
HAL Id: hal-03093665
https://hal.science/hal-03093665v1

Submitted on 4 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MotOrBAC 2: a security policy tool
Fabien Autrel, Frédéric Cuppens, Nora Cuppens-Boulahia, Céline

Coma-Brebel

To cite this version:
Fabien Autrel, Frédéric Cuppens, Nora Cuppens-Boulahia, Céline Coma-Brebel. MotOrBAC 2: a
security policy tool. SARSSI’08 : 3ème conférence sur la Sécurité des Architectures Réseaux et des
Systèmes d’Information, Oct 2008, Loctudy, France. �hal-03093665�

https://hal.science/hal-03093665v1
https://hal.archives-ouvertes.fr


MotOrBAC 2: a security policy tool
Fabien Autrel (fabien.autrel@telecom-bretagne.eu)∗

Frédéric Cuppens (frederic.cuppens@telecom-bretagne.eu)∗
Nora Cuppens (nora.cuppens@telecom-bretagne.eu)∗
Céline Coma (celine.coma@telecom-bretagne.eu) ∗

Abstract: Given the growing complexity of information systems and the di�cult task
of security policy enforcement, system administrators need simple and powerful security
management tools. This article presents the second version of MotOrBAC, a tool that
embeds policy speci�cation and administration in a same model. MotOrBAC is able to
simulate and analyze a security policy speci�ed using the OrBAC model. It also implements
the AdOrBAC model which is used to administrate OrBAC.
This article presents why the OrBAC model has been chosen to implement such tool. We
also present the OrBAC application programming interface used by the new version of
MotOrBAC and how it can be integrated into other applications to enforce an OrBAC
policy.

Keywords: acces control, security policy model, security policy administration, implemen-
tation, OrBAC

1 Introduction
As information systems are getting more and more complex, security administrators must
face multiple problems related to con�guration and security. Those systems generally use
wired and wireless connectivity and various hardware which run multiple OSes on which
several applications are ran.

In such a context the speci�cation and enforcement of a security policy is a very tedious,
complex and error-prone task. Eventually each hardware (a �rewall for instance) and
software (SELinux for instance) security component con�guration are managed manually.
This requires learning several con�guration languages and writing con�guration �les for
each component.

Some administration tools exist to help in the con�guration of components but they
are almost only targeted at network components. For example Firewall Builder[Firb] or
Firestarter[Fira] help the administrator by making easier the speci�cation of security rules.
However when it comes to system and application security, the list of tools is drastically
shortened.

This article presents MotOrBAC version 2, a tool which as been developed to write
security policies. MotOrBAC provides multiple functionalities such as (1) policy speci�ca-
tion based on the OrBAC model [KBB+03], (2) potential and e�ective con�ict detection,
(3) policy simulation and (4) administration policy speci�cation. MotOrBAC has been
developed on top of the OrBAC application programming interface (API), a java API
∗ GET-Télécom-Bretagne, 35576 Cesson Sévigné (France)



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

we have developed to ease the integration of our OrBAC implementation. The previous
version of MotOrBAC was developped using java and prolog whereas the new version is
written in pure java. The new version is also more modular as it uses the OrBAC API.

MotOrBAC aims at giving the user the possibility to specify all his/her security require-
ments independently of its enforcement. To do so MotOrBAC implements the OrBAC
model which speci�es the security requirements at the organizational level. Each security
component can be represented as a sub-organization of the organization representing the
information system that manages the sub-part of the global policy associated with this
component.

Once the policy speci�cation at the organizational level is done, concrete entities cor-
responding to the information system users, actions and objects can be introduced. This
way the policy designer can simulate the security policy by checking the concrete security
rules inferred by MotOrBAC.

Centralizing the expression of the security policy o�ers a framework to analyze its
consistency. Since the OrBAC model allows the expression of positive (permission) and
negative (prohibition) privileges, con�icting security rules can be introduced. MotOrBAC
can detect those con�icts and help the policy designer solve them.

Most of current security models make the hypothesis that only one administrator will
write and maintain the information system security policy. As those systems become more
and more distributed, this hypothesis is no longer adapted. MotOrBAC implements the
AdOrBAC [CM03a] administration model which uses the concepts developed in OrBAC
(thus making OrBAC a self-administrated model). Using AdOrBAC, policy administra-
tion rights can be distributed over several roles. When the AdOrBAC mode is activated,
the current policy designer must authenticate himself/herself and then the corresponding
administration policy is applied.

This article is organized as follows: Section 2 motivates the need for a centralized
speci�cation and management tool. Section 2.2 brie�y introduces the OrBAC model and
presents the main functionalities of MotOrBAC. Section 3 explains how the tool can be
used to write a security policy. Section 4 presents the concrete policy simulation tool.
Section 5 explains how the con�ict detection functionality can be used to solve con�icts.
Section 6 presents the AdOrBAC implementation. Section 7 gives more details on the
MotOrBAC architecture and explains how the OrBAC API can be integrated into an
application to enforce an OrBAC policy. Finally section 8 concludes this paper and
presents some future evolutions.

2 The need for an administration tool
2.1 Context
Nowadays private and public organizations face several problems when they try to specify
and enforce the security policy of their information systems. To illustrate some of those
problems, let us take a look at an hypothetical organization. Let WorldCompany be
a company having several subsidiary companies (FranceCompany, EnglandCompany,
etc...) and subcontractors (TaiwanSubContractor). Several administrators (John, Peter
and Rayan) are in charge of the information systems. We suppose that all the subsidiary
companies work on the same product and that their hierarchies and workmanship are
similar.



motorbac2

WorldCompany would like to de�ne a consistent security policy which applies to all its
subsidiary companies. However the task is complicated by the di�erent countries' legisla-
tions, the policy must be adapted for each subsidiary company. As this adaptation is going
on, WorldCompany realizes that one of its administrators, namely Peter, has designed
weak security rules which result in a potential information leak. Since WorldCompany
does not know if the not very good work done by Peter is due to a malicious behavior
or a lack of information, decision is taken to limit his administrative privileges. Moreover
subcontractors need access to the information system of WorldCompany and the associ-
ated privileges may be modi�ed as time passes. Besides those aspects, the security policy
of WorldCompany shall be modi�ed as new people are hired, old employees retire or the
law is changed (for example in France the weekly working time as been modi�ed from 39
hours to 35 hours).

Those problems are not speci�c to our example and can be encountered in any com-
pany that wants to enforce a security policy. Some of those problems are related to a
company infrastructure change, others are linked to errors in the policy speci�cation, oth-
ers may be related to the centralized information and some are related to administrative
rights speci�cation. As a matter of fact it is very di�cult for a system administrator to
have a global view of the security policy in order to manage it correctly. The use of a
single software to manage the security policy would simplify a lot their task and solve
many problems. However such a tool would be useless if it does not implement a model
which allows to express the security problems and administrative needs of a company such
as WorldCompany. Such a model should make the management of several entities hav-
ing various administrative modes (multiple administrators, contextual, centralized, etc...)
simple and should allow to verify the policy consistency.

After reviewing many policy models, we came to the conclusion that the OrBAC model
�ts the speci�cations of the aforementioned tool.

2.2 The OrBAC model
OrBAC aims at modelling a security policy centered on the organization which de�nes
it or manages it. Hence a company is an organization but security components such as
�rewall or the java virtual machine security manager can also be modelled as organizations.
An OrBAC policy speci�cation is done at the organizational level, also called the abstract
level, and is implementation-independent. The enforced policy, called the concrete policy,
is inferred from the abstract policy. This approach makes all the policies expressed in the
OrBAC model reproducible and scalable. Actually once the concrete policy is inferred,
no modi�cation or tuning has to be done on the inferred policy since it would possibly
introduce inconsistencies. Everything is done at the abstract policy speci�cation level.
The inferred concrete policy expresses security rules using subject, actions and objects.
The abstract policy, speci�ed at the organizational level, is speci�ed using roles, activities
and views.

The OrBAC model uses a �rst order logic formalism with negation. However since
�rst order logic is generally undecidable, we have restricted our model in order to be
compatible with a strati�ed Datalog program [Ull89]. A Datalog program must not use
any functional terms and must only include range restricted variables (i.e variables that are
in the conclusion of a rule must also appear, not negated, in the rule premise). Negated
literals can appear in a rule premise if the rule can be strati�ed. A strati�ed Datalog



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

program has all its rules ranked: if some rules contain negative literals then the rules
de�ning those literals are evaluated �rst. A strati�ed Datalog program can be evaluated
in polynomial time.

In the rest of this article all the security rules de�ning a security policy must correspond
to a strati�ed Datalog program. We use a Prolog-like notation1 where terms beginning
with an upper case are variables and terms beginning with a lower case are constants.
The fact parent(john, jessica). says that john is a parent of jessica. A rule such as
grandparent(X, Z) : −parent(X,Y ), parent(Y,Z). means that X is a grandparent of Z if
Y exists such that X is a parent of Y and Y is a parent of Z.

Using this formalism, each organization speci�es its own security rules. Some role
may have the permission, prohibition or obligation to do some activity on some view
given an associated context is true. The context concept[CM03b] has been introduced
in OrBAC in order to express dynamic rules. Those security rules are represented using
5-ary predicates:

• permission(org, role, activity, view, context) means that in organization org, role
role is authorized to perform activity activity on view view if context context is
true.

• the prohibition and obligation predicates are similarly de�ned but express di�erent
security requirements.

• permission(hospital, nurse, consult, medical_record, urgency) means that nurses
can access the patients medical records in the context of an emergency.

Security rules can be hierarchically structured so that they are inherited in the organi-
zation, role, activity and view hierarchies (see [CCBM04]). Since a security policy can
be inconsistent because of con�icting security rules (for example a permission can be in
con�ict with a prohibition), it is necessary to de�ne strategies to solve those con�icts.
Section 4 presents the way we solve this problem.

Once the security policy has been speci�ed at the organizational level, it is possible to
test it by assigning concrete entities to abstract entities. To do so, three ternary predicates
have been de�ned to assign a subject to a role, an action to an activity and an object to
a view:

• empower(Org, Subject, Role): speci�es that in organization Org, subject Subject is
empowered in role Role.

• consider(Org,Action, Activity): speci�es that in organization Org, action Action
implements activity Activity.

• use(Org,Object, V iew): speci�es that in organization Org, object Object is used in
view V iew.

For example, the fact empower(hospital, john, surgeon) states that john is empowered
in the role surgeon in the hospital organization.

Contexts are de�ned through logical rules which express the condition that must be
true in order for the context to be active. In the OrBAC model such rules havea�ected to
the predicate hold in their conclusion:
1 Note that Motorbac users do not have to write such rules thanks to the GUI



motorbac2

• hold(Org, Subject, Action, Object, Context): speci�es that in organization Org, sub-
ject Subject does action Action on object Object in context Context.

Using this model, concrete security rules applying to subject, actions and objects can be
inferred. The rules and principles used to infer the concrete security policy are explained
in section 5.

2.3 Motorbac
In order to allow administrators to use the OrBAC model, we have developed the MotOr-
BAC prototype2. This tool aims at making easy the use of the OrBAC model to express a
security policy. Its architecture is presented on �gure 1. The architecture and speci�cation
of the �rst MotOrBAC implementation are presented in [CCBC06]. MotOrBAC uses the

Fig. 1: The MotOrBAC tool architecture which is based on the java OrBAC API

OrBAC application programming interface (API) to manage the policies displayed in the
graphical user interface (GUI). The OrBAC API can be used to programmatically create
OrBAC policies. More details about the OrBAC API are given in section 7. MotOrBAC
can be used to do several tasks on OrBAC security policies:

• Edit policies: the administrator can create the abstract entities he/she needs (or-
ganizations, sub-organizations, roles, activities, views, contexts) and the abstract
security policies (see section 3).

• Policy simulation: after having speci�ed concrete entities (subjects, actions and
objects), the concrete policy can be inferred. Subjects, actions and objects can have
attributes (see section 4).

• Policy consistency veri�cation: abstract con�icts between abstract rules can be de-
tected (see section 5).

• Once abstract con�icts have been detected, MotOrBAC is able to suggest the ad-
ministrator some solutions to solve them (see section 5).

• Administrative rights management: the administrative rights of a subject or a role
can be speci�ed in order to decentralize the policy administration (see section 6).

3 Security policy speci�cation
Specifying an OrBAC security policy requires de�ning several abstract entities and their
hierarchical relationships.
2 http://motorbac.sourceforge.net



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

3.1 OrBAC organizational entities in MotOrBAC
When the administrator in charge for the policy speci�cation wants to specify the organiza-
tion hierarchy, he/she can either specify all the organizations then specify the hierarchical
links between them, or he can specify the hierarchical links as he enters them. A hierarchi-
cal link between two organizations org1 and org2 is recorded into the policy by inserting
the following fact:

sub_organization(org1, org2)
The organization hierarchy is displayed as a tree control in MotOrBAC, clicking on an

organization in this tree displays the policy speci�ed for this organization (roles, activities
and views, as well as their hierarchies, and the security rules). Clicking the root of this tree
displays the entire security policy. Note that it is possible to specify that an organization
inherits from several organizations.

After the organizations have been de�ned, the administrator can de�ne the roles, ac-
tivities, views and contexts for each organization. For example if the role head_nurse is
de�ned in organization hospital as a super-role of nurse, the following objects are inserted
into speci�c views [CBCC07]:

• The role head_nurse is inserted into the role_view view of organization hospital,
which is represented by the fact use(hospital, head_nurse, role_view)

• The role hierarchy object RH_hospital_nurse_head_nurse, instance of class
role_hierarchy_class (see section 4 for more details on classes in MotOrBAC), is
inserted into the view role_hierarchy of organization hospital:
use(hospital, RH_hospital_nurse_head_nurse, role_hierarchy). This object has
three attributes to de�ne the hierarchy:

- RH_hospital_nurse_head_nurse.authority = hospital
- RH_hospital_nurse_head_nurse.senior_role = head_nurse
- RH_hospital_nurse_head_nurse.junior_role = nurse

Note that since the role hierarchy object is inserted into the role_hierarchy view of an
organization, the created role hierarchy is only de�ned in this organization. This way it is
possible to create di�erent hierarchies with the same roles in di�erent organizations. Note
that multiple inheritance can be speci�ed as for organizations.

The activity_hierarchy and view_hierarchy views as well as the
activity_hierarchy_class and view_hierarchy_class classes are similarly de�ned to cre-
ate activities and views hierarchies.

As abstract entities are de�ned by the policy designer, he/she can introduce contraints
that some entities must respect. If a modi�cation which violates one or more constraints is
attempted on the policy, the modi�cation is discarded. In the OrBAC model, constraints
are expressed by rules which infer the nullary error predicate. For example a role sepa-
ration constraint, which states that a subject cannot be a�ected to two roles at the same
time in two organizations, is de�ned as follows:
error : − separated_role(Org1, Role1, Org2, Role2),

empower(Org1, Subject, Role1),
empower(Org2, Subject, Role2).

Similarly we de�ne activity, view and context separation constraints. Separation con-
straints de�ne symetric and anti-re�exive relationships between abstract entities. They



motorbac2

can be simply speci�ed by the administrator in the interface without knowledge of its
internal representation as inference rules. Section 5 explains how separation constraints
can be used to solve policy inconsistences. MotOrBAC implements those separation con-
straints but does not allow the user to de�ne its own rules inferring the error predicate.
More details about the inference engine used by MotOrBAC are given in section 7.

Once the organizations, roles, activities, views, contexts have been de�ned, the ad-
ministrator can specify the abstract permissions, prohibitions and obligations in the cor-
responding parts of the GUI. When adding a rule, it is de�ned in the currently selected
organization. For example the following rule states that the student role is permitted to
access some teaching resources in the context of a economic class project:

permission(hospital, student, consult, teaching_resource, eco_projetc_ctx)

Security rules are represented by objects inserted into a speci�c view called license.
Three classes are de�ned and represent the three di�erent security rule types: license_class
for permissions, inhibition_class for prohibitions and commitment_class for obligations.
When an object is inserted into this view, it is interpreted according to its type. Those
classes are also used by the AdOrBAC implementation when specifying the administration
policy.

3.2 Inheritance
The OrBAC model speci�es the automatic inference of privileges given entities hierar-
chies. An entity inherits the security requirements expressed on its super entities. Several
inheritance mechanisms exist in OrBAC:

• Abstract entities hierarchy inheritance: given an organization, if a security
rule applies to an abstract entity e (role, activity or view), then the sub-entities of e
inherits the security rule. For example the following rule expresses how permissions
are inherited through role hierarchies:
permission(Org, Sub_role, Activity, V iew, Context) : −

senior_role(Org, Super_role, Sub_role),
permission(Org, Super_role, Activity, V iew, Context).

Similar rules exist for activities and views hierarchies. The senior_role relationship
is anti-symetric, re�exive and transitive (the same applies for the senior_activity
and senior_view relationships).

• Separation constraints inheritance: separation constraints are inherited the
same way as security rules:
separated_role(Org1, Sub_role, Org2, Role2) : −

senior_role(Org, Super_role, Sub_role),
separated_role(Org1, Super_role, Org2, Role2).

Separation constraints are symetric and anti-re�exive relationships:
separated_role(Org1, Role1, Org2, Role2) : −

separated_role(Org2, Role2, Org1, Role1).

• Organization hierarchy inheritance: security rules are inherited through the
organization hierarchy. The following rule de�nes how permissions are inherited, the
same applying for prohibitions and obligations:



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

permission(Sorg, Role, Activity, V iew, Context) : −
sub_organization(Sorg, Org),
use(Sorg, Role, role_view),
use(Sorg, Activity, activity_view),
use(Sorg, V iew, view_view),
use(Sorg, Context, context_view),
permission(Org,Role, Activity, V iew, Context).

This rule states that if a (1) Sorg is a sub-organization of Org, (2) Role is a role
in organization Sorg, (3) Activity is an activity in organization Sorg, (4) V iew is
a view in organization Sorg, (5) Context is a context in organization Sorg and (6)
Role is permitted to do Activity on V iew when Context is valid in organization
Org, then the permission is also true in organization Sorg.

• Context de�nition inheritance: Let org and subOrg be two organizations,
subOrg being a sub-organization of org, ctx a context and ctx_def_org its de�ni-
tion in organization org. subOrg inherits the de�nition ctx_def_org if no de�nition
exists for context ctx in subOrg.

4 Simulation
MotOrBAC can infer a concrete policy given an OrBAC abstract policy P speci�cation
and the set of concrete entities assigned to the abstract entities of P . Concrete entities
are represented as objects being instances of classes. Each instance has an identi�er and
a list of attributes and values (see �gure 3).

Attributes are represented using binary predicates in the OrBAC model. For example
the predicate diploma(s1, doctor) expresses the fact that s1 has an attribute called diploma
which value is doctor. The fact that some object o is an instance of some class c is
represented by class(o, c). For instance class(peter, doctor_class) expresses that peter is
an instance of the doctor_class class.

The MotOrBAC GUI includes a class editor (�gure 2). The administrator can create
classes and their attributes as well as class hierarchies. Class attributes are inherited in
the class hierarchies. After concrete entities have been created the designer can easily
modify their properties so that they are instances of some classes (it is possible to specify
multiple class inheritance). When a concrete entity has been set as an instance of some
classes, its inherited attributes values can be modi�ed (�gure 3). The administrator can
then a�ect concrete entities to abstract entities. This can be done manually through
a contextual menu or by specifying entity de�nitions. Entity de�nitions are conditions
evaluated on a concrete entity attributes. Three di�erent types of entity de�nitions exist:
role de�nition, activity de�nition and view de�nition. In the OrBAC model, de�ning an
entity de�nition implicitly creates the abstract entity associated to the entity de�nition.
In MotOrBAC, abstract entities must be de�ned before creating any entity de�nition.
Entity de�nitions can have several conditions, at maximum one per organization, which
are inherited through the organization hierarchy the same way context de�nitions are
inherited. A concrete entity can be a�ected to several abstract entity. For example
to automatically assign some subjects to a role doctor in an organization hospital, the
administrator can create a role de�nition. This de�nition would state that all subjects



motorbac2

Fig. 2: The MotOrBAC class editor

Fig. 3: A class ontology on the left and two
OrBAC objects instantiating those classes on
the right, inserted into view employee_view

which have an attribute diploma set to doctor. Using the language used in MotOrBAC,
the administrator would write diploma = doctor as the role de�nition for organization
hospital. In section 3.1, we introduced the separation constraints. Those constraint are
evaluated each time a concrete entity is a�ected to an abstract entity, either manually or
through an entity de�nition.

4.1 Derivation of concrete security rules
Once concrete entities have been de�ned and assigned to abstract entities, the organi-
zational policy can be applied to infer the concrete policy. The following rule is used
to infer concrete permissions, similar rules are de�ned for prohibitions and obligations:
is_permitted(Subject, Action, Object, Priority) : −

permission(Org,Role,Activity, V iew, Context, Priority),
empower(Org, Subject, Role),
consider(Org, Action, Activity),
use(Org, Object, V iew),
hold(Org, Subject, Action,Object, Context).
Note that we introduce a priority in the abstract permission. This priority is used

to rank order abstract rules when con�icts are detected. This rule states that if (1) a
permission exists in an organization for a role, an activity and a view in some context,
(2) a subject is empowered in the role, (3) an action implements the activity, (4) an
object is used in the view and (5) the context is active in the organization for the triple
{Subject, Action,Object}, then the subject is authorized to do the action on the object.
Note that the concrete security rule has the same priority than the abstract rule.

MotOrBAC can infer the concrete policy and show it in a simulation window to help
the administrator in his/her task. Figure 4 shows the simulation window. This window
lists the concrete security rules in the upper table (a di�erent color is used for each rule
type) and the contexts states in the lower table. Light-colored entries in the concrete
policy table shows concrete security rules for which the associated context is inactive.
Light-colored entries in the context table represent inactive contexts.

The following context types are currently implemented in MotOrBAC (see [CM03b]
for more details on the di�erent types of contexts de�ned in OrBAC): temporal contexts
(expressing temporal conditions), user de�ned contexts (contexts which de�nitions are set
to true or false) and prerequisite contexts (expressing conditions on the concrete entities'
attributes). MotOrBAC also implements context composition, allowing the administrator
to express complex contexts. The upper part of the simulation window can be used to



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

Fig. 4: The MotOrBAC concrete policy simula-
tion window

Fig. 5: Concrete con�icts tab. The abstract
rule name from which each concrete is inferred is
displayed

set the current simulation date. The main interface can be used to modify the concrete
entities attributes so that some contexts state may change.

If the abstract security policy contains some incoherences, con�icting concrete security
rules specifying that some subject is at the same time permitted and prohibited from
doing the same action on an object may be inferred. MotOrBAC can display the concrete
con�icts (�gure 5) but does not allow the administrator to solve them at the concrete
level. The next section explains how such con�icts can be avoided at the abstract level so
that no con�ict can exist at the concrete level.

5 Analysis
5.1 Managing con�icts
The simulation function presented in the previous section can infer all the concrete con-
�icts. This section presents how abstract con�icts can be managed with MotOrBAC (see
[CCBG07] for a more in-depth view of abstract con�ict management). The following rule
is used to infer con�ict at the organizational level:

conflict : −
permission(Org1, Role1, Activity1, V iew1, Context1, P riority1),
prohibition(Org2, Role2, Activity2, V iew2, Context2, P riority2),
not(separated_roles(Org1, Role1, Org2, Role2)),
not(separated_activities(Org1, Activity1, Org2, Activity2)),
not(separated_views(Org1, V iew1, Org2, V iew2)),
not(separated_contexts(Org1, Context1, Org2, Context2)),
not(Priority1 < Priority2),
not(Priority1 > Priority2).
This rule states that if (1) a permission and a prohibition exist at the organizational

level, (2) the roles Role1 and Role2 or activities Activity1 and Activity2 or views V iew1
and V iew2 or contexts Context1 and Context2 are not separated or (3) the rules priorities
cannot be compared, then potentially concrete con�icts can exist. Actually if the same
concrete entities subject is empowered in Role1 and Role2, activity implements Activity1
and Activity2, object is used in V iew1 and V iew2, then two concrete con�icting rules can
be inferred.

If the conflict predicate cannot be inferred, the policy is said to be consistent. If
the policy is consistent, the administrator can assign concrete entities to abstract entities



motorbac2

without worrying about concrete con�icts since they cannot exist[CCBG07].

5.2 Solving con�icts with MotOrBAC
MotOrBAC can help the administrator solve the abstract con�icts. The detected abstract
con�icts are listed in the GUI and separation constraints as well as rule priorities can
easily be added through a contextual menu (�gure 6). The contextual menu gives the
administrator several choices:

• Add a separation constraint: depending on the two con�icting rules parameters,
the administrator can choose to separate at most the rules roles, activities, views
and contexts. Figure 6 shows an example of con�ict where the administrator cannot
separate the contexts since they are the same in the two con�icting rules.

• Order rules: the administrator as always the choice to modify the priorities between
rules when processing a con�ict. However some rules might become redundant or
inapplicable. This article does not tackle the complex problem of detecting those
anomalies, see [GACC06] for an example of algorithm given for a network security
policy.

The administrator has two other choices not listed in the contextual menu:

• Modify the con�icting rules: the con�ict might be caused by an error in the
rules speci�cations.

• Ignore the con�ict: the administrator can deliberately ignore the con�ict but
might introduce concrete con�icts when assigning concrete entities to abstract enti-
ties.

Fig. 6: Abstract con�icts tab. Each couple of con�icting rules is displayed. The contextual menu
shows the choices the administrator has to solve the con�ict

6 AdOrBAC
6.1 View-based administration
Generally access control models are constituted of two distincts models: a model to ex-
press the security policy and another model to express its administration policy. The
administration policy expresses which users have privileges to update the security policy
and under which conditions they have those privileges. For instance the ARBAC model
[SBM97, SM99] has been speci�ed to manage the RBAC [FSSGC01, SJLE96] access con-
trol model.



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

The OrBAC model also has its administration model, called AdOrBAC [CM03a].
AdOrBAC has been designed to express an administration policy using the same concepts
introduced in the OrBAC model. This makes the OrBAC model a self-administrated
model. AdOrBAC has been designed to be more expressive than ARBAC. For instance
AdOrBAC can be used to express that in some company global.com, each department
leader has the permission to choose his/her team leader. Such administration rule is
di�cult to express in ARBAC since it would require to specify as many permissions
as the number of teams. The base idea is to consider all administrative operations as
insertions of objects into speci�c views (such as the role_hierarchy_view introduced in
section 3) using the use predicate. Figure 7 shows the AdOrBAC administrative views.
The following activities can be administrated using these views (see [CBCC07] for more
details):

• Permissions management (license view, in which instances of the license_class
are used). The inhibition_class and commitment_class are used respectively to
specify administrative prohibitions and obligations.

• Concrete entities assignment (role_assignment and activity_assignment views)

• Abstract entities hierarchy management (role_hierarchy, activity_hierarchy,
view_hierarchy and context_hierarchy views)

Fig. 7: The AdOrBAC views. The administrative policy speci�es the operations permitted on
those views

6.2 AdOrBAC in MotOrBAC
MotOrBAC includes an administration function implementing the AdOrBAC model [GCCBB07].
When the AdOrBAC function is activated in MotOrBAC, after the user has authenticated
himself/herself, he/she can edit the OrBAC security policy accordingly to the AdOrBAC
policy. If an unauthorized operation is attempted, the policy is not modi�ed and the user
is informed. In [CBCC07] we have shown that AdOrBAC can be used to manage a decen-
tralized administration policy with several administrators having restricted administrative
privileges.

The delegation example given in section 6.1 can be speci�ed in AdOrBAC as follows:
�rst a sub-view of the role view must be created, for example the role_leader sub-view.



motorbac2

Then we put a constraint on this view so that the role_assignment instances used in this
view assign subjects to the team_leader role:

use(global.com, RA, role_leader) : −
assignment(RA, role_leader),
authority(RA, global.com).

then we can give the departement_leader role the right to insert role assignment objects in
this view: permission(global.com, departement_leader, insert, role_leader, default_context)
where insert is an administrative operation consisting in inserting an object into a view.
Hence this rule means that the role departement_leader can always (the default context
is used in this rule) insert instances of the role_assignment class in the role_leader view.

Since the OrBAC model is self-administrated, a MotOrBAC policy �le contains both
the OrBAC policy and its associated AdOrBAC policy.

7 Integration
The concrete security policy inferred by MotOrBAC can be translated to con�gure a
security component such as a �rewall for example [CCBSM04]. Another solution to enforce
an OrBAC security policy is to use the OrBAC Java API, on top of which MotOrBAC
is built. This API uses the Jena3 java library to represent an OrBAC policy as a RDF
graph. It can be used to load MotOrBAC RDF policies and interpret them, i.e access
control requests can be made on a loaded policy. Jena Features an inference engine which
is used by the OrBAC API to infer the concrete policies and the con�icts. When an
OrBAC RDF policy is loaded by the API, the concrete policy can be inferred and stored
in memory. An instance of the OrbacPolicy java class which encapsulates an OrBAC
policy uses a cache of concrete security rules to enhance the performances when the policy
is queried. Contexts are evaluated upon a query, this feature is actually used in the
MotOrBAC simulation tool to show the contexts state. The contexts implementation can
be easily extended in order to interface the API with other applications and add new types
of contexts.

Integrating the OrBAC Java API4 into a Java application can be done without mod-
ifying the application source code. Aspect Oriented Programming (AOP) can be used
to separate security concerns from other concerns relative to the application. We have
developped an application which simulates a medical form where entries must be �led
by subjects having speci�c roles and rights. This little application does not include any
security related code. Using AspectJ we weaved the security concerns with the OrBAC
API.

The API can also be used to create OrBAC policies, it can be for instance integrated
into a web server to communicate with a web browser which could run a web interface to
create and/or administrate OrBAC policies.

8 Conclusion
In this article we showed that the expressivity of MotOrBAC can be easily used by sys-
tem administrators to specify dynamic security policies and administrate them. The tool
3 http://jena.sourceforge.net/
4 The full speci�cation of the OrBAC API can be found on http://orbac.org



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

implements the OrBAC access control model and features (1) a security model based on
organizational entities (organization, role, activity, view, context), (2) an explicit separa-
tion between the organizational level and the concrete level (subject, action, object), (3)
the possibility to model permissions, prohibitions and obligations, (4) a simulation and
analysis tool, (5) a policy con�ict detection tool along with resolution strategies, (6) a
decentralized policy administration.

The administrator can directly specify a policy with MotOrBAC from its expression in
the OrBAC model. The GUI is structured around the organization tree control to allow
the administrator to easily specify the abstract policy. The concrete entities are speci�ed
using an object-oriented approach. The policy is internally represented as a RDF graph to
which the administrator has no direct access, all the editing operation being done through
the GUI. The underlying RDF graph can be saved as an XML �le or as a N-Triple5 �le
so the policy can be easily read by other applications. The policy administration, which
is known to be a very complicated task, is included in MotOrBAC. Using the OrBAC
concept of view and object, administrative privileges are speci�ed by inserting adminis-
trative objects into speci�c views. This model being self-administrated, specifying the
administration policy is done using the same concepts involved in the speci�cation of the
security policy, which does not require the administrator to learn a separate administration
model. Moreover several administrators can use MotOrBAC to manage the same security
policy with more expressiveness than the ARBAC model. The privileges given to a sub-
ject assigned to an administrative role are activated once the subject has authenticated
himself/herself using the GUI.

The security policy enforcement can be done by translating the concrete security policy
to other languages used to con�gure security components. The work did in [CCBSM04] to
translate a concrete security policy to a �rewall con�guration �le has been implemented
in MotOrBAC.

The problem of delegation [GCCBB07] was not tackled in this article as it is currently
under implementation in MotOrBAC.

Several extensions to the current MotOrBAC implementation are currently under de-
velopment, namely other types of contexts [CM03b], additional policy translation modules
to con�gures other kinds of security components than �rewalls, an interoperability mod-
ule, a management and inforcement of obligations module and a module implementing
usage control.

References
[CBCC07] N. Cuppens-Boulahia, F. Cuppens, and C. Coma. Multi-granular licences

to decentralize security administration. In First International Workshop on
Reliability, Availability, and Security (WRAS). Paris, France, 2007.

[CCBC06] F. Cuppens, N. Cuppens-Boulahia, and C. Coma. MotOrBAC : un outil
d'administration et de simulation de politiques de sécurité. In First Joint
Conference on Security in Networks Architectures (SAR) and Security of
Information Systems (SSI). Seignosse, France, 2006.

5 http://www.w3.org/TR/rdf-testcases/



motorbac2

[CCBG07] F. Cuppens, N. Cuppens-Boulahia, and M. Ben Ghorbel. High-level con�ict
management strategies in advanced access control models. In Electronic Notes
in Theoretical Computer Science (ENTCS), Vol. 186, pp. 3-26, 2007.

[CCBM04] F. Cuppens, N. Cuppens-Boulahia, and A. Miège. Inheritance hierarchies
in the Or-BAC model and application in a network environment. In Sec-
ond Foundations of Computer Security Workshop (FCS'04). Turku, Finland,
2004.

[CCBSM04] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A formal approach
to specify and deploy a network security policy. In Second Workshop on
Formal Aspects in Security and Trust (FAST), 2004.

[CM03a] F. Cuppens and A. Miège. Administration model for Or-BAC. In Interna-
tional Federated Conferences (OTM'03), Workshop on Metadata for Security.
Catania, Sicily, Italy, November 3-7, 2003.

[CM03b] F. Cuppens and A. Miège. Modelling contexts in the Or-BAC model. In 19th
Annual Computer Security Applications Conference, Las Vegas, 2003.

[Fira] Firestarter. http://www.fs-security.com/.

[Firb] FirewallBuilder. http://www.fwbuilder.org.

[FSSGC01] David F.Ferrailo, Ravi Sandhu, D.Richard Kuhn Serban Gavrila, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access
control. In ACM Transactions on Information and System Security, 2001.

[GACC06] J. Garcia-Alfaro, F. Cuppens, and N. Cuppens. Towards �ltering and alerting
rule rewriting on single-component policies. In Computer Science, 4166, Con-
ference on Computer Safety, Reliability, and Security (Safecomp), Gdansk,
Poland, 2006.

[GCCBB07] M. Ben Ghorbel, F. Cuppens, N. Cuppens-Boulahia, and A. Bouhoula. Man-
aging delegation in access control models. In 15th International Conference
on Advanced Computing and Communication (ADCOM), Guwahati, India,
2007.

[KBB+03] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarteand A. Miège, C. Saurel, and G. Trouessin. Organization based
access control. In IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks (Policy 2003), Lake Come, Italy, June 4-6,
2003.

[SBM97] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97
model for role-based administration of roles. In ACM Trans. Inf. Syst. Secur.,
1997.

[SJLE96] Ravi S.Sandu, Edward J.Coyne, Hal L.Feinstein, and Charles E.Youman.
Role-based access control models. In Computer, 1996.



Fabien Autrel and Frédéric Cuppens and Nora Cuppens and Céline Coma

[SM99] Ravi Sandhu and Qamar Munawer. The ARBAC99 model for administra-
tion of roles. In 15th Annual Computer Security Applications Conference
(ACSAC99), 1999.

[Ull89] Je�rey D. Ullman. Principles of database and knowledge-base systems. In
Computer Science Press, 1989.


