
The relationship between microscopic interactions and statistical correlation
functions is essential to understand the physical and structural properties of
liquids from a theoretical point of view [1, 2]. The Kirkwoof-Buff integrals
(KBI) [3] are a perfect tool to analyse this relationship, since they correspond
to the integral of the pair correlation functions, and they can be related to
various thermodynamic properties, such as the isothermal compressibility,
the molar and partial molar volumes and the chemical potentials [3, 4, 5].
In particular, they allow to monitor the deviation from ideality of mixtures
in terms of the importance of the excess chemical potentials [3, 5]. However,
this ideality of the KBI for this type of mixtures poses several problems. A
binary mixture can be considered ideal when both components interact quite
similarly. Mixtures of alcohols, particularly mono-ols, are considered as ideal
[6, 7] since the interaction between the hydroxyl groups dominates entirely all
the other atomic interactions, and therefore those between the methyl groups
can be considered as a small perturbation. Indeed, in a previous study [8]
we have found that the KBI of the methanol-ethanol mixtures are nearly
ideal, although there was considerable local structural ordering, due to the
hydrogen bonding interactions.

We revisit here these mixtures, with the particular aim of sorting out how
the differences in alkyl tails affects the pseudo-ideality of these mixtures, as
well as the statistics. We report a surprising difference in statistics between
low methanol and low ethanol concentrations, which appear to have an un-
derlying physical background. For the same level of statistical sampling, the
low methanol content seems to show methanol segregation, which is against
the expected ideality. This behaviour is absent from the low ethanol content
side. Instantaneous snapshots seem to confirm this difference in homogene-
ity. However, when longer statistics are performed from the low methanol
content side, the expected ideality is restored. This finding indicates that
ideality is a global concept and could be violated at short times. Since this
is not observed for low ethanol content, it introduces a kinetic parameter in
the statistics. In addition, this difference is supported by a marked difference
between the oxygen-oxygen and oxygen-hydrogen pair correlations, which are
the markers of the role played by the hydroxyl groups in the hydrogen bond-
ing clustering and chaining phenomena. We will discuss this situation in the
Results section below.

These considerations brings us to an interesting point: another way to test
the ideality of such mixtures is to solve approximate integral equation theo-
ries (IET), such as the reference interaction site method (RISM) theory[9].
Since these approximations are very sensitive to local order and global organ-
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isation, they are indirect indicators of the complexity of a system. Indeed,
the resulting equations cannot be solved for disordered systems which ex-
hibit strong local order, such as aqueous mixtures, for example. In order to
solve these IET, it is necessary to make approximations so drastic, that the
resulting correlations are nearly featureless, when compared to those from
computer simulations[10, 11] . Anticipating the results of Section 4, we can
state that methanol-ethanol mixture exhibit very strong correlations and lo-
cal order, which these theories cannot capture. This poses the question of
what thermodynamic ideality really means.

The present paper differs from the previous one[8] in that it presents a
detailed account of the numerical determination of the KBI, a subject that
has been of interest in recent investigations by many authors, as well as the
above mentioned IET study.

The remainder of this paper is structured the following way. In the next
section, we summarise the methods used in this work, and in particular the
technical problems concerning the evaluation of the KBI. In the Results sec-
tion, we examine in detail the calculation of the KBI by computer simulation
and IET methods. Our conclusions are gathered in the last section.

2 Methodology

2.1 Computer simulations

The simulation protocol used herein is the same used in our previous study
of the methanol-ethanol mixtures in Ref.[8]. We focus on the TraPPe models
of both mono-ols [12], since the previous study has indicated that the OPLS
model [13] results are not so much different, as far as ideality properties of the
mixtures are concerned. We use the GROMACS 4.5.5 package [14]. N=2048
total number of molecules is considered, with a simulation time step of 2fs.
Ambient conditions of T=300K and 1bar (0.98 atm) are imposed through
the Nose-Hoover [15, 16] and Parrinello-Rahman [17, 18] algorithms, with
relaxation times of 0.1ps and 1ps, respectively. The simulation box, with
an initial volume estimated from the interpolation of experimental molar
volumes of respective neat alcohols, is filled with both alcohols with the
use of the PACKMOL program [19]. The system is then energy-minimised
and 200ps NVT run is performed for an initial equilibration, followed by a
1ns NPT step, in order to ensure ambient conditions. Typically 2ns runs
are performed for statistics, with 1000 independent configurations saved for
calculation of the structural properties. In the cases of low methanol content
10ns runs were required, as discussed in the next section. These statistics are
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good enough to provide smooth looking correlations giajb(r) between atom
ia belonging to molecular species a and atom jb of molecular species b. The
atom-atom structure factors defined as :

Siajb(k) = δab + ρ
√
xaxb

ˆ
d~r [giajb(r)− 1] exp

(
i~r.~k

)
(1)

are calculated by numerical fast Fourier transform. This calculation implies
that the giajb(r) have been properly treated to have the correct asymptote of
1. Neglecting to make this correction will produce serious artifacts at very
small k values.

The Xray and neutron scattered intensities have been equally calculated
using the expression derived previously [20] from the Debye expression [21,
22]:

I(k) = ρ
∑
ab

√
xaxb

∑
iajb

fiafjbS
(T )
iajb

(k) (2)

where the summations runs over all the species a and b, and atoms ia and
jb within each species, ρ = N/V is the total density, fm is the form factor
of atom m and depends on the nature of the scattered radiation (taken from
crystallographic tables [23]) and S(T )

iajb
(k) is the total structure factor, which

accounts for the intra-molecular correlations and selects atoms which belong
to the same molecular species, and is defined similarly to Eq.(1)

S
(T )
iajb

(k) = Wiajb(k)δab + ρ
√
xaxb

ˆ
d~r [giajb(r)− 1] exp

(
i~r.~k

)
(3)

where Wmn(k) = j0(kdmn) is the intra-molecular correlation function, which
is related to the spherical Bessel function j0(x) = sin(x)/x in case of rigid
molecule (an approximation we shall use here), and where dmn = |~rm−~rn| is
the distance between atomic sites m and n belonging to the same molecule.

It is noteworthy that the scattered intensities reported in our earlier work
[8] were based on the Pings-Waser expression [24], which is misleading since
it is missing the intra-molecular part Wab(k), which is crucial to match the
experimental data. This deficiency is often “cured” by plotting kI(k), which
allows to minimise the small-k problems produced by this incomplete expres-
sion. Hence, the present paper offers a more appropriate account of scatter-
ing properties than the previous one, showing the importance of including
intra-molecular correlations.

In this work, we express the Xray scattering intensities in cm−1 . In
this case, the formula for the scattering in Eq(2) needs to be multiplied by
r20, where re ≈ 2.8210−13cm is the electron radius. The appropriate factor
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to convert I(k) expressed as in Eq.(2) to cm−1 is the multiplicative factor
κ = r2eN/L

3/100, where N is the number of molecules in the simulations
(here N = 2048) and L is the box size for a given mixture. The neutron
scattering intensities are plotted in units the squared form factors, as given
by the cristallographic tables [23].

2.2 Integral equations

We briefly recall the RISM IET methodology[9]. It consists in solving the
site-site Ornstein-Zernike (SSOZ) equation , together with the hypernetted
chain (HNC) equation, in order to find the atom-atom correlation functions
gab(r), as well as the corresponding direct correlation functions cab(r). The
SSOZ equation can be written in the Fourier space in a matrix form. For this
purpose, we introduce the matrix element notation Fij(k) = ρ

√
xixj f̃ij(k),

where fij(r) is either hij(r) = gij(r) − 1 or cij, and the tilde designates the
Fourier transform f̃ij(k) =

´
d~rfij(r) exp

[
i~k.~r

]
, hence defining new matrix

elements Hij(k) and Cij(k). Further introducing the generalised structure
factor S(T )

ij (k) = Wij(k) + Hij(k) defined in Eq.(3) and the matrix M =
W−1 −C, the SSOZ equation can be written in a compact form:

S(T)M = I (4)

where I is the identity matrix.
The closure relation can be written as

gij(r) = exp [−βvij(r) + hij(r)− cij(r) + bij(r)] (5)

where bij(r) is the site-site bridge function which contain higher rank direct
correlation functions[25]. Neglecting this function leads to the HNC closure

gij(r) = exp [−βvij(r) + hij(r)− cij(r)] (6)

In a previous work [26], we have extracted the bridge function for several
neat liquids, and in particular methanol and ethanol. In the present work,
we test the application of equations (6) and (5). This second equation is
solved by weighting the neat alcohol bridge functions with the concentration
as follows:

biM jM (r) = aMM(1− x)b(neat)iM jM
(r) (7)

biEjE(r) = aEE(1− x)b
(neat)
iEjE

(r) (8)
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for methanol and ethanol, respectively, and the cross bridge term is approx-
imated as a mix in terms of the neat liquid bridge functions as:

biM jE(r) = aME(1− x)b
(neat)
iM jM

(r) + aEMxb
(neat)
iEjE

(r) (9)

where the index M and E stand for atoms of the methanol and ethanol
molecules, respectively, x is the ethanol mole fraction, and the 2 neat liq-
uid bridge functions in Eq.(9) are chosen such that the same pairs of atoms
match. In the case of the methanol methyl and ethanol methylene united
atoms, we have used the neat methanol methyl-methyl bridge function in-
stead. The 4 coefficients aMM , aEE, aME and aEM should ideally be 1.
However, in practice, in many cases, it is not possible to bring some or all of
these coefficients to 1 without loss of convergence. The reason for this prob-
lem is found in the anomalous raise of the Sij(k = 0), indicating that the
mixture is subject to large concentration fluctuations from the HNC theory
point of view. This anomaly is typical of the HNC closure, and the KH clo-
sure form is supposed to cure it. This closure is similar to the HNC closure,
except that, in the exponential Eq.(6), whenever the argument is positive,
it is replaced by the MSA expression for gij(r). This way, the tendency of
HNC to overestimate positive correlations, is tamed down by a lower level
closure. This procedure is known to provide numerical solutions whenever
HNC fails to do so. However, the resulting correlations are weak and lack
the typical structure of strongly correlated liquids. There is no systematic
documentation of these problems, since it is not understood why these IET
generally fail or are insufficient for complex liquids [27].

2.3 On the calculation of the KBI

In recent years, there has been a increased interest in the computation of
Kirkwood-Buff integrals (KBI) from computer simulations. These quantities
are defined as:

Gab =

ˆ
d~r [giajb(r)− 1] (10)

where giajb(r) is the pair distribution function between atoms ia and jb, be-
longing to molecular species a and b, respectively, and separated by the dis-
tance r. The KBI Gab do not depend on specific atomic sites since the integral
must be invariant to the choice of any particular centre in the molecules. The
atom-atom distribution functions giajb(r) can be computed from the standard
histogram method [28], and the functions are usually sampled in the inter-
val r ∈ [0, L/2], where L is the system cubic box size. Therefore, in view
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of Eq.(1), it does not seem particularly difficult to numerically compute the
desired integrals, which come down to evaluating:

Gab = 4π

ˆ L/2

0

dr r2 [giajb(r)− 1] (11)

Yet, this simple task is made difficult by fact, discovered decades ago by
Lebowitz and Percus [29] that gij(r) in a finite size system would not converge
to the expected limit, which is 1, and that the distortion would induce an
asymptotic shift, which in the canonical ensemble would be:

gij(r → +∞)→ 1− εij
N

(12)

where εij is related to the macroscopic concentration fluctuation < NiNj >
− < Ni >< Nj > through the relation, expressed in the Grand canonical
ensemble as [3, 30]

εij = V
< NiNj > − < Ni >< Nj >√

< Ni >< Nj >
=

1

ρxixj

(
∂ρi
∂βµj

)
TV µk

(13)

where V is the volume of the system, ρ =< N > /V is the total number
density (N =

∑
iNi where Ni is the number of particles of species i), xi =<

Ni > / < N > is the mole fraction of species i, ρi = xiρ and β = 1/kBT is the
Boltzmann factor (T is the temperature and kB the Boltzmann constant).
The relation for the isobaric ensemble is more involved[28], and although the
asymptote shift remains similar to Eq.(12), the εij term is more complicated.

If the spurious shift in the asymptote is not properly corrected, then the
so-called running KBI (RKBI) defined as

Gab(r) = 4π

ˆ r

0

ds s2 [giajb(s)− 1] (14)

instead of tending to the limit defined by Eqs.(10,11) would have a r-dependent
cubic curvature ∼ εijr

3set by the spurious limit of Eq.(12).
In many papers [31, 32, 33], we have proposed to correct for the shifted

asymptotes by simply shifting the atom-atom pair correlation functions gab(r).
There are some rules that should be obeyed, however. First, it seems rea-
sonable to assume that the short range part of the gab(r) are ensemble in-
dependent and should not be affected by fluctuations. This could cover the
first and the second neighbour distances 0 < r < 2σab. Then, there should
be a smooth continuation to the distance from which the asymptote may be
defined. In earlier publications, we propose to use a multiplicative hyperbolic
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tangent function to provide the correct asymptote, with the shifted function
given by

g
(shifted)
ab (r) = gab(r)×

1

2αab
[1 + tanh(

r − λab
κab

)] (15)

with αab = limr→L gab(r) is the unshifted asymptote, λab ≈ σab and κab chosen
such that the rate of change of the hyperbolic tangent covers 1 range of σab.
These 3 parameters are very empirical, but testing the method shows that
these parameters should be chosen in a very narrow range of values if the final
result should have a physical meaning. The shift is monitored by trial and
error choice of the shift parameter αab by plotting the running KBI (RKBI)
defined as

Gab(r) = 4π

ˆ r

0

ds s2
[
g
(shifted)
ab (s)− 1

]
(16)

a quantity which should reach an asymptote defined by Eq.(14) which is the
KBI for the pair function gab(r).

In practice, it turns out that the shifting operation through the simpler
recipe

g
(shifted)
ab (r) =

1

αab
gab(r) (17)

is equally efficient, since the shift is so close to 1 that small error due to
shifting the gab(r) in the first neighbour region does not lead to noticeable
changes, and is always much smaller than the error bars of estimating the
proper KBI. In practice, and for all the cases we have tested so far, one has
αab = 1 + εab with |εab| � 0.01. In the next section we will show a detailed
analysis of the application of this method to the methanol ethanol mixtures,
as well the various problems encountered.

In the cases when one of the species is in low content, the proper de-
termination of the long range correlation may be difficult to obtain because
long statistics may be required to ensure the sampling of the macroscopic
homogeneity. There seems to be no precise rule for this. In such cases, the
asymptote will be affected by the noisy sampling of the real homogeneity,
and it may be possible to determine it properly. In such cases, one can use
the following trick, which we have used in many of our previous papers. It
consists in noting that, when one species is in small concentration, the other
is in majority, and consequently its KBI is well defined through the asymp-
tote shifting method. On such case, one can profitably use the analytical
expression of the KBI, which can be approximated as follows
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G11 = G12 +
1

1− x

[
V2
D
− V

]
(18)

G12 =
V1V2
V D

(19)

G22 = G12 +
1

x

[
V2
D
− V

]
(20)

where x = x2 is the mole fraction of species 2, V1 and V2 are the molar volumes
of the neat species, V = (1−x)V1+xV2 is the volume of the mixture, andD =
ρa∂βµa/∂ρa (a = 1, 2) is the term which describes the deviation from ideality
of the mixture. When D = 1, the chemical potentials µa = kBT lnxaρ
(a = 1, 2) are ideal and the mixture is ideal. In the expressions above, we
have neglected several terms, such as the compressibility of the mixture,
which is usually very small since dense liquids are generally incompressible,
and we replaced the partial molar volumes by the neat liquid volumes. In
practice, we found that the simpler equations above are quite accurate against
experimental data [34, 30].

These expressions allow to extract the term D from the well behaved KBI
(the one corresponding to majority species) and replace it in the analytical
expression for the problematic KBI. We found empirically that this method
gives excellent results in place of the problematic asymptote extraction.

3 Results
Many structural properties for this particular mixture have been previously
reported in Ref.[8]. Therefore, in this section, we will focus on the KBI
problem and the integral equation approach to these mixtures, in relation to
their ideality.

3.1 KBI from simulations

In this section we present the information related to the KBI of the methanol-
ethanol mixtures, by using the asymptote shifting method Eq.(17).

First of all, it is important to verify that the asymptotes of the various
atom-atom correlations are affected by fluctuations the same way for each
species pairs. This is an internal check of the consistency of the calculations.
We illustrate this consistency in Fig.1(a-b) for the 60% ethanol mixture.

Fig.1a shows all of the atom-atom structure factors (Eq.(1)), with differ-
ent colors for each species pairs, blue for all the methanol pairs, magenta for
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the ethanol pairs, and green for the cross correlations. The atomic details
do not matter for this demonstration, which is why these are not specified.
We see that the various atom-atom structure factor Sab(k) are different un-
til nearly k ≈ 0, where they converge to 3 distinct values related to the 3
KBI. It is noteworthy that, to the numerical estimate, the convergence point
seems to be k = 0, and there is no superposition starting at some non-zero k
value. This is the case when micro-segregation occurs [30, 35], which is not
the case here: the methanol-ethanol mixtures are therefore microscopically
homogeneous.

Fig.1b shows the same information, but from the RKBI point of view,
as defined in Eq.(16). All the RKBI corresponding to all the appropriately
shifted atom-atom pair correlation functions, are shown with the same color
convention as Fig.2a. It is seen that there are 3 distinct asymptotes, corre-
sponding to the 3 KBI, namely Gmm (blue), Gme (green) and Gee(magenta)
. Although the individual atom-atom pair correlations differ at short and
medium distance, they all converge to the same fluctuation influenced KBI
value. Both the shifted and unshifted values are shown. These correspond
to 10ns statistics.

Fig.1c illustrates the same RKBI, but for 2ns statistics. Since this mixture
corresponds to rather low methanol content (40%), we see how the spurious
clustering kinetics influences the statistics and the asymptotes, which cannot
be made horizontal, even by shifting the shifting procedure. There is a
residual curvature, which witness the inhomogeneity in the outer reservoir
provided by large r-values, as explained in Section 3.1. The statistic problem
is so serious that we even observe an nonphysical crossover of the methanol
and cross correlation RKBI curves.

Fig.2 shows the RKBI GOmOmfor the methanol oxygen atom Om from the
correlation functions gOmOm(r), for various ethanol mole fractions x ranging
from x = 0(pure methanol) to x = 0.95. These functions are shown to
illustrate the asymptote shifting method (the GOmOmcorresponding to the
non-shifted gOmOm(r) are shown in gray lines, and are always tilting down to
various degrees, depending on the magnitude of the shift). It is seen that the
shifted RKBI reach a reasonably horizontal asymptotes for the small x values
corresponding to the rich methanol side, where we expect less concentration
fluctuations of this species. However, above the equimolar mixture x > 0.5,
it is seen that the asymptotes deteriorate and start to show spurious noisy
behaviour, which correspond to large heterogeneity in the distribution of the
methanol molecules and small methanol clusters. 10ns runs are not sufficient
to clarify the sampling problems. In such cases, the determination of the
asymptotes is impossible. However, we can use the trick explained at the
end of Sub-section 3.1. The ideal KBI are equally shown in Fig.3 as green
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horizontal lines for all concentrations ranging from x = 0 to x = 1. It is seen
that for x<0.6 the asymptotes nearly superpose to these ideal KBI, indicating
that the mixture is indeed ideal. This cannot be asserted for x>0.7, but we
will see below that these mixtures are equally ideal.

Fig.3 shows the RKBI GOmOefor the cross methanol-ethanol oxygen atom
Om and Oe obtained from the correlations gOmOe(r). In this case, we see
that all the RKBI converge to their ideal values, although some noise is
still present in some asymptotes, particularly at low methanol content when
x > 0.7. These results again assert that the mixtures are nearly ideal.

Fig.4 shows RKBI GOeOefor the ethanol oxygen atom Oe , obtained from
the correlations gOeOe(r), for various ethanol mole fractions x ranging from
x = 0.05 to x = 1(pure ethanol). This time around, it is the asymptotes
for small ethanol content which are noisy and not well defined, since this is
now the minority species, and dispenses problems to sample the macroscopic
homogeneity within a small system and microscopic sampling times. How-
ever, we note that the problem appear less serious than for the case of low
methanol content.

This asymmetry between the low ethanol and low methanol content, wit-
ness the near ideal character of the mixture, since each molecules differ by
one methyl atom. Nevertheless, Fig.5a shows, that when trick for correcting
the deficient asymptotes is used, then the KBI are near perfectly ideal, as
they superimpose to the ideal curves obtained from Eqs.(18-20) by setting
D = 1. If one wants to get the proper KBI from a computer simulation,
for these particular cases where it seems difficult to obtain them without the
trick, then one need to simulate very large systems, and for even longer times,
in order to sample the proper homogeneity of these mixtures, which tend to
have long lived heterogeneity. This is a real operational problem, which can
be circumvented in the present case, but which are very much problematic
for aqueous mixtures [36, 37, 38, 39], for example. The present study help
understand the nature of the practical problem which appear under other
context.

Fig.5b illlustrates the LP shifts obtained from the simulations as εijxi
versus ethanol concentration, where εij is given by Eqs.(12,13). In practice,
we numerically shift by the quantity θij = εij/N which is very small because
of N (here N = 2048). We can always express the chemical potential of
species i in a binary mixture as βµi = ln(ρi) + ρiBii + ρjBij which represent
the ideal term and the contribution from excess term [1, 6, 7], and where Bii

and Bij contains all the high order density terms for a binary mixture. Then,
using Eq.(13), we see that, for like species (i = j) we have εii ≈ (1−ρiBii)/xi
to first order in density. Fig.5b shows that, for methanol (in blue) and
in ethanol (in magenta), εiixi ≈ 1 − xiBii despite the noisy data. If the
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mixture were ideal, we would expect this relation to hold exactly, and where
Bii would be the second virial coefficient. As for the cross term, the cross
derivatives in Eq.(13) can be evaluated through the Gibbs-Duhem equation
and, for ideal mixtures, one indeed expects that xiεij = −1. Therefore, Fig.5b
confirms directly the ideality of the mixture, despite the noisy data coming
from the empirical procedure of shifting the asymptote visually to 1. It
serves to illustrate both the procedure, its shortcomings and its validity in
this particular case. We wish to stress that Eq.(13) does not hold for the
NPT ensemble, and yet we could get very convincing results.

3.2 Integral equation results

Fig.6, shows the 3 oxygen-oxygen correlation functions for the 20% ethanol
mixture, as obtained from computer simulations (in blue), HNC (in green),
HNC+bridge (in red) . It is seen that the HNC approximation alone can-
not reproduce the strong chain correlations which lead to the sharp first
peak indicated by computer simulations, and the second peak is entirely
missed. However, adding the approximated bridge (as explained in Section
2.2) allows to catch up to the first peak to some extent while fitting the
second peak perfectly. This means that the neat liquid bridge alone are not
enough to reproduce the strong correlations which lead to the first peak in
the mixtures. As for the structure factor, the HNC+bridge approximation is
relatively good, except for a notable rapid increase very close to k=0, which
is not observed for the HNC approximation. This means that adding the
new bridge, in addition to bringing a better agreement, also increases the
concentration fluctuations. We find this coupling between the good descrip-
tion of local order with the spurious increase of concentration fluctuations,
quite noteworthy. It certainly reveals how local heterogeneity and disorder
are coupled.

Fig.7 shows the same information as Fig.6, but for the equimolar mixture.
In addition, we show the results of the KH+bridge closure (dashed purple
lines), which is seen to be overall weaker than the HNC+bridge closure, but is
seems better for the small k part of the structure factors. However, it suffers
also of the spurious k = 0 raise, hence showing that the trick underlying this
approximation works only in particular cases. Since HNC+bridge is clearly
superior, this analysis shows that the KH closure should be used, since it
has no theoretical justifications. The values obtained for the coefficients
in Eqs.(7,9,8) are aMM = 1, aME = aEM = 0.90 and aEE = 0.85 for the
HNC+bridge solution. It was not possible to raise them further to 1, and
trying to do so led to dramatic increase of the k=0 part of the structure
factors, suggesting anomalous concentration fluctuation. However, this could
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be achieved for the KH closure, with the modest k=0 increase seen in Fig.7.
Fig.8 shows IET results for the 80% ethanol content. Very similar ob-

servation to Fig.6 and Fig.7 can be made. It is interesting that the ethanol
correlations for all 3 concentrations are much better reproduced by the bridge
correction than the methanol oxygen correlations. This is much against intu-
ition, since one would expect the less complex molecule to be better described
than the more complex one. The bare HNC results are very similar between
the 3 cases. These 2 results combined, suggest that the methanol bridge is
more complex than that provided by our approximation in Eq.(7) and to
some extend Eq.(9).

The difficulties of solving IET for these mixtures without the need of
the bridge function, clearly suggest the crucial role of the irreducible higher
order rank correlations. For simply disordered liquids - typically Lennard-
Jones mixtures, neglecting the bridge function does not alter dramatically
the structural properties. However, for complex disorder liquids - typically
hydrogen bonded liquids and mixtures, it is often impossible to solve IET.
In the present case, it is still possible to solve HNC, but with very weak
structural features. This is somewhat in contradiction with the fact such
mixtures should be thermodynamically ideal, which usually suggests that
the interactions are not strong. So, these mixtures are both ideal from ther-
modynamics, and highly non-ideal as far as structural features are concerned.
The thermodynamic ideality arises from a possible cancellation of very strong
but opposing non-ideal contributions. The present IET analysis brings an
interesting complementary view on this problem, which we hinted to in a
previous study [8].

3.3 Xray and Neutron scattering

Fig.9a-b shows the Xray and neutron intensities, as computed from the struc-
ture factors derived from the atom-atom correlation functions obtained from
computer simulations. First of all, we observe that the scattering pre-peak,
witnessing chain clustering of the hydroxyl groups, is clearly observed for
the Xray intensities, and seen to continuously evolve from a shoulder at
k ≈ 1 Å−1 for pure methanol, to a well defined peak at k ≈ 0.7 Å−1 for
pure ethanol. It is seen in both cases that the shape of the main peak,
in the range k ≈ 1.5 − 1.8 Å−1, has an interesting cross-over when going
from pure methanol to pure ethanol. Upon increasing ethanol mole frac-
tion, this main peak first decreases, then shifts to smaller k-values, and then
increases monotonously. This cross-over corresponds to a change in the pre-
peak, which goes from a shoulder to a pronounced pre-peak. So, it should
correspond to a structural change when going from methanol type to the
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ethanol type clustering. This should be detected in spectroscopy studies,
but the currently available information [40] does not provide any conclusive
evidence. Interestingly, the Xray diffraction experiments shown in Fig.9a
[41, 42], clearly show the crossover since the main peaks agree with the cal-
culated data. We observe that the 2 experimental data for ethanol differ
considerably, indicating that unambiguous experimental Xray diffraction is
not achieved. The discrepancy with the calculated data can be justified by
modeling inaccuracies. Nevertheless, the shapes of the pre-peak behaviour
for methanol and ethanol are quite well reproduced, which is not obvious
since these correspond to emergent (cluster) structures, and should be more
sensitive to model dependence. The TraPPE model [12] seems to capture
these features quite well.

4 Conclusion
In this work, we have revisited the methanol-ethanol mixtures, in order to
demonstrate how strong directional hydrogen bonding interactions affect the
evaluation of the correlation functions, through the statistical problem posed
by the existence of long lived hydrogen bonded structure, which create artifi-
cial inhomogeneity which will not melt on usual simulation time scales. This
problem is seen to be asymmetric, more biased towards the small methanol
content side. The existence of such structures, mostly chain-like oxygen clus-
ters, homogeneously mixing both types of oxygen atoms, has been demon-
strated by a cluster study in our previous work [8]. These structures create
a strongly non-ideal system, from the point of view of correlations, but their
integrals, namely the KBI, are seen to behave as if it was an ideal mixture.
The apparently contradictory behaviour indicates that the thermodynamic
signature is incomplete, and can be biased by canceling contributions. We
have also illustrated the methodological problems in evaluating the KBI from
computer simulations, together with the problems related to the misconcep-
tion of the importance of the LP shift. We have shown how the evaluation of
the KBI are affected both by the LP shift in Eq.(12) as well by the statistical
problems inherent to this mixture. This study, through the problems posed
by the statistics and approximate IET approaches, indicates that substantial
non-ideality is hidden behind the apparent thermodynamic ideality.
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Figure captions
Fig.1 Illustration of the self-consistent convergence of all the atom-atom

RKBI of a mixture to the 3 common asymptotes which represent
the 3 KBI values (here for ethanol mole fraction x = 0.6 of the
methanol-ethanol mixture.). Blue for methanol, green for ethanol
and magenta for methanol-ethanol cross correlations. (a) Con-
vergence of the atom-atom structure factors at k=0 into the 3
independant KBI related value. (b) Proper RKBI asymptotes
for 10ns statistics. (c) Incorrect RKBI asymptotes for 2ns statis-
tics. See text in Section 3.1

Fig.2 RKBI for the methanol-methanol oxygen atom correlations, for
all the ethanol concentrations (curves shifted by +10 for clarity).
Blue lines for data from simulations (from bottom to top x =
0.05, 0.1 to 0.9 by steps of 0.1, and 0.95); green lines for ideal
KBI (from bottom to top x = 0, 0.5, 0.1 to 0.9 by steps of 0.1,
0.95 and 1), and gray lines for RKBI from uncorrected asymptotes
(see text).

Fig.3 Same as Fig.2, but for methanol-ethanol oxygen atom correla-
tions. Blue and Grey lines for x = 0.05, 0.1 to 0.9 by steps of 0.1,
and 0.95. Green lines as in Fig.3.

Fig.4 Same as Fig.2, but for ethanol-ethanol oxygen atom correlations.
Blue and Grey lines for x = 0.05,, 0.1 to 0.9 by steps of 0.1, 0.95
and 1. Green lines as in Fig.3.

Fig.5 (a) KBI as obtained from computer simulations as full symbols,
and lines for ideal values. Open symbols represent the anomalous
values (from direct extraction from Fig.2-Fig.4 - see text). (b)
The scaled LP shift εijxi(see Eqs.(12,13). Symbol for values from
simulations, lines for ideal behaviour. In both panels, blue is for
methanol, magenta for ethanol and green for cross contributions.

Fig.6 Integral equation results for the 20% ethanol mixture, for the 3
oxygen-oxygen correlation functions gOMOM

(r) (a), gOMOE
(r) (b)

and gOEOE
(r) (c). Blue curves are computer simulation results

for reference, the green curve is HNC Eq.(6), the red curve is
the HNC+bridge described by the Eqs.(5,7,8,9) The insets show
the corresponding 3 structure factor SOXOY

(k) with same color
conventions.
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Fig.7 Same as Fig.6, but for the equimolar mixture. The dashed purple
curve is for the KH approximation with the same bridges as the
HNC+bridge approximation.

Fig.8 Same as Fig.6, but for the 80% ethanol mixture.

Fig.9 Xray (a) and Neutron (b) scattered intensities from computer
simulation structure factors. Neat methanol data (x = 0) is in
dark brown and neat ethanol data (x = 1) in black, x = 0.05 in
red, 0.1 in orange, 0.2 in gold, 0.3 in lime, 0.4 in green, 0.5 in
jade, 0.6 in azur, 0.7 in blue, 0.8 in cobalt blue, 0.9 in magenta
and 0.95 in purple. Symbols are experimental Xray diffraction
data from Ref.[41] for methanol (orange triangles) and ethanol
(blue triangles), from Ref.[42] for ethanol (red dots).
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Fig.1 - Illustration of the self-consistent convergence of all the atom-atom

RKBI of a mixture to the 3 common asymptotes which represent the 3 KBI
values (here for ethanol mole fraction x = 0.6 of the methanol-ethanol mix-
ture. ). Blue for methanol, green for ethanol and magenta for methanol-
ethanol cross correlations. (a) Convergence of the atom-atom structure fac-
tors at k=0 into the 3 independant KBI related value. (b) Proper RKBI
asymptotes for 10ns statistics. (c) Incorrect RKBI asymptotes for 2ns statis-
tics. See text in Section 3.1

.
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Fig.2 - RKBI for the methanol-methanol oxygen atom correlations, for all

the ethanol concentrations (curves shifted by +10 for clarity). Blue lines for
data from simulations (from bottom to top x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9
and 0.95); green lines for ideal KBI (from bottom to top x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9, 0.95, 1.0),
and Grey lines for RKBI from uncorrected asymptotes (see text).

.
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Fig.3 - Same as Fig.2, but for methanol-ethanol oxygen atom correlations.

Blue and Grey lines for x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9 and
0.95. Green lines as in Fig.2.

.
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Fig.4 - Same as Fig.2, but for ethanol-ethanol oxygen atom correlations.

Blue and Grey lines for x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.9,0.95
and 1. Green lines as in Fig.2.

.
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Fig.5 - (a) KBI as obtained from computer simulations as full symbols,

and lines for ideal values. Open symbols represent the anomalous values
(from direct extraction from Fig.2-Fig.4 - see text). (b) The scaled LP shift
εijxi(see Eqs.(12,13). Symbol for values from simulations, lines for ideal
behaviour. In both panels, blue is for methanol, magenta for ethanol and
green for cross contributions.

.
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Fig.6 - Integral equation results for the 20% ethanol mixture, for the 3

oxygen-oxygen correlation functions gOMOM
(r) (a), gOMOE

(r) (b) and gOEOE
(r)

(c). Blue curves are computer simulation results for reference, the green
curve is HNC Eq.(6), the red curve is the HNC+bridge described by the
Eqs.(5,7,8,9) The insets show the corresponding 3 structure factor SOXOY

(k)
with same color conventions.

.
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Fig.7 - Same as Fig.6, but for the equimolar mixture. The dashed purple

curve is for the KH approximation with the same bridges as the HNC+bridge
approximation.

.
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Fig.8 - Same as Fig.6, but for the 80% ethanol mixture.
.
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Fig.9 - Xray (a) and Neutron (b) scattered intensities from computer

simulation structure factors. Neat methanol data (x = 0) is in dark brown
and neat ethanol data (x = 1) in black, x = 0.05 in red, 0.1 in orange, 0.2 in
gold, 0.3 in lime, 0.4 in green, 0.5 in jade, 0.6 in azur, 0.7 in blue, 0.8 in cobalt
blue, 0.9 in magenta and 0.95 in purple. Symbols are experimental Xray
diffraction data from Ref.[41] for methanol (orange triangles) and ethanol
(blue triangles), from Ref.[42] for ethanol (red dots).
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