
HAL Id: hal-03093708
https://hal.science/hal-03093708

Submitted on 11 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of Function Chaining on the Edge for IoT
applications

Mohamed Khaledi, Makhlouf Hadji, Salah Eddine Elayoubi, Dusit Niyato

To cite this version:
Mohamed Khaledi, Makhlouf Hadji, Salah Eddine Elayoubi, Dusit Niyato. Optimization of Func-
tion Chaining on the Edge for IoT applications. IEEE WCNC 2021, Mar 2021, Nanjing, China.
�10.1109/WCNC49053.2021.9417362�. �hal-03093708�

https://hal.science/hal-03093708
https://hal.archives-ouvertes.fr

Optimization of Function Chaining on the Edge for
IoT applications

Mohamed-Idriss Khaledi ˚, Makhlouf Hadji ˚, Salah Eddine El-Ayoubi † and Dusit Niyato ‡
˚IRT - SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France

Email: {mohamed-idriss.khaledi@irt-systemx.fr, makhlouf.hadji@irt-systemx.fr, }@irt-systemx.fr
†Université Paris Saclay, L2S, UMR CNRS 8506, CentraleSupélec, Gif-Sur-Yvette,France,91190

Email: salaheddine.elayoubi@centralesupelec.fr
‡Fellow IEEE

Email: DNIYATO@ntu.edu.sg

Abstract—With the rapid deployment of Internet of Things
(IoT) applications, video processing and streaming requirements
are increasing, and edge computing is a good candidate to cope
with strong latency and throughput expectations. In this paper,
we consider the optimal routing, placement and scaling of IoT-
based service function chains for object detection. We propose
an edge networking approach dealing with limited CPU and
network bandwidth resources in a joint optimization based on
Integer Linear Programming for small problem instances, and a
graph-based approximation to cope with scalability issues. We
evaluate the efficiency of our algorithms through simulations
and show that the graph-based approach converges towards a
near-optimal solution in negligible time and is thus suitable for
real-time function chain placement.

Index Terms—IoT function chaining, Combinatorial Optimiza-
tion, Edge Networking

I. INTRODUCTION

With the rapid deployment of smart city and Industrial
Internet of Things (IIoT) applications, video streaming and
processing is a key issue as many sites are equipped with
tens of cameras collecting images and videos for different
objectives such as surveillance, security, cyber physical threats,
etc. In this context, stakeholders require stringent requirements
that include high quality of video streaming with strong
latency expectations to rapidly react when an incident such
as a physical intrusion. Moreover, Industrial players require
efficient deployment solutions for interconnected cameras and
video analysis systems. Virtualization techniques are being
privileged for this purpose, where both the networking func-
tions are virtualized, using Virtualized Networks Functions
(VNF) technology, and application functions are flexibly de-
veloped for being deployed on edge nodes.

In order for these functions to be deployed on an infrastruc-
ture composed of a multitude of low capacity nodes, they are
often presented as a chain of functions, each of them being
able to be deployed on an independent physical node, while
communicating with the adjacent functions on the chain. The
chain has to be deployed on the edge network according to
physical infrastructures’ available resources in terms of CPU
(on servers) and bandwidth (on links). The orchestration of
these network services necessitate new algorithms to address
the placement, routing and scaling.

In our work, we consider IoT service chains composed by
four network functions for object detection. For an object
detection application for instance, those functions include
video generation, object detection, video compression, object
recognition and database update. These IoT applications
are deployed on nodes equipped with limited processing
capabilities, and interconnected with different communications
techniques such as Ethernet, Bluetooth, Wifi, Lora, etc.
This heterogeneity of the processing capabilities and
communications solutions makes the orchestration and
management of the deployed network services harder. We
need to investigate efficient optimizations of these resources
in near real time to attend systems with good performance
(convergence time, solution’s cost, etc.).

To deal with these research challenges, we propose two
mathematical formulations. One is based on an exact mod-
elling invoking Integer Linear Programming techniques. The
second approach is based on graph theory to rapidly attend
good solutions in negligible times. Our contribution in this
paper is given as follows:

• An exact approach based on integer linear programming
approach : this method is based on the description of
the convex hull of the addressed joint CPU and network
optimization problem for IoT video streaming and pro-
cessing.

• To cope with scalability issues, we propose an approxi-
mation approach based on graph modelling. Indeed, we
represent IoT chains by trees and physical substrates
by undirected graphs with a certain density in terms of
number of edges. Hence, our approximation algorithm
consists in finding a good mapping of trees on an undi-
rected graph according to different metrics. This will be
detailed in next sections.

Note that the novelty of our approaches will be clearly ad-
dressed in next sections and their efficiency will be highlighted
and compared to the state of the art addressing close research
challenges.

The remainder of this paper is organized as follows: next
section (Section II) addresses the related work and most

close papers in terms of research challenges in NFV and
IoT domains. Sections III contains the problem description
and details, problem complexity issue and the two proposed
solutions based on ILP and Graph theory. Our approaches will
be assessed using simulations in Section IV. We conclude the
paper in Section V, with some future research challenges that
have the merit to be addressed in a close future.

II. RELATED WORK

Paper [1] addressed energy efficiency of the Internet of
Things, as many sensors are expected to be completely stand-
alone and able to run for years without battery replacement.
The authors proposed a formulation of an optimization prob-
lem to jointly design the source coding and transmission
strategies for time-varying channels and sources, when consid-
ering two criteria based on extending the network lifetime and
granting low distortion levels. Authors of this paper applied
their offline solution on a IoT network with a dynamic Time
Division Multiple Access (TDMA).

Reference [2] is one of the closest work to our paper.
It addresses a joint optimization of power consumption of
the CPU and the Wireless Network Interface Card (WNIC)
of mobile devices while streaming high quality videos. We
recall that the two major energy consuming components in
mobile video streaming services are the CPU (that supports
video data decoding) and the network interface (that supports
data communication). Hence, authors of this paper proposed
a joint optimization scheme for improved energy efficiency
supporting mobile video streaming services. This is based
on the adjustment of the number of video chunks to be
downloaded and decoded in each packet. However, they only
considered joint optimization of CPU and energy consumption
for one mobile device. In our work, we consider a joint
optimization of CPU and bandwidth in an IoT network with
multiple physical objects and where the number of paths
between each couple of nodes can be exponential.

Authors of paper [3] discussed the problem of real time
video analytics in an edge computing environment. Recall
that real-time video analysis is used nowadays in several
domains (traffic control, surveillance and security, retail store
monitoring) and because of the high data volumes, compute
demands and latency requirements, cameras represent the most
challenging of things in IoT, and large-scale video analytics
may well represent the killer application for edge computing.
The authors proposed a real-time video analytics system with
low resource cost to produce outputs with high accuracy. The
proposed approach can be used in several application such as
self-driving and smart cars, etc. Nevertheless, the proposed
approach do not consider a joint optimization for different
resources such as CPU and bandwidth when satisfying latency
expectations.

Paper [4] proposes a mathematical optimization approach
over virtual network services for better scaling, placement
and routing on a physical substrate. Network services (video
streaming, online gaming) are placed and deployed in the
network based on fixed predefined descriptors. With the large

number of degrees of freedom for finding the best adaptation,
deciding scaling, placement, and routing can result in sub-
optimal decisions for the network and for the running services.
They proposed JASPER (Joint optimization of scaling, place-
ment and routing) in which, each network service is described
by a service template containing information on the com-
ponent network services, their interconnection, and resources
requirements. Hence, the solutions of reference [4] are applied
using IETF use-cases [5] and examples for an embedding
of virtual networks on physical substrates. In our work, we
consider limited IoT nodes in terms of available resources,
which makes the problem harder and finding feasible solutions
more complicated.

Another reference dealing with CPU and bandwidth opti-
mization is given by [6]. Authors of this paper proposed a
technique to manage computation offloading in a local IoT net-
work under bandwidth constraints. They proposed approaches
to separately optimizing CPU and Bandwidth resources, which
can lead to sub-optimal solutions of the problem. We propose a
joint optimization of the two mentioned limited resources and
discuss the scalability of our approaches for large instances.

In the context of VNF orchestration, the Stratos project
[7] proposed a detailed architecture to orchestrate VNFs out-
sourced to a remote cloud taking considering traffic engineer-
ing, VNFs scaling, etc. Nevertheless, this project has addressed
only VNF placement solution based only on workloads, and
then, chaining constraints are not considered.

References [8] and [9] propose mathematical models for
the VNF chains placement with routing constraints. The pro-
posed models, however, describe a limited number of linear
constraints and can only characterize a small portion of the
problem convex hull. The proposed exact solutions do not
scale for large problem instances. We need deeper modeling
that can characterize better (completely) the convex hull of the
VNF placement and chaining problem to find near optimal
solutions in few seconds and scale with problem size. We
propose a competitive graph theory approach with the desired
properties of converging quickly to near optimal solutions even
for large problem instances.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System description

We consider a set of sensors that collect data for monitoring
and analytics purposes. Each sensor is connected to another
one via a link that runs on a wired or wireless technology such
as Wifi, Ethernet, Bluetooth, etc. This leads to considering
different bandwidth capacities and delay profiles on the links
related to each couple of sensors. Moreover, we consider
limited processing resources (in our case, represented by CPU
cores) at each connected sensor. The montoring and analytics
service is composed of a chain of n network functions (de-
noted by f1 Ý→ f2 Ý→ ... Ý→ fn) equivalent to Service Function
Chains as described by [10].

Figure 1 illustrates the different components of our system
model for a specific service of object detection via surveillance
cameras in a restricted area. In this example, each camera

2

captures videos and images and may be equipped by a
processing node. Cameras are interconnected and the edge
network also incorporates processing servers. Depending on
the orchestrator’s decision, the videos captured by each of the
cameras can be processed locally or send to another processing
node. Moreover, the object detection service is composed of
a chain of four virtual functions as follows:

1) Function f1 (Object/Face Detection): detects and ex-
tracts in frames all faces in the restricted area (industrial
site, for instance) before sending the data to f2

2) Function f2 (Object/Face compression): It character-
izes each face by limited number of features

3) Function f3 (Object/Face recognition): the features ex-
tracted for each object are compared to a given database

4) Function f4 (Database enhancement): Once an ob-
ject/Face is recognized with a high reliability, the new
corresponding features are added to the database to
improve the quality of future identification

B. Problem description

The objective of this paper is to find an optimal embedding
of the virtualized IoT Service Function Chains (IoT-Chains)
on the edge networks subject to processing and bandwidth
constraints.

Let G “ pV ,E q be the graph representing the IoT-substrate
(interconnected sensors and processing nodes), where |V | and
|E | represent the network sizes in terms of number of nodes
and edges, respectively. Let Gv “ pVv,Evq be the virtual
request graph composed by n chained VNFs. Note that in the
particular example of Figure 1, |Vv| “ 4 and |Ev| “ 3.

Each physical object (IoT) j has a limited CPU processing
noted by Cj . Each physical edge (or link) pj, j1q has a limited
amount of bandwidth noted by Bj,j1 . If there is no edge
between j and j1, then the amount of available bandwidth
between these two nodes is represented by the smallest avail-
able bandwidth on the path between j and j1. Each virtual arc
pi, i1q has a request of bii1 of necessary bandwidth.

We aim at developing new algorithms to reach optimal
trade-offs between the two criteria of processing and band-
width with respect to latency requirements. Before proposing
these algorithms, we investigate the complexity of the prob-
lem.

C. Problem complexity

The addressed problem in this paper is close to the well
known Virtual Network Embedding problem (VNE) (see [11],
and [12] for more details), when the chaining and routing
constraints are completely relaxed in the requested graphs.
Different research papers have already addressed the question
of VNE problem’s complexity. For instance, reference [13]
discussed the general cases of the problem’s NP-Hardness,
while reference [14] has shown a special case where the
requested graphs are represented as cycles. Hence, in this case,
the VNE problem can be similar to the 2-Factor (see [15] for
more details) problem which is polynomially solvable. This

Fig. 1. IoT based virtual network functions mapping for object detection

particular case imposes strong hypothesis and assumptions
on the virtual graph. Moreover, a recent paper (see [16])
proved the NP-Completeness (using linear reductions from
the well known NP-Complete 3-SAT problem) of the VNE
problem in almost of the considered virtual and physical
graphs architectures. Hence, relaxing routing constraints of our
problem is leading to (in general) an NP-Hard VNE problem,
which is hampering solving our problem in polynomial time
unless P “ NP .

D. Integer Linear Programming approach

Let mini,j,j1,k be the minimum available bandwidth on
the kth path between physical nodes j and j1 for the virtual
arc pi, i ` 1q. Moreover, and for the sake of clarity, we
introduce Ppj, iq as the set of all physical nodes j1 such
that there exists a shortest path (a simple Dijkstra algorithm
can be used) between nodes j and j1 in which the minimum
available bandwidth (on its arcs) is at least equal to the
required amount of bandwidth.

Before going through the details of our mathematical for-
mulation describing the Integer Linear Programming (ILP) of
our problem, we propose to describe decision variables that
will be used in our joint optimization formulation.
• xi,j is a binary variable equals to 1 if the virtual

node/function fi (of the requested chain) is deployed on
a physical node j, and equals to 0 otherwise.

• ypi,i`1q;pj,j1,kq is a binary variable, the value of which is
1 if a virtual arc pi, i` 1q for a link between two virtual
functions of the demand is placed on a physical path k
joining two physical nodes j and j1, and 0 otherwise.

• zj is a binary variable, the value of which is 1 if the
physical node j hosts at least one virtual function, and 0
otherwise.

Our objective function is composed by three terms and
consists of jointly optimizing the placement and routing of

3

the four chained virtual functions when minimizing the total
CPU core consumption and number of used objects. This is
given by:

max F “

(1)
ÿ

j ∈V

pCjzj ´
ÿ

i ∈Vv

cixi,jq`

ÿ

i ∈Vv

ÿ

j ∈V

ÿ

j1 ∈P

ÿ

k ∈K

pmin
ijj1k

´bpi,i`1qqypi,i`1qpj,j1,kq

where K pj, j1q is the set of all available and feasible paths
between nodes j and j1.

Our optimization problem for the placement and routing of
virtual chains has a set of constraints described in the sequel:

ÿ

j∈V

xi,j “ 1,∀i ∈ Vv (2)

Constraints (2) guarantee that each virtual node/function func-
tion fi, is deployed on exactly one physical node/IoT object.

ÿ

i∈Vv

cixi,j ≤ Cjzj ,∀j ∈ V (3)

Constraints (3) ensure that the placement of virtual functions
cannot consume more resources than that available on the
selected physical node/IoT object.

ÿ

i∈Vv

xi,j ≥ zj ,∀j ∈ V (4)

Constraints (4) ensure that only selected servers will be taken
into account in the first term of the objective function.

xi,j ≤
ÿ

j1∈Ppj,iq

xi`1,j1 ,∀i ∈ t1, ..., n´ 1u,∀j ∈ V (5)

Constraints (5) are guaranteeing the chaining of the n virtual-
ized functions f1 to fn.

ÿ

j∈Ppj1,iq

ÿ

k∈K pj,j1,iq

ypi,i`1qpj,j1,kq “ xi`1,j1 , (6)

∀i ∈ t1, ..., n´ 1u,∀j1 ∈ V

ÿ

j1∈Ppj,iq

ÿ

k∈K pj,j1,iq

ypi,i`1qpj,j1,kq “ xi,j , (7)

∀i ∈ t1, ..., n´ 1u,∀j ∈ V

Constraints (6) and (7) are provided to ensure that if a virtual
node/function i is deployed on a physical node j, i.e. xi,j “ 1,
and the virtual node i` 1 is hosted by a physical node j1, i.e.
xi`1,j1 “ 1, then the virtual arc pi, i` 1q should be deployed
on the kth physical path starting from node j to node j1, i.e.
ypi,i`1q;pj,j1,kq “ 1.

TABLE I
MATHEMATICAL FORMULATIONS’ PARAMETERS

Parameters Definition
xij binary variables indicating if V NFi is

hosted in j
yi,i1;j,j1 a binary variable indicating if the virtual

arc pi, i1q is hosted on the physical path
between j, j1

zj a binary variable indicating if node j is
solicited

ci the requested CPU amount by V NFi

Cj The available CPU amount in node j
Kpj,j1,iq a set of all available and feasible (a path

with the minimum bandwidth on all its
edges is higher than the requested band-
width for the arc pi, i ` 1q) paths between
nodes j and j1 for the virtual arc pi, i` 1q

mini,j,j1,k Minimum available bandwidth on the kth
feasible path between physical nodes j and
j1 for the virtual arc pi, i` 1q

ÿ

j∈V

ÿ

j1∈Ppj,iq

ÿ

k∈K pj,j1,iq

ypi,i`1qpj,j1,kq “ 1,∀i ∈ t1, ..., n´ 1u

(8)
Constraints (8) guarantee that each virtual arc pi, i ` 1q is
deployed on exactly one physical path. There is no flow split
considered in our formulation.

ÿ

i∈t1,2,3u

`

ypi,i`1qpj,j1,kq ` ypi,i`1qpj1,j,kq

˘

bpi,i`1q ≤ min
ijj1k

∀i ∈ t1, ..., n´ 1u,∀j ∈ V ,∀j1 ∈Ppj, lq,∀k ∈ K pj, j1, iq
(9)

Constraints (9) are provided to guarantee a minimum band-
width availability to satisfy the requested routing between each
couple of selected physical nodes j and j1.

Table I summarizes the whole of parameters and variables
used in our mathematical formulation.

E. Graph-based approach

ILP approach suffers from scalability issues and then cannot
address large problem instances. Hence, to cope with this
issue, we propose a scalable method based on graph theory.
This approach is based on a weighted extended 4-level graph.
At each level, we represent a set of physical nodes/IoTs able to
host (in terms of available CPU cores) some virtual functions
f . There is an arc between a node Slj (a physical node j at
the level l(l ≤ 4)) and Sl`1

j1 (a physical node j1 at the level
l`1) with a weight wj,j1 representing the available amount of
bandwidth between servers j and j1. Figure 2 is built according
to the example provided by Figure 1. This provides more
details on the construction of the extended multi-level graph.

The constructed multi level graph of Figure 2 allows easily
to select physical servers to host virtualized functions when
guaranteeing (thanks to the multi-level property) the routing

4

S1
1

S1
3

S1
4

S1
5

S2
1

S2
4

S3
1

S3
2

S3
3 S4

22

2

1.5

2

1.5 2

Fig. 2. Extended multi-level graph construction

expected in the virtual graph request.
This approach converges rapidly to near optimal solutions

with a complexity of Op|V |4q and this will be illustrated in
next section.

As it is illustrated in Figure 2, the first level of the extended
graph, is used to select a server (according to a given criteria
such as high available CPU resources) to host f1. Before
identifying the second server (in level 2 of the extended graph)
to host f2 using the same criteria, we compute a shortest path,
in terms of available bandwidth, between the selected server
in the previous level, and all of the available servers (in terms
of available CPU) of level 2. We iterate these operations for
levels 3 and 4 of the extended graph.

Note that the selected strategies using servers with high
available CPU and shortest paths to guarantee a bandwidth
efficient routing, can be replaced by other techniques to attend
different objectives.

In the following, we provide the pseudo-code (see Algo-
rithm 1) of the graph based heuristic and discuss its perfor-
mance and convergence through simulations.

IV. NUMERICAL RESULTS

Our proposed approaches are evaluated through a Python
implementation using CPLEX [17] solver for the exact ap-
proach. We use a laptop with 8Gb of RAM and 2.7Ghz of
CPU. The following metrics are used to quantify the efficiency
of the two proposed approaches (exact and heuristic):

1) Gap between the objective functions of the proposed
approaches: this metric is provided to measure the
efficiency of the approximation algorithm benchmarked
by the exact method. It is given as follows:

Gapp%q “
Exac.Sol ´Heur.Sol

Exac.Sol
× 100

2) Convergence time: The necessary time to converge to
a (near) optimal solution

3) Scalability: The ability of the algorithm to scale to a
large graph and provide a solution within an acceptable
convergence time.

Algorithm 1: Graph-based approach
SelectedNodes← rs;
ObjF ← 0;
i← 1;
Get the list of physical nodes that can host the first VNF
f1;

S1
j ← Best node to select (in terms of CPU) that can host
f1;

while i ≤ 3 do
Subtraction of CPU of ci from node Si

j ;
if i ≥ 2 then

Subtraction of bi´1,i from the selected physical
path joining Si´1

j to Si
j1 ;

end
Get the list of nodes that can host fi`1;
if (Si

j has connections with other nodes Si`1
j1 that can

host fi`1) then
Append Si

j to SelectedNodes;
if i ≥ 2 then

ObjF ← ObjF `min
Si
j ,S

i`1

j1
,k
´ bi´1,i;

end
Get min

Si
j ,S

i`1

j1
,k

(minimum bandwidth on the

best paths that connect Si
j to each of the nodes

Si`1
j1 in the next layer pi` 1q);

Sorting the list of nodes reached by Si
j and that

can host fi`1 in a descending order in terms of
CPU and Bandwidth optimization;

Si`1
j1 ← Best node to select in layer pi` 1q;

Increment i by 1;
else

while there are still nodes that can host fi do
Update the CPU and Bandwidth;
Si
j ← The new selected node that can host
fi;

Re-update the CPU and Bandwidth;
Check if this node has connections with other
nodes that can host fi`1 (if True then break
the loop);

end
if it doesn’t exist any node then

return The Network is overloaded;
else

Append Si
j to SelectedNodes;

if i ≥ 2 then
ObjF ← ObjF `min

Si
j ,S

i`1

j1
,k
´ bi´1,i;

end
Get min

Si
j ,S

i`1

j1
,k

;

Sorting the list of nodes reached by Si
j and

that can host fi`1 in a descending order in
terms of CPU (verifying Bandwidth
feasibility) optimization;

Si`1
j1 ← Best node to select in layer pi` 1q;

Increment i by 1;
end

end
end
ObjF ← ObjF `minS3

j ,S
4
j1

,k ´ b3,4;

Update (CPU and Bandwidth) for the 4th layer;
Append S4

j to SelectedNodes;
ObjF ← ObjF` the remaining CPU of the selected
nodes;

return SelectedNodes, ObjF ;

5

Fig. 3. Evolution of the gap (objective functions) with graph sizes

4) Rejection rate: This metric represents the capacity of
the system in terms of a number of requests that can be
processed without creating instability.

The assessment scenarios correspond to physical infras-
tructures (graphs) with a number of nodes. We develop two
flavors of simulations: a static version that implements the
optimization algorithm on a graph for one function chain, and
a dynamic version where requests for function chain placement
arrive according to a Poisson process. The latter version is used
to assess the capacity of the system, in terms of low rejection
rate.

A. Placement of a single function chain on an edge graph

For each scenario in our simulations, we represent each
point by the average value of 50 runs of different collected
metrics of the two proposed approaches.

Table II depicts the obtained results when comparing the
graph-based approach to the exact solution using convergence
time and the gap between the two obtained solutions. In these
simulations, we consider graphs with number of nodes in the
r5; 80s range. As expected, the exact algorithm outperforms the
graph based approach in terms of objective function metric
(see columns 3 and 4 in Table II). Nevertheless, the graph
based approach converges to near optimal solutions. This
is confirmed by the Gap values (see column 7 in Table
II) which are decreasing when graph sizes are increasing.
Figure 3 depicts the evolution of the gap metric (in terms
of CPU/Bandwidth) with the considered graph sizes. The
figures illustrate a weak gap value for the two scenarios which
indicates and confirms the efficiency of the proposed graph-
based method to reach near-optimal solutions. The gap values
are decreasing and are vanishing to 5% when considering
graphs or IoT substrates of 50 nodes.

Moreover, columns 5 and 6 of Table II show the execution
times for the exact and heuristic approaches, respectively.
Exponential time execution for the exact approach can be

observed, reaching more than 900 ms for small graphs (30
nodes) and 91 seconds for large ones (80 nodes). The graph
based approach has negligible time convergence even for
larger graphs. Indeed, the exact approach is time consuming
especially when investigating an explosive number of paths
to guarantee the requested routing of virtual functions. The
graph-based approach uses the already described multi-level
extended graph, to easily and rapidly detect a feasible/optimal
path for routing strategies.

TABLE II
EXACT VS APPROXIMATION ALGORITHMS PERFORMANCE

nodes # links Exa. Obj Heu.Obj Exa.Time(ms) Heu.Time(ms) Gap%
5 7 14.58 11.47 14.72 0.24 21.33
10 16 19.65 16.41 72.64 1.56 16.48
15 25 21.49 19.08 171.72 2.75 11.22
21 36 23.16 21.10 418.86 9.43 8.90
25 43 23.92 21.91 632.81 11.34 8.40
30 52 24.17 22.17 937.66 17.33 8.29
40 70 25.27 23.94 14607.15 23.56 5.27
50 88 26.28 25.18 26110.11 30.78 4.19
70 124 26.47 25.21 58235.02 45.78 4.75
80 142 26.52 25.28 91514.11 53.32 4.69

150 268 24.89 23.85 308015.30 83.41 4.18

To highlight the scalability of the heuristic based approach,
we provide in the last row of Table II the results for a
graph with 150 nodes and 268 edges, randomly generated.
The heuristic approach converges to near optimal solutions in
less than 84 ms for the worst case, when the exact approach
necessitates more than 25 minutes to attend the optimal
solution.

B. Dynamic placement of function chains
In the following, we address simulations with dynamic

setting where demands for service function chain placement
arrive according to a Poisson process with inter-arrival times
(noted by λ´1) and departures are represented by exponential
distribution with a parameter (lifetimes) represented by µ´1,
called also service rate. This dynamic setting allows to com-
pute the system capacity, in terms of rejection rate. Hence, we
introduce ρ “ λ

µ to assess these performances. Note that the
event of request rejection occurs when a new request arrives
while the system his still processing a large number of previous
requests. This is modeled in our case by a buffer for requests
of limited size (10 in the numerical results). When this buffer
is full, new arriving requests are rejected. This rejection is
thus related to the algorithm’s necessary convergence time:
The faster the convergence, the lowest is the probability of
buffer overflow.

Figure 4 reports the rejection rate evolution for different
values of system load. We selected graphs with 15, 30 and
50 nodes for this simulation. As the convergence time for the
exact (ILP) approach increases exponentially with the graph
size, the rejection rate is non negligeable for a larger graph
size. When the load increases (i.e. the average number of new
requests increases), the rejection rate also increases. Note that
for the graph-based approach, the rejection rate is close to
zero. This is due to the negligible necessary time to converge
to near optimal solution using the heuristic approach.

6

Fig. 4. Exact algorithm’s rejection rate for different graph sizes

Fig. 5. Rejection rate for different system loads (ρ)

This result is also confirmed by simulations of Figure
5 illustrating the rejection rate of the exact algorithm for
increasing physical infrastructures size. With no surprises,
systems with high values of ρ are saturated rapidly compared
to systems with small values of ρ. In fact, high values of ρ lead
to bursts of arrivals that can not be processed in acceptable
times, as the exact algorithm suffers from slow convergence
time.

V. CONCLUSION AND FUTURE WORK

This paper addressed the problem of resource allocation
on an edge network for IoT-based services and discussed the
trade-off in terms of processing and bandwidth optimization.
We considered a service composed of a chain of functions and

developed optimization algorithms for the placement of the
functions on the graph composed of heterogeneous nodes and
links. We investigated the optimal approach based on Linear
Integer Programming and a heuristic based on Graph theory.
We highlighted the efficiency of our approaches through
simulations, using different graph requests and instances.

Future work will consider reinforcement learning techniques
to improve the optimization process and hence minimize the
rejection rate of the graph-based algorithm.

REFERENCES

[1] C. Pielli, A. Biason, A. Zanella, and M. Zorzi, “Joint optimization of
energy efficiency and data compression in tdma-based medium access
control for the iot,” in 2016 IEEE Globecom Workshops (GC Wkshps),
2016, pp. 1–6.

[2] S. Jo and J. Chung, “Joint optimized cpu and networking control scheme
for improved energy efficiency in video streaming on mobile devices,”
Mobile Information Systems, vol. 2017, 2017.

[3] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Philipose,
L. Ravindranath, and S. Sinha, “Real-time video analytics: The killer
app for edge computing,” Computer, vol. 50, no. 10, pp. 58–67, 2017.

[4] S. Dräxler, H. Karl, and Z. Mann, “Jasper: Joint optimization of scaling,
placement, and routing of virtual network services,” IEEE Transactions
on Network and Service Management, vol. 15, no. 3, pp. 946–960, 2018.

[5] “https://www.ietf.org/,” 2020.
[6] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, and J. Henkel,

“Computation offloading and resource allocation for low-power iot edge
devices,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-
IoT), 2016, pp. 7–12.

[7] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao,
A. Anand, T. Benson, A. Akella, and V. Sekar, “Stratos: A network-
aware orchestration layer for middleboxes in the cloud,” CoRR, vol.
abs/1305.0209, 2013. [Online]. Available: http://arxiv.org/abs/1305.0209

[8] H. Moens and F. D. Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM) and Workshop, 2014, pp.
418–423.

[9] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in 2015 IEEE Conference on
Computer Communications (INFOCOM), 2015, pp. 1346–1354.

[10] “https://www.etsi.org/technologies/689-network-functions-
virtualisation,” 2020.

[11] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[12] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 3, pp. 816–827, 2014.

[13] E. Amaldi, S. Coniglio, A. Koster, and M. Tieves, “On the computational
complexity of the virtual network embedding problem,” Electron. Notes
Discret. Math., vol. 52, pp. 213–220, 2016.

[14] S. Khebbache, M. Hadji, and D. Zeghlache, “Virtualized network
functions chaining and routing algorithms,” Computer Networks, vol.
114, pp. 95 – 110, 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1389128617300087

[15] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, 5th ed. Springer Publishing Company, Incorporated, 2012.

[16] M. Rost and S. Schmid, “On the hardness and inapproximability of
virtual network embeddings,” IEEE/ACM Transactions on Networking,
vol. 28, no. 2, pp. 791–803, 2020.

[17] “https://www.ibm.com/fr-fr/analytics/cplex-optimizer,” 2020.

7

