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Challenging pollution and the balance problem from

rare earth extraction: how recycling and

environmental taxation matter

Bocar Samba Ba� Pascale Combes-Motely Sonia Schwartzz

Abstract

Rare earth element extraction induces environmental damages and the balance

problem. In this article, we show that recycling can challenge both problems in

a two-period framework. We also �nd other results depending on the amount of

scrap that can be recycled. If the recycling activity is not limited by available scrap,

it does not change extraction in �rst period. Environmental taxes on extracted

quantities reduce extraction and favor recycling. But if the recycling is limited,

the extractor reduces extraction in period one, adopting a foreclosure strategy and

environmental taxes can decrease recycling. In all cases, environmental taxes are
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never equal to the marginal damage from pollution, in order to take into account

the recycling e¤ect.

� � � � � � � � �

Keywords: Rare Earth Elements, Pollution, Balance Problem, Recycling,
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1 Introduction

Rare Earth Elements (REEs) are now vital for a vast array of modern technologies related

to the transition to a low carbon economy such as energy generation and storage, energy

e¢ cient lights, electric cars and catalytic converters as well as military and aerospace

applications (Golev et al. 2014).1 According to the US Geological Service (USGS) Mineral

Commodity Summaries (2016), REEs reserves worldwide amount to 130 million tons.

China and Brazil hold the largest shares of such reserves with respectively 16.9 % and

42.3%, followed by Australia (2.5%), India (2.4%) and the United States (2%). Regarding

mine extraction, out of the 124,000 metric tons estimated to have been produced in 2015,

China contributed with 87.5%, followed by Australia 8.3% and the United States 3.4%

(Fernandez, 2017). If the USA long dominated the rare earth industry from the mid-1960s

to the mid-1980s, China has become the main producer and now holds a quasi-monopoly.

This leading status is mainly attributed to lower labor costs and lower environmental

standards (Campbell, 2014; Muller et al. 2016).

REEs processing is water and energy-intensive and requires chemicals use (EPA, 2012).

The mining and processing of REEs usually result in signi�cant environmental impacts

despite increasing e¤orts towards more e¢ cient waster management (see e.g. An et al.,

2019, for the case of industrial waste management utilities in China). Many deposits are

actually characterized by high concentrations of radioactive elements such as uranium

and thorium (Massari and Ruberti, 2013) and acidic substances (Elshkaki and Graedel,

2014) that are released into the environment without being treated (Folger, 2011). The

1The REEs constitute a group of 17 chemically similar metallic elements, composed of 15 lanthanide

elements (lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolin-

ium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium) and two other elements

(scandium and yttrium).
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Asian Rare Earth company which was located in Malaysia between 1982 and 1992 has

often been reported as an example of radioactive pollution associated with the processing

of monazite ores (Ichihara and Harding, 1995). In China, mining of abundant ionic clay

resources induces signi�cant damages due to severe erosion, air, water and soil pollution,

as well as biodiversity loss (Packey and Kingsnorth, 2016). Human health issues are

also reported. The case of Baotou in Inner Mongolia is an emblematic location of which

inhabitants are a¤ected by cancers, respiratory diseases, and dental losses (Schüler et al.,

2011) whereas the radioactive sludge lake makes the land around this city unsuitable for

agriculture.

Despite their name, REEs are not all rare (Falconnet, 1985; Wübbeke, 2013). Rare

earth ores contain one or several of the 17 elements, which makes several elements rel-

atively abundant compared to others. The balance problem arises when the market

demand for several REEs is not balanced with their natural abundance in REE ores

(Elshkaki and Graedel, 2014). It is a major concern for extractors in that they bear stor-

age costs for abundant REEs. For them, the balance problem is a more important issue

than the availability of REEs. For instance, some REEs such as neodymium, dysprosium,

terbium, and lanthanum are not abundant and are high in demand (Binnemans, 2014;

Binnemans and Jones, 2015), whereas other elements such as cerium are abundant and

low in demand (Golev et al., 2014).2

Several options have been proposed so far to mitigate the balance problem (Binne-

mans, 2014; Binnemans et al. 2013; Binnemans and Jones, 2015). In this paper, we focus

2For illustration, the forecast supply for neodymium and dysprosium in 2016 were respectively 30-

35,000 tons and 1,300-1,600 tons, while the forecast demand amounted respectively to 25-30,000 tons

and 1,500-1,800 tons. The forecast supply for cerium was 75-85,000 tons, whereas the forecast demand

was 60-70,000 tons (Kingsnorth, 2012).

4



on the recycling of REEs that could postpone the extraction (Ba and Mahenc, 2018) and

contribute to enhancing environmental quality (Duraiappah et al., 2002). For example,

the supply of neodymium and dysprosium from their recycling is expected to cover about

5% of the demand by 2050 (Elshkaki and Graedel, 2013). Several countries and corpora-

tions have already started to recycle REEs. China recovers REEs up to a maximum level

of 95% (Yang et al., 2014) while Japan recycles a third of REEs used in the production

of magnets (Hetzel and Bataille, 2014). The Solvay Group has recently developed the

process for recovering REEs from lamp phosphors, batteries, magnets, and tailings in

France and in Belgium (Binnemans et al., 2013). Hitachi Ltd has devised technologies

to recycle rare earth magnets from hard disk drives (Hitachi, 2010 cited in Binnemans et

al., 2013). Osram is able to recover REEs from used phosphors (Binnemans and Jones,

2014). Other processes allow now to recover REEs from the scrap generated in the various

end-uses sectors (Schüler et al., 2011). It is worth stressing that mining companies such

as Molycorp have also implemented recycling schemes for magnets in order to reduce the

overproduction of some abundant REEs (Binnemans et al., 2013). These e¤orts made

by several companies are still insu¢ cient (OECD, 2015). One can, therefore, wonder

whether environmental policies can have an e¤ect on the intensity of recycling.

Recycling has been the subject of several theoretical investigations. First, some papers

focus on the relationship between recycling and natural resource exhaustion. André and

Cerdà (2006), Weikard and Seyhan (2009) and Seyhan et al. (2012) show that recycling

delays the depletion of these resources. Ba and Mahenc (2018) analyze how far taking

into account recycling challenges the Hotelling rule. Several other papers explore the

impact of recycling on market power. The results are somehow contradictory. One the

one side, recycling does not substantially a¤ect the extractor�s long-run market power
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(see Gaskins, 1974; Swan, 1980; Martin, 1982; Suslow, 1986; Hollander and Lasserre,

1988 and Grant, 1999). On the other side, recycling increases the extractor�s market

power (see Gaudet and Van Long, 2003; Baksi and Long, 2009). Finally some papers

analyze instruments that favor recycling (see, for example, Gupt, 2015 and Yokoo and

Kinnaman, 2013).

The main purpose of this paper is to investigate how far recycling and environmental

taxes can alter both the balance problem and the pollution generated by REEs extraction.

To the best of our knowledge, our contribution is the �rst one that takes into account

the balance problem in an economic framework. It is also the �rst one that designs

environmental taxes in the presence of recycling.

There are two ways of modeling the production process of REEs. One the one side,

the extraction is a joint production process. The valuation of the co-products ensures

the pro�tability of extraction. On the other side, the extractor only cares about speci�c

elements while others are byproducts. The latter only provide extra value to the mining

project and do not in�uence the optimal extraction. Fizaine (2013) for instance analyses

the link between mining byproducts and the primary products. This paper formalizes

the equilibrium between the supply and the demand for the primary ore only. The

price elasticity of the byproduct supply is null because the extractor overlooks it. Yet,

an equilibrium exists on the byproduct market between the inelastic supply and the

demand. Fizaine (2013) analyses the market of minor metals but does not address the

balance problem, which is precisely what we intend to do in this paper.

We rely on a two-period framework where a monopolist extracts two types of REEs,

namely abundant and non-abundant REEs. In the second period of the game, the mo-

nopolist engages in competition with one �rm that recycles part of the non-abundant
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REEs consumed in the �rst period. This brings our model close to Ba and Mahenc�s

(2018). It is however di¤erent in that the pollution and the balance problem are both

taken into account.

Our results are the following. We show that recycling always reduces extracted quan-

tities whereby mitigating the balance problem and environmental damages. Other results

depend on the amount of scrap that can be recycled. If the recycling activity is not lim-

ited by this quantity, it does not change extraction in the �rst period. Otherwise, the

extractor adopts a foreclosure strategy in period one and reduces REEs�extraction. The

existence of both pollution and market power in each period does not allow reaching the

optimum. We, therefore, propose to implement environmental taxes on extracted quan-

tities. If the environmental tax reduces extraction and favors recycling when recycling is

not limited by the available scrap, it can decrease recycling in the opposite case. This

result suggests that the regulator has to be very cautious if he wants using environmental

taxes to indirectly favor recycling. The second-best levels of environmental taxes depend

on the marginal damage, on the market power as well as on the recycling. It is also worth

to notice that the environmental taxes are never equal to the marginal damage.

The remainder of the paper is structured as follows. Section 2 describes the assump-

tions of the model and the �rst-best outcome. We consider the decentralized economy

with recycling in Section 3. In Section 4, we introduce an exogenous environmental reg-

ulation and second-best environmental taxation in Section 5. Section 6 concludes the

paper. Technical proofs are relegated in the appendix.
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2 The model

In this section we present the assumptions of the model and, as a benchmark, the �rst-best

outcome.

2.1 Assumptions

We consider a two-period model where one �rm extracts REEs from one mine. The

extracted ore contains abundant and non-abundant REEs. Let xt denote the supply of

non-abundant REEs and �xt the supply of abundant REEs, where t = 1; 2 is a time index.

Since both types of REEs are extracted from the same ore, the extraction of one type

induces mechanically the extraction of the other type such that �xt = �xt, where � is a

positive parameter. The extraction cost is denoted by Ct(xt) that has usual properties

(C 0 > 0 and C 00 > 0). For the sake of simpli�cation, we assume that the discount factor

is normalized to one.

We assume that the market of non-abundant REEs is cleared while the supply of

abundant REEs exceeds the demand such as �xt > xtd 8 �Pt > 0, where xtd is the demand

of abundant REEs and �Pt their unit price.3 The balance problem for abundant REEs

incurs a storage cost borne by the extractor: cs
P2

t=1(�xt�xdt ), where cs > 0 is the marginal

cost of storage.

In the �rst period, the extractor is a monopolist whereas it faces one recycler in the

second period who recycles a quantity r � kx1. The parameter k denotes the recycling
3The equilibrium price for abundant REEs can be negative. In this case, the unbalance problem

disappears. Concerning the over-the-counter price �Pt, our analysis remains valid if �Pt 2 ]�Cs; 0[ and

does not match with the equilibrium price: these prices enable to sell abundant REEs out and to save

storage costs.
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technology e¢ ciency with k 2 ]0; 1]. If the strict inequality r < kx1 holds, it means that

depreciation occurs during recycling. Note that the non-abundant REEs are recycled at

a cost Cr(r) that is an increasing and convex function.

Extracted and recycled quantity of non-abundant REEs are perfectly substitutable.

Pt is their prevailing market price. The inverse demand function is Pt = P (Qt) with

P 0 < 0 and P 00 6 0. We note Qt the total quantity of non-abundant REEs supplied such

as Q1 = x1 and Q2 = x2 + r. We assume stationary demand functions.

We assume that the extraction of REEs causes pollution. The damage induced by

REES therefore depends on the quantities extracted and not on a pollution stock. Hence

the damage function that is written as D(xt) that is an increasing and convex function.

In the rest of the paper, our results depend crucially on whether r � kx1. In order

to ensure concavity in the extractor�s pro�t and to have tractable results, we restrict our

analysis to P 00 = 0 and C 000 = 0 when r = kx1.

2.2 The �rst-best outcome

We de�ne the �rst-best outcome as a situation where there is no market power and

strategic interactions and that takes into account environmental damages. We consider

a benevolent regulator acting under perfect information. He maximizes a social welfare

under the constraint on available scrap that can be used by the recycler. The program

of the regulator is the following:

Max W (x1; x2; r; �) =

x1Z
0

P (u)du+ Sc(xd1) + x
d
1
�P1 � C1(x1)� cs[�x1 � xd1]�D(x1)

+

x2+rZ
0

P (z)dz + Sc(xd2) + x
d
2
�P2 � C2(x2)� cs[�x1 + �x2 � xd1 � xd2]� Cr(r)�D(x2)

s:t: r � kx1
(1)
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where � is a Kuhn-Tucker multiplier and Sc(xd1) and Sc(x
d
2) the consumer surplus from

abundant REEs. The �rst-order conditions are:

P1(x1)� C 01(x1)� 2�cs �D0(x1) + �k = 0 (2)

P2(x2 + r)� C 02(x2)� �cs �D0(x2) = 0 (3)

P2(x2 + r)� C 0r(r)� � = 0 (4)

�[kx1 � r] = 0 (5)

Let us explore the �rst-best outcome by distinguishing the following two cases:

The no-binding case: When the recycling constraint is not binding i.e. r < kx1

and � = 0, we get after several rearrangements of (2), (3) and (4):

P1(x
�nc
1 ) = C 01(x

�nc
1 ) + 2�cs +D

0(x�nc1 ) (6)

P2(x
�nc
2 + r�nc) = C 02(x

�nc
2 ) + �cs +D

0(x�nc2 ) (7)

P2(x
�nc
2 + r�nc) = C 0r(r

�nc) (8)

where the superscript �nc means the non constrained �rst-best. In this case, the REEs

value set in each period is equal to the private marginal costs augmented by the marginal

environmental damage induced by extraction. Recycling and extracted quantities in

period 2 are such that social marginal costs of production are identical. We �nd: @x
�nc
1

@cs
<

0, @x
�nc
2

@cs
< 0, @r

�nc

@cs
> 0 (see Appendix 1A). The balance problem leads to a decrease in

extracted quantities in both periods and favors the recycling.

The binding case: When the recycling constraint is binding, we have r = kx1 and

� > 0. Rearranging Equations (2), (3) and (4) gives the following optimal conditions:

P1(x
�c
1 )� C 01(x�c1 )� 2�cs �D0(x�c1 ) + k[P2(x

�c
2 + kx

�c
1 )� C 0r(kx�c1 )] = 0 (9)

P2(x
�c
2 + kx

�c
1 )� C 02(x�c2 )� �cs �D0(x�c2 ) = 0 (10)
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where the superscript �c refers to the constrained �rst-best. The regulator de�nes the

level of the quantity extracted in period 1 taking into account the impact of this extraction

during period 2. We �nd: @x�c1
@cs

< 0, @x
�c
2

@cs
< 0 and @r�c

@cs
< 0 (see Appendix 2A). If the

balance problem reduces extraction in both periods, it also reduces the level of recycled

quantities.

From Eqs. (9) and (6), the extracted quantities in period 1 are higher in the binding

case than in the no-binding case: at the �rst-best - due to the convex damage function

- the regulator allows an increase in the damage in the �rst period in order to favor

recycling in period 2.4

3 The recycling

In this section, we analyze the e¤ect of recycling in the decentralized economy. We �rst

investigate the economy without recycling then with recycling.

3.1 Equilibrium without recycling

Without recycling, the extractor acts as a monopolist in both periods. The pro�t of the

extractor is the sum of revenues earned in both periods from selling both types of REEs

minus extraction and storage costs:

�e(x1; x2) = P1(x1)x1�C1(x1)�cs[�x1�xd1]+xd1 �P1+P2(x2)x2�C2(x2)+xd2 �P2�cs[�x1�xd1+�x2�xd2]
4Several elements explain the main underlying mechanisms and trade-o¤s in this framework (in the

binding or not binding case). First, without discounting and recycling, the convexity in damage function

exerts a force toward smoothing extraction evenly over the two periods. Second, convexity in extraction

and recycling costs implies that the recycling is welfare improving because it allows to split the extraction

level in period 2 into two, lowering the average cost.
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First-order conditions take into account the relationship between both types of REEs:

P1(x
wr
1 ) + P

0
1(x

wr
1 )x

wr
1 � C 01(xwr1 )� 2�cs = 0 (11)

P2(x
wr
2 ) + P

0
2(x

wr
2 )x

wr
2 � C 02(xwr2 )� �cs = 0 (12)

where the superscript wr means without recycling. Equations (11) and (12) indicate that

in each period the price of the non-abundant REEs is equal to the sum of the marginal

costs of extraction and storage, adjusted for the monopoly market power. The balance

problem, by introducing storage costs, leads to reduce extraction in each period. The

reduction is more pronounced in period 1 because the storage cost is reduced in period

2. We have:

xwr1 < xwr2

Proposition 1 Due to the balance problem, extracted quantities without recycling in pe-

riod 2 are higher than extracted quantities in period 1.

It is fair to state that this result is (likely) not robust to the extension to the in�nite

horizon. If we relax the assumption of stationary demand functions, Proposition 1 does

not hold anymore. For example, if the demand shrinks su¢ ciently from period 1 to period

2, �rst period production could be larger than second period production. In the same

vein, if we introduce a discount factor, the extractor undervalues the storage cost borne

in period 2. Hence it increases extraction in period 1 compared to the case where the

discount factor is equal to one.

3.2 Equilibrium with recycling

Recycling occurs only in the second period. Using backward induction, we �rst �nd the

equilibrium quantities in period 2 and we then solve for the quantity produced by the
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extractor in period 1.

3.2.1 The second stage: the equilibrium quantities in period 2

Let us de�ne the subgame-perfect Nash equilibrium in period 2. The extractor�s pro�t

function in the second period is the following:

�e(x2; r) = P2(x2 + r)x2 � C2(x2) + xd2 �P2 � cs[�x1 � xd1 + �x2 � xd2]

The FOC gives:

P2(x2 + r) + P
0
2(x2 + r)x2 � C 02(x2)� �cs = 0

The recycler maximizes its pro�t, subject to the constraint on the available resource:

�r(r; x2) = P2(x2 + r)r � Cr(r)

r � kx1

We �nd: 8>><>>:
P2(x2 + r) + P

0
2(x2 + r)r � C 0r(r) = 0 if r < kx1

r = kx1 otherwise

(13)

which represents the recycler best response function. The equilibrium depends on whether

the recycling constraint is binding (denoted by the superscript c) or not (denoted by the

superscript nc).

� If the available quantity of scrap is higher than the unconstrained pro�t-maximizing

quantity, the extractor and the recycler produce the quantities that satisfy the

following FOCs:8>><>>:
P2(x

nc
2 + r

nc) + P 02(x
nc
2 + r

nc)xnc2 � C 02(xnc2 )� �cs = 0

P2(x
nc
2 + r

nc) + P 02(x
nc
2 + r

nc)rnc � C 0
r(r

nc) = 0

(14)
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The Implicit Function Theorem on FOCs given by (14) shows that reaction func-

tions are decreasing. The recycled scrap and the extracted output are strategic

substitutes. Recycling reduces the quantity of non-abundant REEs which is ex-

tracted by the monopolist in the second period. This behavior was coined the

"business-stealing" e¤ect after Mankiw and Whinston (1986). The strategic re-

sponse of existing �rms to new entry results in reducing their production when a

new entrant "steals business" from incumbent �rms. Solving the system given by

(14) gives the non-constrained subgame-perfect Nash equilibrium (xnc2 ; r
nc). The

extracted quantities and the level of recycled scrap in period 2 do not depend on

the quantity extracted in period 1.5

� If the available quantity of scrap is lower than the unconstrained pro�t-maximizing

quantity, the equilibrium in period 2 is given by:8>><>>:
P2(x

c
2 + r

c) + P 02(x
c
2 + r

c)xc2 � C
0
2(x

c
2)� �cs = 0

r = kxc1

(15)

Solving this system gives the constrained subgame-perfect Nash equilibrium (xc2; r
c).

We �nd xc2 = f(x1), with
dxc2
dx1
< 0. Hence, the extraction level in period 1 will a¤ect

the level of recycling as well the extracted quantity in period 2.

Proposition 2 Whatever the level of recycled scrap, the recycling activity reduces ex-

traction in the second period.

3.2.2 The �rst stage: the equilibrium quantities in period 1

In order to obtain the equilibrium quantity in period 1, we replace equilibrium quantities

in period 2 in the extractor�s pro�t function. The quantity in the �rst stage depends on
5We note that (xnc2 ; r

nc) do not depend on x1 if the recycling quantity is lower than the threshold,

but this threshold depends on x1.
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the subgame-perfect Nash equilibrium obtained in the second stage.

The no-binding case: If the available quantity of scrap does not constrain the

recycler from producing, we �nd:

�e(x1; x
nc
2 ; r

nc) = P1(x1)x1 � C1(x1) + xd1 �P1 � cs[�x1 � xd1]

+P2(x
nc
2 + r

nc)xnc2 � C2(xnc2 ) + xd2 �P2 � cs[�x1 � xd1 + �xnc2 � xd2]

The FOC is:

P1(x
nc
1 ) + P

0
1(x

nc
1 )x

nc
1 � C 01(xnc1 )� 2�cs = 0 (16)

Recycling does not a¤ect the quantity of REEs extracted by the monopolist in the �rst

period (Equation 16 is similar to Equation 11). As expressed above, recycling slowdowns

extraction in the second period. Thus, recycling helps to mitigate the balance problem

by reducing the stock of abundant REEs and contributes also to reduce pollution in the

second period. As far as total quantities traded in period 2, we �nd

Qnc2 ? Qnc1 = Qwr1

On the one hand, without recycling, the storage cost induces more extraction in the

second period than in the �rst period. On the other hand, recycling reduces extraction

in the second period. Thus, depending on the magnitude of the storage cost, the total

quantities can either increase or decrease between periods 1 and 2.

Moreover we �nd that (see Appendix 1B):

@xnc1
@cs

< 0;
@xnc2
@cs

< 0;
@rnc

@cs
> 0

If the storage costs reduces extracted quantities in each period, they boost the recycled

quantity in period 2. The e¤ects of the balance problem are similar to ones under "�rst-

best".
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Proposition 3 In the no-binding case, recycling does not change extraction in period 1.

The balance problem favors recycling in period 2 and mitigates environmental damages in

both periods.

The binding case: If the collected scrap constrains the production level of the

recycler, the pro�t of the extractor reads as follows:

�e(x1) = P1(x1)x1 � C1(x1) + xd1 �P1 � cs[�x1 � xd1] + P2(xc2(x1) + kx1))xc2(x1)� C2(xc2(x1))

+xd2
�P2 � cs[�x1 � xd1 + �xc2(x1)� xd2]

The FOC is the following:

P1(x
c
1)+P

0
1(x

c
1)x1�C 01(xc1)�2�cs+

dxc2(x
c
1)

dxc1
[P2(x

c
1)+P

0
2(x

c
1)x

c
2(x

c
1)�C 02(xc1)��cs]+kP 02(xc1)xc2(xc1) = 0

(17)

Comparing Equations (16) and (17) gives xc1 < xnc1 . Contrary to the no-binding case,

recycling reduces the �rst period extracted quantity of REEs. By reducing extraction,

the extractor, acting as a leader, curtails recycling in the second period. That enables

reducing future competition. The extractor adopts a foreclosure strategy in order to

keep strong market power in period 2. Hence, recycling strengthens the market power in

period 1. At last, we obtain the following result on global quantities:

Qnc2 ? Qc1.

We also �nd (see Appendix B2):

@xc1
@cs

< 0;
@xc2
@cs

< 0;
@rc

@cs
< 0

If a high storage cost favors recycling in the non-binding case, it reduces recycling if r =

kx1. In this case, the balance problem indirectly limits recycling and, hence, competition

in the second period.
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Proposition 4 In the binding case, recycling leads to foreclosure behavior in the �rst

period.6 The balance problem limits recycling and, hence, triggers the environmental

damages in the second period.

Comparing equations (14)-(16) with (6)-(7)-(8) and (15)-(17) with (10) shows that

the market equilibrium never reaches the �rst-best. In each case, the storage cost of

abundant REEs induces the extractor to take the balance problem into account. Both

market power and pollution, however, prevent reaching the �rst-best outcome. As widely

acknowledged in the literature, one way to restore the social optimum is to tax negative

externalities. In the sequel, we will analyze what will happen with the implementation

of a tax scheme by the benevolent regulator.

4 Exogenous environmental regulation

In order to internalize the negative externality, i.e. pollution induced by extraction, the

regulator sets environmental taxes � t, that it levies on each extracted unity in each period.

As in Section 3, we solve the game by backward induction. We �rst de�ne equilibrium

quantities in period 2, then in period 1.

6In Ba and Mahenc (2018) the extractor always reduces its extraction in period 1 expecting recycling

in period 2. But contrary to our paper, this behavior depends on a �xed cost borne by the recycler.

Moreover they assume that the resource is exhausted in period 2.
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4.1 The second stage: the equilibrium quantities in period 2

If an environmental tax is levied on the extraction, the extractor�s pro�t maximization

program in period 2 becomes:

�e(x1; x2;r) = P2(x2 + r)x2 � C2(x2) + yd2 �P2 � cs[�x1 � yd1 + �x2 � yd2 ]� � 2x2

The pro�t function of the recycler is not modi�ed by the environmental taxation. Ex-

tracted quantities in period 2 depend on the constraint on recycling:

� If the available quantity is higher than the unconstrained pro�t-maximizing quan-

tity, the extractor and the recycler produce the quantities that satisfy the following

FOCs: 8>><>>:
P2(x

nct
2 +r

nct) + P 02(x
nct
2 +r

nct)xnct2 � C 02(xnct2 )� �cs � � 2 = 0

P2(x
nct
2 + rnct) + P 02(x

nct
2 + rnct)rnct � C 0r(rnct) = 0

(18)

Solving this system gives the unconstrained subgame-perfect Nash equilibrium (xnct2 (� 2); r
nct(� 2)),

with @xnct2

@�2
< 0 and @rnct

@�2
> 0 (see Appendix A3). Equilibrium quantities in period

2 do not depend on the extracted quantities in period 1.

� If the recycler is limited by the available quantity of scrap, the constrained subgame-

perfect Nash equilibrium is given by:8>><>>:
P2(x

ct
2 + r

ct) + P 02(x
ct
2 + r

ct)xct2 � C 02(xct2 )� �cs � � 2 = 0

rct = kx1

(19)

Solving this system gives xct2 (x1; � 2), with
@xct2
@x1

< 0.

4.2 The �rst stage: the equilibrium quantities in period 1

Quantities in period 1 depend on the outcome of the subgame-perfect Nash equilibrium.
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The no-binding case. If r < kx1, quantities in period 2 do not depends on x1. The

extractor maximizes its pro�t in the �rst period. We have:

�e(x1) = P1(x1)x1 � C1(x1) + xd1 �P1 � cs[�x1 � yd1 ]� � 1x1 + P2(xnct2 + rnct)xnct2 � C2(xnct2 )

+yd2
�P2 � cs[�x1 � yd1 + �xnct2 � yd2 ]� � 2xnct2

P1(x
nct
1 ) + P

0
1(x

nct
1 )x1 � C 01(xnct1 )� 2�cs � � 1 = 0 (20)

If we compare Equation (20) to Equation (16), we show that the extractor reduces the

extracted quantity in period 1 under environmental taxation. Solving Equation (20)

enables to obtain xnct1 as a function of � 1, with
@xnct1

@�1
< 0 (Appendix A3). Each per-

period extracted quantity decreases with the per-period tax rate. Hence taxes increase

the recycled output, since recycling and the second period extracted output are strategic

substitutes.

Proposition 5 When the recycling activity is not bounded by the available scrap, envi-

ronmental taxation favors recycling.

The binding case. We replace xct2 (x1; � 2) and r
ct = kx1 in the pro�t of the extractor.

We obtain:

�e(x1) = P1(x1)x1 � C1(x1) + xd1 �P1 � cs[�x1 � yd1 ]� � 1x1 + P2(xct2 (x1; � 2) + kx1)xct2 (x1; � 2)

�C2(xct2 (x1; � 2)) + yd2 �P2 � cs[�x1 � yd1 + �xct2 (x1; � 2)� yd2 ]� � 2xct2 (x1; � 2)

The FOC reads as follows:

P1 + P
0
1x
ct
1 � C

0

1 � 2�cs � � 1 +
@xct2
@xct1

[P 02x
ct
2 + P2 � C 02 � �cs � � 2] + P 02kxct2 = 0 (21)

Solving Equation (21) gives xct1 (� 1; � 2) and hence x
ct
2 (� 1; � 2) with

dxct1
d�1

=
dxct2
d�2

< 0 and

dxct1
d�2

=
dxct2
d�1

> 0 (see Appendix B3). Depending on � 1 and � 2, the extracted quantities in
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the �rst period (second period) can increase if � 2 (� 1) is high enough. Hence the recycling

activity increases with the tax in the second period - as in the binding case - but decreases

with the tax in the �rst period. Thus environmental taxes can disadvantage recycling

activity.

Proposition 6 Environmental taxation can reduce recycling when the recycling activity

is limited by available scrap.

5 The second-best environmental regulation

The regulator determines the second-best environmental taxes7 maximizing the welfare

function (given by Equation (1)), replacing quantities depending on the tax levels found in

the preceding section.8 The solution depends on the subgame-perfect Nash equilibrium,

i.e. whether the recycler is limited or not by the collected scrap quantity.

5.1 The no-binding case

We replace xnct1 (� 1), x
nct
2 (� 2) and r

nct(� 2) in the welfare function that we maximize with

respect to � 1 and � 2. The �rst-order conditions are the following:

dx1
d�1
[P1(x1)� C 01(x1)� 2�cs �D0(x1)] = 0

dx2
d�2
[P (x2 + r)� C 02(x2)� �cs �D0(x2)] +

dr
d�2
[P2(x2 + r)� C 0r(r)] = 0

(22)

7See Buchanan (1969); Barnett (1980); Levin (1985); Simpson (1995) and, among others, David and

Sinclair-Desgagné (2005).
8The welfare function is maximized without taking into account the constraint on available scrap:

this constraint has already been taken into account in the quantities determination in Section 4.
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Substituting (18) and (20) into (22) yields the following pair of tax rates:

�nct1 = D0(x1) + P
0(x1)| {z }

Usual result

x1

�nct2 = D0(x2) + P
0(x2 + r)x2| {z }

Usual result

+

dr(�2)
d�2

dx2(�2)
d�2

[P 02(x2 + r)r]| {z }
Recycling e¤ect

(23)

The tax rate in period 1 depends only on the active distortions over this period. One

is the distortion from the negative externality generated by the pollution, the other is

the distortion from the extractor�s market power in the market of non-abundant REEs.

Since P 01(x1) < 0, the tax rate is lower than the marginal damage (see Barnett, 1980).
9

The benevolent regulator sets the tax at this level in order to reduce the tendency of the

monopolist to underproduce. In this case, the tax could be either positive or negative. Its

sign depends on the prevailing distortion. If the distortion from the environmental damage

is larger than the distortion from the extractor�s market power, i.e. D0(x1) > �P 01(x1)x1,

then �nct1 > 0 and turns out to be a tax. Otherwise, �nct1 < 0 and �nct1 is a subsidy. It is

worth noting that recycling does not in�uence the �rst period tax rate because it does

not a¤ect the extraction in that period.

According to Equation (23), the second-period tax depends only on distortions in this

period. It is also composed of both usual distortions but is adjusted by an additional

term emanating from the recycling activity. As dr(�2)
d�2

=dx2(�2)
d�2

< 0 and [P 02(x2 + r)r] < 0,

the recycling e¤ect is positive. The regulator increases further the second period tax rate

in order to foster recycling. If this recycling e¤ect is strong enough, the second period
9In the case of one distortion in an economy - a negative externality - the �rst-best can be reached

with an environmental tax set at the marginal damage, that is usually called "Pigouvian tax". Following

Barnett (1980), an environmental tax designed with other imperfections is called a second-best optimal

tax, that is not equal to the marginal damage. Barnett speaks about "the Pigouvian tax rule under

monopoly".
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tax rate will be higher than the marginal damage. Note that the recycling e¤ect catches

the capacity of � 2 to modify the price in the second period. Thus the regulator increases

the tax in the second period in order to both favor competition and reduce environmental

damage. If we replace �nct1 and �nct2 in Equations (18) and (20), we �nd:

P (x1)� C
0

1(x1)� 2�cs �D0(x1) = 0 (24)

P (x2 + r)� C
0

2(x2)� �cs �D0(x2)�
dr(�2)
d�2

dx2(�2)
d�2

P 0(x2 + r)r = 0 (25)

As Equation (24) is similar to Equation (6), second-best environmental taxation in the

�rst period enables to reach the �rst-best outcome. The tax internalizes both market

failures induced by market power and pollution. As Eq. (25) is di¤erent from Eq. (7), a

tax in period 2 cannot simultaneously cope with distortions enacted by market power and

the environmental damage while taking into account the recycled output. Second-best

taxation in the second period therefore enables to reach a second-best outcome.

The taxation e¤ect on the balance problem depends on the sign of �nct1 and �nct2 . The

balance problem is enhanced if tax rates are negative. On the contrary, positive tax rates

lead to reduced extracted quantities, whereby alleviating the balance problem.

Proposition 7 Due to market power, the second-best tax in period 1 is lower than the

marginal damage which leads to achieve �rst-best quantity. In Period 2, recycling in-

creases the tax whereas the market power reduces it. Finally the second-best tax level in

period 2 can be higher than the marginal damage.

5.2 The binding case

In this case, we replace xct1 (� 1; � 2), x
ct
2 (� 1;� 2) and r

ct(� 1; � 2) in the welfare function and

we maximize with respect to � 1 and � 2. After rearranging the �rst-order conditions, we
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�nd:
dx1
d�1
[P1(x1)� C 01(x1)� 2�cs �D0(x1) + P2(x2 + kx1)k � kC

0
r(kx1)]

+dx2
d�1
[P2(x2 + kx1)� C 02(x2)� �cs �D0(x2)] = 0

dx1
d�2
[P1(x1)� C 01(x1)� 2�cs �D0(x1) + P2(x2 + kx1)k � kC 0r(kx1)]

+dx2
d�2
[P2(x2 + kx1)� C 02(x2)� �cs �D0(x2)] = 0

(26)

Substituting (19) and (21) in (26), we �nd the following taxes:

� ct1 = P
0(x1)x1 +D

0(x1)| {z }
Usual result

�k[P2(x2 + kx1)� C 0r(kx1)� P 02(x2 + kx1)x2]| {z }
Recycling e¤ect

� ct2 = P
0
2(x2 + kx1)x2 +D

0(x2)| {z }
Usual result

(27)

As the quantity extracted in period 1 has an e¤ect on period 2, the design of � ct1 has to

consider e¤ects in both periods. The �rst two terms catch usual e¤ects in period 1 and

other terms take into account e¤ects in period 2. � ct1 diminishes with the marginal pro�t

of the recycler and with the price variation induced by recycling. Finally � ct1 is always

inferior to the marginal damage so is � ct2 . Replacing both taxes in (19) and (21) gives

the equations (9) and (10). The regulator is able to implement the �rst-best outcome

provided the recycling constraint is binding.

Proposition 8 Second-best taxation scheme enables to reach the �rst-best quantities in

each period. Tax in period 1 (period 2) takes into account market power and recycling

(market power). Both taxes are lower than the marginal damage.

6 Conclusion

The extraction of REEs raises serious pollution problems and leads to the balance prob-

lem. This paper analyzed theoretically the e¤ect of recycling and environmental tax

regulation on both the balance problem and pollution. It contributes to the theoretical
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analysis of green policies aiming at downscaling resource use while promoting recycling

activities.

We set up a Cournot model where one �rm involved in the extraction sector simulta-

neously supplies two types of REEs - abundant and non-abundant - over two consecutive

periods. In the second period, it competes with a recycler of non-abundant REEs that

are used in the �rst period. We �rst showed that recycling always reduces extracted

quantities then mitigating both the balance problem and the environmental damages.

Our results crucially depend on whether the recycler can recycle the whole quantity of

scrap it wants. If its activity is not limited, the �rst period extracted quantities are un-

changed. Otherwise, the extractor adopts a foreclosure strategy that consists in reducing

its extraction in the �rst period. Because there are distortions in the economy (pollution

and market power) both equilibria are not optimal. Owing to those distortions, second-

best environmental taxation is introduced in each period. We showed that environmental

taxation always favors recycling when the constraint on the scrap availability does not

bind whereas recycled quantities can decrease if the constraint binds. From this point of

view, the regulator should pay cautious attention when shaping environmental taxation

in order to indirectly favor recycling. In addition, we established that the second-best

levels of environmental taxes depend on the marginal damage, on the market power as

well as on the recycling.

This article is, according to our knowledge, the �rst to theoretically investigate the

balance problem and to design environmental taxes in the presence of recycling. It can be

considered as providing several theoretical insights that could be valuable for the proper

functioning of the circular economy. It is important to notice that this normative analysis

is conducted on a global scale since the extractor and the recycler do belong to the same
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economy. It, therefore, overlooks the fact that rare earth ores are mainly extracted in

China and that recycling activities are disseminated in several countries. Taking into

account this geopolitical speci�city would deserve another game theoretical set-up i.e. a

game between a monopoly and a competitive fringe under the assumption that REEs are

traded without transportation costs. The environmental taxes would also be implemented

in the extracting country while not taking into account the global consumer surplus, as

it is done in this article - but only the consumer surplus from the quantity consumed

in this country. These new assumptions would not fundamentally change the extractor

strategy but, rather, the environmental tax levels. According to our results, if China

implements environmental taxes on REEs extraction, recycling would not be necessarily

boosted. China could instead strategically implement environmental taxes in order to

reduce recycling if the available scrap is low.

This paper can be extended into several directions. We do not consider that the

stock of unsold abundant REEs can be polluting. Likewise, we do not take into account

that REEs recycling activity can also be polluting. This would lead the regulator to

potentially consider other damages and, consequently, to introduce other environmental

taxes. That would change the level of recycling and therefore extraction. We also neglect

the strategic aspects for a country related to the holding of REEs. In this case, the

regulator may wish to develop recycling to ensure the security of rare earth supply (Golev

et al. 2014). An extension of our paper would be not to consider the balance problem

but the environmental tax implementation when there is an equilibrium on the byproduct

market. Lastly, it would be interesting to extend this model over in�nite time in order

to assess whether the asymmetry between periods would still hold. This analysis would

take into account the REE stock. Further research is needed to investigate these di¤erent
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questions.
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Appendix

APPENDIX A: The no-binding case

A1: The �rst-best

Concavity of the program

From (2), (3) and (4) we �nd: H(W (x1; x2; r)) =

26666664
P 01 � C 001 �D00

1 0 0

0 P 02 � C 002 �D00
2 P 02

0 P 02 P 02 � C 00r

37777775
M1 = P

0
1 � C 001 �D00

1 < 0; M2 = [P
0
1 � C 001 �D00

1 ][P
0
2 � C 002 �D00

2 ] > 0; M3 = [P
0
1 � C 001 �D00

1 ]f[P 02 � C 002 �

D00
2 ][P

0
2 � C 00r ]� P 022 g = [P 01 � C 001 �D00

1 ]f[�C 002 �D00
2 ][P

0
2 � C 00r ] + P 02[�C 00r ]g| {z }
r

< 0

E¤ect of a change in cs

x�nc1 (cs) solves P1(x�nc1 )�C 01(x�nc1 )� 2�cs�D0(x�nc1 ) = 0:We set F (x1; cs) = P1(x1)�C 01(x1)� 2�cs�

D0(x1): We apply the Implicit Function Theorem, and we �nd:
@x�nc1

@cs
= � @F (x1;cs)=@cs

@F (x1;cs)=@x1
= ��2�

M1
< 0

x�nc2 (cs) and r�nc(cs) solve:

8>><>>:
P2(x

�nc
2 (cs) + r

�nc(cs))� C 02(x�nc2 (cs))� �cs �D0
2(x

�nc
2 (cs)) = 0

P2(x
�nc
2 (cs) + r

�nc(cs))� C 0r(r�nc(cs)) = 0
If we di¤erentiate this system with respect to cs, we obtain after simpli�cation:8>><>>:
P 02

dx�nc2

dcs
+ P 02

dr�nc

dcs
� C 002

dx�nc2

dcs
�D00

2
dx�nc2

dcs
= �

P 02
dx�nc2

dcs
+ P 02

dr�nc

dcs
� C 00r dr

�nc

dcs
= 02664 P 02 � C 002 �D00

2 P 02

P 02 P 02 � C 00r

3775
2664

dx�nc2

dcs

dr�nc

dcs

3775 =
2664 �

0

3775
2664

dx�nc2

dcs

dr�nc

dcs

3775 = 1
r

2664 �(P 02 � C 00r )

��P 02

3775 with the property that
2664 (< 0)

(> 0)

3775, with r > 0.

A2: The recycling activity

Stability of the equilibrium

As we have �ex2x2 = 2P 02 + P
00
2 x2 � C 002 < 0; �ex2r = P 02 + P

00
2 x2 < 0; �rrr = 2P 02 + P

00
2 r � C 00r < 0;

�rrx2 = P
0
2 + P

00
2 r < 0: We �nd: �

e
x2x2 < �

e
x2r < 0 and �

r
rr < �

r
x2r < 0, so � = �ex2x2�

r
rr � �rx2r�

e
rx2 > 0.
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As �ex2x2 < 0; �
r
rr < 0 and � > 0; the Gale-Nikaido condition is satis�ed, meaning global uniqueness of

the Cournot equilibrium. � > 0 is also the Routh-Hurwitz condition for reaction function stability. As

�ex2r < 0 and �
r
rx2 < 0, the quantity x2 and r are strategic substitutes.

E¤ect of a change in cs

From (16), xnc1 (cs) solves P1(x
nc
1 ) + P

0
1(x

nc
1 )x

nc
1 � C 01(xnc1 ) � 2�cs = 0. We set: F (x1; cs) = �x1 =

P1(x1) + P
0
1(x1)x1 � C 01(x1) � 2�cs. We apply the Implicit Function Theorem, and we �nd:

@xnc1
@cs

=

� @F (x1;cs)=@cs
@F (x1;cs)=@x1

= � �2�
2P 0

1+P
00
1 x1�C00

1
= � �2�

�x1x1
< 0:

xnc2 (cs) and r
nc(cs) solve:8>><>>:

P2(x
nc
2 (cs) + r

nc(cs)) + P
0
2(x

nc
2 (cs) + r

nc(cs))x
nc
2 (cs)� C 02(xnc2 (cs)) = �cs

P2(x
nc
2 (cs) + r

nc(cs)) + P
0
2(x

nc
2 (cs) + r

nc(cs))r
nc(cs)� C 0r(rnc(cs)) = 0

If we di¤erentiate this system with respect to cs, we obtain after simpli�cation:8>><>>:
dxnc2
dcs

[2P 02 + P
00
2 x

nc
2 � C 002 ] + drnc

dcs
[P 02 + P

00
2 x

nc
2 ] = �

dxnc2
dcs

[P 02 + P
00
2 r

nc] + drnc

dcs
[2P 02 + P

00
2 r

nc � C 00r ] = 08>><>>:
dxnc2
dcs

[�ex2x2 ] +
drnc

dcs
[�ex2r] = �

dxnc2
dcs

[�rrx2 ] +
drnc

dcs
[�rrr] = 02664

dxnc2
dcs

drnc

dcs

3775 = 1
�

2664 �rrr � �erx2

��rx2r �ex2x2

3775
2664 �

0

3775
2664

dxnc2
dcs

drnc

dcs

3775 = 1
�

2664 ��rrr

���rx2r

3775 with the property that
2664 (< 0)

(> 0)

3775 with � = �ex2x2�rrr � �rx2r�erx2 > 0:
A3: Exogenous environmental regulation

E¤ect of a change in �1

xnct1 (cs; �1) solves: P 01(x
nct
1 (cs; �1))x

nct
1 (cs; �1) + P1(x

nct
1 (cs; �1))� C 01(xnct1 (cs; �1))� 2�cs � �1 = 0: We

set: F (x1; cs; �1) = P 01(x1)x1 + P1(x1)� C 01(x1)� 2�cs � �1. We apply the Implicit Function Theorem,

and we �nd: @x
nct
1

@�1
= �@F (x1;cs;�1)=@�1

@F (x1;cs;�1)=@x1
= � �1

P 00
1 x1+2P

0
1�C00

1 (x1)
< 0

E¤ect of a change in �2

xnct2 (cs; �2) and rnct(cs; �2) solve:
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8>><>>:
P 02(x

nct
2 (cs; �2) + r

nct(cs; �2))x
nct
2 (cs; �2) + P2(x

nct
2 (cs; �2) + r

nct(cs; �2))� C 02(xnct2 (cs; �2))� �cs � �2 = 0

P2(x
nct
2 (cs; �2) + r

nct(cs; �2)) + P
0
2(x

nct
2 (cs; �2) + r

nct(cs; �2)r
nct � C 0r(r

nct

(cs; �2)) = 0

If we di¤erentiate this system with respect to �2, we obtain after simpli�cation:8>><>>:
dxnct2

d�2
[2P 02 + P

00
2 x

nct
2 � C 002 ] + drnct

d�2
[P 02 + P

00
2 x

nct
2 ] = 1

dxnct2

d�2
[P 02 + P

00
2 r

nct] + drnct

d�2
[2P 02 + P

00
2 r

nct � C 00r ] = 08>><>>:
dxnct2

d�2
[�ex2x2 ] +

drnct

d�2
[�ex2r] = 1

dxnct2

d�2
[�rrx2 ] +

drnct

d�2
[�rrr] = 02664

dxnct2

d�2

drnct

d�2

3775 = 1
�

2664 �rrr � �erx2

��rx2r �ex2x2

3775
2664 1

0

3775
2664

dxnct2

d�2

drnct

d�2

3775 = 1
�

2664 �rrr

��rx2r

3775 with the property that
2664 (< 0)

(> 0)

3775 with � > 0.

APPENDIX B: The binding case. We assume P 00 = 0 and C 000 = 0.

B1: The �rst-best

Concavity of the program

From (10) we �nd: H(W (x1; x2; r)) =

2664 P 01 � C 001 �D00
1 + k

2P 02 � k2C 00r kP 02

kP 02 P 02 � C 002 �D00
2

3775
Wx1x1 = [P

0
1 � C 001 �D00

1 + k
2P 02 � k2C 00r ] < 0; Wx1x2 = kP

0
2 =Wx2x1 < 0; Wx2x2 = P

0
2 � C 002 �D00

2 < 0:

DetH = 	 = [P 01�C 001 �D00
1 + k

2P 02� k2C 00r ][P 02�C 002 �D00
2 ]� [kP 02]2 = [P 01�C 001 �D00

1 � k2C 00r ][P 02�C 002 �

D00
2 ] + k

2P 02[�C 002 �D00
2 ] > 0:

E¤ect of a change in cs

x�c1 (cs) and x
�c
2 (cs) solve:8>><>>:

P1(x
�c
1 (cs))� C 01(x�c1 (cs))� 2�cs �D0

1(x
�c
1 (cs)) + k[P2(x

�c
2 (cs) + kx

�c
1 (cs))� C 0r(kx�c1 (cs))] = 0

P2(x
�c
2 (cs) + kx

�c
1 (cs))� C 02(x�c2 (cs))� �cs �D0

2(x
�c
2 (cs)) = 0

If we di¤erentiate this system with respect to Cs, we obtain after simpli�cation:8>><>>:
P 01

dx�c1
dcs

� C 001
dx�c1
dcs

�D00
1
dx�c1
dcs

+ k[P 02[
dx�c2
dcs

+ k
dx�c1
dcs

]� k2C 00r
dx�c1
dcs

] = 2�

P 02[
dx�c2
dcs

+ k
dx�c1
dcs

]� C 002
dx�c2
dcs

�D00
2
dx�c2
dcs

= �
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8>><>>:
dx�c1
dcs

[P 01 � C 001 �D00
1 + k

2P 02 � k2C 00r ] +
dx�c2
dcs

kP 02 = 2�

dx�c2
dcs

[P 02 � C 002 �D00
2 ] + P

0
2k

dx�c1
dcs

] = �2664
dx�c1
dcs

dx�c2
dcs

3775 = 1
	

2664 P 02 � C 002 �D00
2 �kP 02

�kP 02 P 01 � C 001 �D00
1 + k

2P 02 � k2C 00r

3775
2664 2�

�

3775
with 	 > 0, we obtain:

8>><>>:
dx�c1
dcs

= �
	fP

0
2(2� k)� 2C 002 � 2D00]g < 0

dx�c2
dcs

= �
	fP

0[k2 � 2k + 1]� C 001 �D00
1 � k2C 00r g < 0

B2: The recycling activity

Variation of xc2 with respect to x
c
1:

From (15), we note F (x1; x2) = P2(x2 + kx1) + P
0
2(x2 + kx1)x2 � C

0

2(x2) � �cs = 0. So @xc2
@xc1

=

�@F (x2;x1)=@x1
@F (x2;x1)=@x2

= � kP 0
2

2P 0
2�C00

2
< 0:

Concavity of the pro�t in the �rst stage:

From (17), �ex1 = P1(x
c
1)+P

0
1(x

c
1)x

c
1�C

0

1(x
c
1)� 2�cs+

dxc2
dxc1
[P2(x

c
2(x

c
1)+kx

c
1)+P

0
2(x

c
2(x

c
1)+kx

c
1)x

c
2(x

c
1)�

C 02(x
c
2(x

c
1))� �cs] + kP 02(xc2(xc1) + kxc1)xc2(xc1)

�ex1x1 = 2P
0
1 � C 001 +

dxc2
dxc1

n
dxc2
dxc1
[2P 02 � C 002 ] + 2kP 02

o
= 1

[2P 0
2�C00

2 ]
f[2P 01 � C 001 ][2P 02 � C 002 ]� [kP 02]2g

= 1
[2P 0

2�C00
2 ]
f[P 0]2(4� k)� C 001 [2P 02 � C 002 ]� 2P 01C 002| {z }

�>0

g < 0:

E¤ect of a change in cs

At the equilibrium, xc1(cs) and x
c
2(cs) solve:8>><>>:

P1(x
c
1) + P

0
1(x

c
1)x

c
1 � C

0

1(x
c
1)� 2�cs +

dxc2
dxc1
[P2(x

c
2 + kx

c
1) + P

0
2(x

c
2 + kx

c
1)x

c
2 � C 02(xc2)� �cs] + kP 02(xc2 + kxc1)xc2 = 0

P2(x
c
2 + kx

c
1) + P

0
2(x

c
2 + kx

c
1)x

c
2 � C 02(xc2)� �cs = 0

If we di¤erentiate this system with respect to cs, we obtain:8>>>>>><>>>>>>:

dxc1
dcs
[2P 01 + P

00
1 x

c
1 � C 001 +

dxc2(x
c
1)

dxc1
[P 02k + kP

00
2 x

c
2 + k

2P 002 x
c
2] +

dxc2
dcs
[kP 002 x

c
2 + kP

0
2 +

dxc2(x
c
1)

dxc1
(2P 02 � C 002 + P 002 x2)]

= 2�+
dxc2(x

c
1)

dxc1
�

dxc1
dcs
[kP 02 + kP

00
2 x

c
2] +

dxc2
dcs
[2P 02 + P

00
2 x

c
2 � C 002 ] = �2664

dxc1
dcs

dxc2
dcs

3775 = 1
�

2664 2P 02 � C 002 �[kP 02 +
dxc2(x

c
1)

dxc1
(2P 02 � C 002 )]

�[kP 02] 2P 01 � C 001 +
dxc2(x

c
1)

dxc1
[P 02k]

3775
2664 �[2 +

dxc2(x
c
1)

dxc1
]

�

3775
With � = [2P 01 � C 001 ][2P 02 � C 02]� [kP 02]2 > 0, we �nd:

8>><>>:
dxc1
dcs

= 1
� [�P

0
2[4� k]� 2�C 002 ] < 0

dxc2
dcs

= �
� [2P

0(1� k)� C 001 ] < 0
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B3: Exogenous environmental regulation

E¤ect of a change in �1 and �2

xct1 (cs; �1; �2) and x
ct
2 (cs; �1; �2) solve:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

P1(x
ct
1 (cs; �1; �2)) + P

0
1(x

ct
1 (cs; �1; �2))x

ct
1 (cs; �1; �2)� C 01(xct1 (cs; �1; �2))� 2�cs � �1+

dxc2
dxc1
[P2(x

ct
2 (cs; �1; �2) + kx

ct
1 (cs; �1; �2)) + P

0
2(x

ct
2 (cs; �1; �2) + kx

ct
1 (cs; �1; �2))x

ct
2 (cs; �1; �2)

�C 02(xct2 (cs; �1; �2))� �cs � �2] + kP 02(xct2 (cs; �1; �2) + kxct1 (cs; �1; �2))xct2 (cs; �1; �2) = 0

P2(x
ct
2 (cs; �1; �2) + kx

ct
1 (cs; �1; �2)) + P

0
2(x

ct
2 (cs; �1; �2) + kx

ct
1 (cs; �1; �2))x2

�C 0

2(x
ct
2 (cs; �1; �2))� �Cs � �2 = 0

If we di¤erentiate this system with respect to �1 and �2, we obtain after simpli�cation:8>>>>>>>>>><>>>>>>>>>>:

2P 01
dxct1
d�1

� C 001
dxct1
d�1

+
dxct2
dxct1

n
P 02[

dxct2
d�1

+ k
dxct1
d�1

] + P 02
dxct2
d�1

� C 002
dxct2
d�1

o
+ kP 02

dxct2
d�1

= 1

2P 01
dxct1
d�2

� C 001
dxct1
d�2

+
dxct2
dxct1

n
P 02[

dxct2
d�2

+ k
dxct1
d�2

] + P 02
dxct2
d�2

� C 002
dxct2
d�2

o
+ kP 02

dxct2
d�2

=
dxct2
dxct1

P 02[
dxct2
d�1

+ k
dxct1
d�1

] + P 02
dxct2
d�1

� C 002
dxct2
d�1

= 0

P 02[
dxct2
d�2

+ k
dxct1
d�2

] + P 02
dxct2
d�2

� C 002
dxct2
d�2

= 1266666666664

dxct1
d�1

dxct2
d�1

dxct1
d�2

dxct2
d�2

377777777775
=

266666666664

A 0 0 0

0 0 A 0

C D 0 0

0 0 C D

377777777775

�1 266666666664

1

dxct2
dxct1

0

1

377777777775
,

with: A = 2P 01�C 001 �
(kP 0

2)
2

2P 0
2�C00

2
< 0; B = � kP 0

2

2P 0
2�C00

2
[2P 02�C 002 ]+kP 02 = 0; C = P 02k < 0; D = 2P 02�C 002 < 0:266666666664

dxct1
d�1

dxct2
d�1

dxct1
d�2

dxct2
d�2

377777777775
=

266666666664

1
A 0 0 0

� C
AD 0 1

D 0

0 1
A 0 0

0 � C
AD 0 1

D

377777777775

266666666664

1

dxct2
dxct1

0

1

377777777775
)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

dxct1
d�1

= 1
A =

1

2P 0
1�C00

1 �
(kP 02)

2

2P 02�C
00
2

=
dxct2
d�2

< 0

dxct2
d�1

= � C
AD = � P 0

2k

2P 0
1�C00

1 �
(kP 02)

2

2P 02�C
00
2

1
[2P 0

2�C00
2 ]
=

dxct1
d�2

> 0

dxct1
d�2

= 1
A
dxc2
dxc1

= 1

2P 0
1�C00

1 �
(kP 02)

2

2P 02�C
00
2

(� kP 0
2

2P 0
2�C00

2
) =

dxct2
d�1

> 0

dxct2
d�2

= � C
AD

dxc2
dxc1

+ 1
D = 1

2P 0
1�C00

1 �
(kP 02)

2

2P 02�C
00
2

=
dxct1
d�1

< 0

Total variation of extracted quantities

dxcti =
@xcti
@�1

d�1+
@xcti
@�2

d�2 7 0 depending on d�1 and d�2. If d�1 = d�2 = d� > 0, dxi = d� [@x
ct
i

@�1
+
@xcti
@�2

] =

d� [ 1

2P 0
1�C00

1 �
(kP 02)

2

2P 02�C
00
2

][1� kP 0
2

2P 0
2�C00

2
] < 0.
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