Fabien Autrel
email: fabien.autrel@telecom-bretagne.eu

Frédéric Cuppens
email: frederic.cuppens@telecom-bretagne.eu

Nora Cuppens-Boulahia

Keywords: acces control, security policy model, security policy administration, implementation, OrBAC

come

Introduction

As information systems are getting more and more complex, security administrators must face multiple problems related to conguration and security. Those systems generally use wired and wireless connectivity and various hardware which run multiple OSes on which several applications are ran.

In such a context the specication and enforcement of a security policy is a very tedious, complex and error-prone task. Eventually each hardware (a rewall for instance) and software (SELinux for instance) security component conguration are managed manually. This requires learning several conguration languages and writing conguration les for each component. Some administration tools exist to help in the conguration of components but they are almost only targeted at network components. For example Firewall Builder [Firb] or Firestarter [Fira] help the administrator by making easier the specication of security rules. However when it comes to system and application security, the list of tools is drastically shortened.

This article presents MotOrBAC version 2, a tool which as been developed to write security policies. MotOrBAC provides multiple functionalities such as (1) policy specication based on the OrBAC model [KBB + 03], (2) potential and eective conict detection, (3) policy simulation and (4) administration policy specication. MotOrBAC has been developed on top of the OrBAC application programming interface (API), a java API we have developed to ease the integration of our OrBAC implementation. The previous version of MotOrBAC was developped using java and prolog whereas the new version is written in pure java. The new version is also more modular as it uses the OrBAC API.

MotOrBAC aims at giving the user the possibility to specify all his/her security requirements independently of its enforcement. To do so MotOrBAC implements the OrBAC model which species the security requirements at the organizational level. Each security component can be represented as a sub-organization of the organization representing the information system that manages the sub-part of the global policy associated with this component.

Once the policy specication at the organizational level is done, concrete entities corresponding to the information system users, actions and objects can be introduced. This way the policy designer can simulate the security policy by checking the concrete security rules inferred by MotOrBAC.

Centralizing the expression of the security policy oers a framework to analyze its consistency. Since the OrBAC model allows the expression of positive (permission) and negative (prohibition) privileges, conicting security rules can be introduced. MotOrBAC can detect those conicts and help the policy designer solve them.

Most of current security models make the hypothesis that only one administrator will write and maintain the information system security policy. As those systems become more and more distributed, this hypothesis is no longer adapted. MotOrBAC implements the AdOrBAC [START_REF] Cuppens | Administration model for Or-BAC[END_REF] administration model which uses the concepts developed in OrBAC (thus making OrBAC a self-administrated model). Using AdOrBAC, policy administration rights can be distributed over several roles. When the AdOrBAC mode is activated, the current policy designer must authenticate himself/herself and then the corresponding administration policy is applied.

This article is organized as follows: Section 2 motivates the need for a centralized specication and management tool. Section 2.2 briey introduces the OrBAC model and presents the main functionalities of MotOrBAC. Section 3 explains how the tool can be used to write a security policy. Section 4 presents the concrete policy simulation tool. Section 5 explains how the conict detection functionality can be used to solve conicts. Section 6 presents the AdOrBAC implementation. Section 7 gives more details on the MotOrBAC architecture and explains how the OrBAC API can be integrated into an application to enforce an OrBAC policy. Finally section 8 concludes this paper and presents some future evolutions.

2 The need for an administration tool

Context

Nowadays private and public organizations face several problems when they try to specify and enforce the security policy of their information systems. To illustrate some of those problems, let us take a look at an hypothetical organization. Let W orldCompany be a company having several subsidiary companies (F ranceCompany, EnglandCompany, etc...) and subcontractors (T aiwanSubContractor). Several administrators (John, Peter and Rayan) are in charge of the information systems. We suppose that all the subsidiary companies work on the same product and that their hierarchies and workmanship are similar.

W orldCompany would like to dene a consistent security policy which applies to all its subsidiary companies. However the task is complicated by the dierent countries' legislations, the policy must be adapted for each subsidiary company. As this adaptation is going on, W orldCompany realizes that one of its administrators, namely Peter, has designed weak security rules which result in a potential information leak. Since W orldCompany does not know if the not very good work done by P eter is due to a malicious behavior or a lack of information, decision is taken to limit his administrative privileges. Moreover subcontractors need access to the information system of W orldCompany and the associated privileges may be modied as time passes. Besides those aspects, the security policy of W orldCompany shall be modied as new people are hired, old employees retire or the law is changed (for example in France the weekly working time as been modied from 39 hours to 35 hours).

Those problems are not specic to our example and can be encountered in any company that wants to enforce a security policy. Some of those problems are related to a company infrastructure change, others are linked to errors in the policy specication, others may be related to the centralized information and some are related to administrative rights specication. As a matter of fact it is very dicult for a system administrator to have a global view of the security policy in order to manage it correctly. The use of a single software to manage the security policy would simplify a lot their task and solve many problems. However such a tool would be useless if it does not implement a model which allows to express the security problems and administrative needs of a company such as W orldCompany. Such a model should make the management of several entities having various administrative modes (multiple administrators, contextual, centralized, etc...) simple and should allow to verify the policy consistency.

After reviewing many policy models, we came to the conclusion that the OrBAC model ts the specications of the aforementioned tool.

The OrBAC model

OrBAC aims at modelling a security policy centered on the organization which denes it or manages it. Hence a company is an organization but security components such as rewall or the java virtual machine security manager can also be modelled as organizations. An OrBAC policy specication is done at the organizational level, also called the abstract level, and is implementation-independent. The enforced policy, called the concrete policy, is inferred from the abstract policy. This approach makes all the policies expressed in the OrBAC model reproducible and scalable. Actually once the concrete policy is inferred, no modication or tuning has to be done on the inferred policy since it would possibly introduce inconsistencies. Everything is done at the abstract policy specication level. The inferred concrete policy expresses security rules using subject, actions and objects. The abstract policy, specied at the organizational level, is specied using roles, activities and views.

The OrBAC model uses a rst order logic formalism with negation. However since rst order logic is generally undecidable, we have restricted our model in order to be compatible with a stratied Datalog program [START_REF] Jerey | Principles of database and knowledge-base systems[END_REF]. A Datalog program must not use any functional terms and must only include range restricted variables (i.e variables that are in the conclusion of a rule must also appear, not negated, in the rule premise). Negated literals can appear in a rule premise if the rule can be stratied. A stratied Datalog program has all its rules ranked: if some rules contain negative literals then the rules dening those literals are evaluated rst. A stratied Datalog program can be evaluated in polynomial time.

In the rest of this article all the security rules dening a security policy must correspond to a stratied Datalog program. We use a Prolog-like notation1 where terms beginning with an upper case are variables and terms beginning with a lower case are constants. The fact parent(john, jessica). says that john is a parent of jessica. A rule such as grandparent(X, Z) : -parent(X, Y), parent(Y, Z). means that X is a grandparent of Z if Y exists such that X is a parent of Y and Y is a parent of Z.

Using this formalism, each organization species its own security rules. Some role may have the permission, prohibition or obligation to do some activity on some view given an associated context is true. The context concept [START_REF] Cuppens | Modelling contexts in the Or-BAC model[END_REF] has been introduced in OrBAC in order to express dynamic rules. Those security rules are represented using 5-ary predicates:

• permission(org, role, activity, view, context) means that in organization org, role role is authorized to perform activity activity on view view if context context is true.

• the prohibition and obligation predicates are similarly dened but express dierent security requirements.

• permission(hospital, nurse, consult, medical_record, urgency) means that nurses can access the patients medical records in the context of an emergency.

Security rules can be hierarchically structured so that they are inherited in the organization, role, activity and view hierarchies (see [START_REF] Cuppens | Inheritance hierarchies in the Or-BAC model and application in a network environment[END_REF]). Since a security policy can be inconsistent because of conicting security rules (for example a permission can be in conict with a prohibition), it is necessary to dene strategies to solve those conicts. Section 4 presents the way we solve this problem.

Once the security policy has been specied at the organizational level, it is possible to test it by assigning concrete entities to abstract entities. To do so, three ternary predicates have been dened to assign a subject to a role, an action to an activity and an object to a view:

• empower(Org, Subject, Role): species that in organization Org, subject Subject is empowered in role Role.

• consider(Org, Action, Activity): species that in organization Org, action Action implements activity Activity.

• use(Org, Object, V iew): species that in organization Org, object Object is used in view V iew.

For example, the fact empower(hospital, john, surgeon) states that john is empowered in the role surgeon in the hospital organization. Contexts are dened through logical rules which express the condition that must be true in order for the context to be active. In the OrBAC model such rules haveaected to the predicate hold in their conclusion:

• hold(Org, Subject, Action, Object, Context): species that in organization Org, subject Subject does action Action on object Object in context Context.

Using this model, concrete security rules applying to subject, actions and objects can be inferred. The rules and principles used to infer the concrete security policy are explained in section 5.

Motorbac

In order to allow administrators to use the OrBAC model, we have developed the MotOr-BAC prototype2 . This tool aims at making easy the use of the OrBAC model to express a security policy. Its architecture is presented on gure 1. The architecture and specication of the rst MotOrBAC implementation are presented in [START_REF] Cuppens | MotOrBAC : un outil d'administration et de simulation de politiques de sécurité[END_REF]. MotOrBAC uses the OrBAC application programming interface (API) to manage the policies displayed in the graphical user interface (GUI). The OrBAC API can be used to programmatically create OrBAC policies. More details about the OrBAC API are given in section 7. MotOrBAC can be used to do several tasks on OrBAC security policies:

• Edit policies: the administrator can create the abstract entities he/she needs (organizations, sub-organizations, roles, activities, views, contexts) and the abstract security policies (see section 3).

• Policy simulation: after having specied concrete entities (subjects, actions and objects), the concrete policy can be inferred. Subjects, actions and objects can have attributes (see section 4).

• Policy consistency verication: abstract conicts between abstract rules can be detected (see section 5).

• Once abstract conicts have been detected, MotOrBAC is able to suggest the administrator some solutions to solve them (see section 5).

• Administrative rights management: the administrative rights of a subject or a role can be specied in order to decentralize the policy administration (see section 6).

Security policy specication

Specifying an OrBAC security policy requires dening several abstract entities and their hierarchical relationships.

OrBAC organizational entities in MotOrBAC

When the administrator in charge for the policy specication wants to specify the organization hierarchy, he/she can either specify all the organizations then specify the hierarchical links between them, or he can specify the hierarchical links as he enters them. A hierarchical link between two organizations org 1 and org 2 is recorded into the policy by inserting the following fact: sub_organization(org1, org2)

The organization hierarchy is displayed as a tree control in MotOrBAC, clicking on an organization in this tree displays the policy specied for this organization (roles, activities and views, as well as their hierarchies, and the security rules). Clicking the root of this tree displays the entire security policy. Note that it is possible to specify that an organization inherits from several organizations.

After the organizations have been dened, the administrator can dene the roles, activities, views and contexts for each organization. For example if the role head_nurse is dened in organization hospital as a super-role of nurse, the following objects are inserted into specic views [CBCC07]:

• The role head_nurse is inserted into the role_view view of organization hospital, which is represented by the fact use(hospital, head_nurse, role_view)

• The role hierarchy object RH_hospital_nurse_head_nurse, instance of class role_hierarchy_class (see section 4 for more details on classes in MotOrBAC), is inserted into the view role_hierarchy of organization hospital: use(hospital, RH_hospital_nurse_head_nurse, role_hierarchy). This object has three attributes to dene the hierarchy: -RH_hospital_nurse_head_nurse.authority = hospital -RH_hospital_nurse_head_nurse.senior_role = head_nurse -RH_hospital_nurse_head_nurse.junior_role = nurse Note that since the role hierarchy object is inserted into the role_hierarchy view of an organization, the created role hierarchy is only dened in this organization. This way it is possible to create dierent hierarchies with the same roles in dierent organizations. Note that multiple inheritance can be specied as for organizations.

The activity_hierarchy and view_hierarchy views as well as the activity_hierarchy_class and view_hierarchy_class classes are similarly dened to create activities and views hierarchies.

As abstract entities are dened by the policy designer, he/she can introduce contraints that some entities must respect. If a modication which violates one or more constraints is attempted on the policy, the modication is discarded. In the OrBAC model, constraints are expressed by rules which infer the nullary error predicate. For example a role separation constraint, which states that a subject cannot be aected to two roles at the same time in two organizations, is dened as follows:

error : -separated_role(Org1, Role1, Org2, Role2), empower(Org1, Subject, Role1), empower(Org2, Subject, Role2). Similarly we dene activity, view and context separation constraints. Separation constraints dene symetric and anti-reexive relationships between abstract entities. They motorbac2 can be simply specied by the administrator in the interface without knowledge of its internal representation as inference rules. Section 5 explains how separation constraints can be used to solve policy inconsistences. MotOrBAC implements those separation constraints but does not allow the user to dene its own rules inferring the error predicate. More details about the inference engine used by MotOrBAC are given in section 7.

Once the organizations, roles, activities, views, contexts have been dened, the administrator can specify the abstract permissions, prohibitions and obligations in the corresponding parts of the GUI. When adding a rule, it is dened in the currently selected organization. For example the following rule states that the student role is permitted to access some teaching resources in the context of a economic class project: permission(hospital, student, consult, teaching_resource, eco_projetc_ctx)

Security rules are represented by objects inserted into a specic view called license. Three classes are dened and represent the three dierent security rule types: license_class for permissions, inhibition_class for prohibitions and commitment_class for obligations. When an object is inserted into this view, it is interpreted according to its type. Those classes are also used by the AdOrBAC implementation when specifying the administration policy.

Inheritance

The OrBAC model species the automatic inference of privileges given entities hierarchies. An entity inherits the security requirements expressed on its super entities. Several inheritance mechanisms exist in OrBAC:

• Abstract entities hierarchy inheritance: given an organization, if a security rule applies to an abstract entity e (role, activity or view), then the sub-entities of e inherits the security rule. For example the following rule expresses how permissions are inherited through role hierarchies: permission(Org, Sub_role, Activity, V iew, Context) : -senior_role(Org, Super_role, Sub_role), permission(Org, Super_role, Activity, V iew, Context).

Similar rules exist for activities and views hierarchies. The senior_role relationship is anti-symetric, reexive and transitive (the same applies for the senior_activity and senior_view relationships).

• Separation constraints inheritance: separation constraints are inherited the same way as security rules: separated_role(Org1, Sub_role, Org2, Role2) : -senior_role(Org, Super_role, Sub_role), separated_role(Org1, Super_role, Org2, Role2).

Separation constraints are symetric and anti-reexive relationships: separated_role(Org1, Role1, Org2, Role2) : -separated_role(Org2, Role2, Org1, Role1).

• Organization hierarchy inheritance: security rules are inherited through the organization hierarchy. The following rule denes how permissions are inherited, the same applying for prohibitions and obligations:

Simulation

MotOrBAC can infer a concrete policy given an OrBAC abstract policy P specication and the set of concrete entities assigned to the abstract entities of P . Concrete entities are represented as objects being instances of classes. Each instance has an identier and a list of attributes and values (see gure 3). Attributes are represented using binary predicates in the OrBAC model. For example the predicate diploma(s 1 , doctor) expresses the fact that s 1 has an attribute called diploma which value is doctor. The fact that some object o is an instance of some class c is represented by class(o, c). For instance class(peter, doctor_class) expresses that peter is an instance of the doctor_class class.

The MotOrBAC GUI includes a class editor (gure 2). The administrator can create classes and their attributes as well as class hierarchies. Class attributes are inherited in the class hierarchies. After concrete entities have been created the designer can easily modify their properties so that they are instances of some classes (it is possible to specify multiple class inheritance). When a concrete entity has been set as an instance of some classes, its inherited attributes values can be modied (gure 3). The administrator can then aect concrete entities to abstract entities. This can be done manually through a contextual menu or by specifying entity denitions. Entity denitions are conditions evaluated on a concrete entity attributes. Three dierent types of entity denitions exist: role denition, activity denition and view denition. In the OrBAC model, dening an entity denition implicitly creates the abstract entity associated to the entity denition. In MotOrBAC, abstract entities must be dened before creating any entity denition. Entity denitions can have several conditions, at maximum one per organization, which are inherited through the organization hierarchy the same way context denitions are inherited. A concrete entity can be aected to several abstract entity. For example to automatically assign some subjects to a role doctor in an organization hospital, the administrator can create a role denition. This denition would state that all subjects which have an attribute diploma set to doctor. Using the language used in MotOrBAC, the administrator would write diploma = doctor as the role denition for organization hospital. In section 3.1, we introduced the separation constraints. Those constraint are evaluated each time a concrete entity is aected to an abstract entity, either manually or through an entity denition.

Derivation of concrete security rules

Once concrete entities have been dened and assigned to abstract entities, the organizational policy can be applied to infer the concrete policy. The following rule is used to infer concrete permissions, similar rules are dened for prohibitions and obligations: is_permitted(Subject, Action, Object, P riority) :permission(Org, Role, Activity, V iew, Context, P riority), empower(Org, Subject, Role), consider(Org, Action, Activity), use(Org, Object, V iew), hold(Org, Subject, Action, Object, Context).

Note that we introduce a priority in the abstract permission. This priority is used to rank order abstract rules when conicts are detected. This rule states that if (1) a permission exists in an organization for a role, an activity and a view in some context, (2) a subject is empowered in the role, (3) an action implements the activity, (4) an object is used in the view and (5) the context is active in the organization for the triple {Subject, Action, Object}, then the subject is authorized to do the action on the object. Note that the concrete security rule has the same priority than the abstract rule.

MotOrBAC can infer the concrete policy and show it in a simulation window to help the administrator in his/her task. Figure 4 shows the simulation window. This window lists the concrete security rules in the upper table (a dierent color is used for each rule type) and the contexts states in the lower table. Light-colored entries in the concrete policy table shows concrete security rules for which the associated context is inactive. Light-colored entries in the context table represent inactive contexts.

The following context types are currently implemented in MotOrBAC (see [START_REF] Cuppens | Modelling contexts in the Or-BAC model[END_REF] for more details on the dierent types of contexts dened in OrBAC): temporal contexts (expressing temporal conditions), user dened contexts (contexts which denitions are set to true or f alse) and prerequisite contexts (expressing conditions on the concrete entities' attributes). MotOrBAC also implements context composition, allowing the administrator to express complex contexts. The upper part of the simulation window can be used to If the abstract security policy contains some incoherences, conicting concrete security rules specifying that some subject is at the same time permitted and prohibited from doing the same action on an object may be inferred. MotOrBAC can display the concrete conicts (gure 5) but does not allow the administrator to solve them at the concrete level. The next section explains how such conicts can be avoided at the abstract level so that no conict can exist at the concrete level.

Analysis

Managing conicts

The simulation function presented in the previous section can infer all the concrete conicts. This section presents how abstract conicts can be managed with MotOrBAC (see [START_REF] Cuppens | High-level conict management strategies in advanced access control models[END_REF] for a more in-depth view of abstract conict management). The following rule is used to infer conict at the organizational level:

conf lict :permission(Org1, Role1, Activity1, V iew1, Context1, P riority1), prohibition(Org2, Role2, Activity2, V iew2, Context2, P riority2), not(separated_roles(Org1, Role1, Org2, Role2)), not(separated_activities(Org1, Activity1, Org2, Activity2)), not(separated_views(Org1, V iew1, Org2, V iew2)), not(separated_contexts(Org1, Context1, Org2, Context2)), not(P riority1 < P riority2), not(P riority1 > P riority2). This rule states that if (1) a permission and a prohibition exist at the organizational level, (2) the roles Role1 and Role2 or activities Activity1 and Activity2 or views V iew1 and V iew2 or contexts Context1 and Context2 are not separated or (3) the rules priorities cannot be compared, then potentially concrete conicts can exist. Actually if the same concrete entities subject is empowered in Role1 and Role2, activity implements Activity1 and Activity2, object is used in V iew1 and V iew2, then two concrete conicting rules can be inferred.

If the conf lict predicate cannot be inferred, the policy is said to be consistent. If the policy is consistent, the administrator can assign concrete entities to abstract entities motorbac2 without worrying about concrete conicts since they cannot exist [START_REF] Cuppens | High-level conict management strategies in advanced access control models[END_REF].

Solving conicts with MotOrBAC

MotOrBAC can help the administrator solve the abstract conicts. The detected abstract conicts are listed in the GUI and separation constraints as well as rule priorities can easily be added through a contextual menu (gure 6). The contextual menu gives the administrator several choices:

• Add a separation constraint: depending on the two conicting rules parameters, the administrator can choose to separate at most the rules roles, activities, views and contexts. Figure 6 shows an example of conict where the administrator cannot separate the contexts since they are the same in the two conicting rules.

• Order rules: the administrator as always the choice to modify the priorities between rules when processing a conict. However some rules might become redundant or inapplicable. This article does not tackle the complex problem of detecting those anomalies, see [START_REF] Garcia-Alfaro | Towards ltering and alerting rule rewriting on single-component policies[END_REF] for an example of algorithm given for a network security policy.

The administrator has two other choices not listed in the contextual menu:

• Modify the conicting rules: the conict might be caused by an error in the rules specications.

• Ignore the conict: the administrator can deliberately ignore the conict but might introduce concrete conicts when assigning concrete entities to abstract entities. The OrBAC model also has its administration model, called AdOrBAC [START_REF] Cuppens | Administration model for Or-BAC[END_REF]. AdOrBAC has been designed to express an administration policy using the same concepts introduced in the OrBAC model. This makes the OrBAC model a self-administrated model. AdOrBAC has been designed to be more expressive than ARBAC. For instance AdOrBAC can be used to express that in some company global.com, each department leader has the permission to choose his/her team leader. Such administration rule is dicult to express in ARBAC since it would require to specify as many permissions as the number of teams. The base idea is to consider all administrative operations as insertions of objects into specic views (such as the role_hierarchy_view introduced in section 3) using the use predicate. Figure 7 shows the AdOrBAC administrative views. The following activities can be administrated using these views (see [START_REF] Cuppens-Boulahia | Multi-granular licences to decentralize security administration[END_REF] for more details):

• Permissions management (license view, in which instances of the license_class are used). The inhibition_class and commitment_class are used respectively to specify administrative prohibitions and obligations.

• Concrete entities assignment (role_assignment and activity_assignment views)

• Abstract entities hierarchy management (role_hierarchy, activity_hierarchy, view_hierarchy and context_hierarchy views) Fig. 7: The AdOrBAC views. The administrative policy species the operations permitted on those views

AdOrBAC in MotOrBAC

MotOrBAC includes an administration function implementing the AdOrBAC model [START_REF] Ben Ghorbel | Managing delegation in access control models[END_REF].

When the AdOrBAC function is activated in MotOrBAC, after the user has authenticated himself/herself, he/she can edit the OrBAC security policy accordingly to the AdOrBAC policy. If an unauthorized operation is attempted, the policy is not modied and the user is informed. In [START_REF] Cuppens-Boulahia | Multi-granular licences to decentralize security administration[END_REF] we have shown that AdOrBAC can be used to manage a decentralized administration policy with several administrators having restricted administrative privileges.

The delegation example given in section 6.1 can be specied in AdOrBAC as follows: rst a sub-view of the role view must be created, for example the role_leader sub-view.

Then we put a constraint on this view so that the role_assignment instances used in this view assign subjects to the team_leader role: use(global.com, RA, role_leader) :assignment(RA, role_leader), authority(RA, global.com). then we can give the departement_leader role the right to insert role assignment objects in this view: permission(global.com, departement_leader, insert, role_leader, def ault_context) where insert is an administrative operation consisting in inserting an object into a view. Hence this rule means that the role departement_leader can always (the default context is used in this rule) insert instances of the role_assignment class in the role_leader view.

Since the OrBAC model is self-administrated, a MotOrBAC policy le contains both the OrBAC policy and its associated AdOrBAC policy.

Integration

The concrete security policy inferred by MotOrBAC can be translated to congure a security component such as a rewall for example [START_REF] Cuppens | A formal approach to specify and deploy a network security policy[END_REF]. Another solution to enforce an OrBAC security policy is to use the OrBAC Java API, on top of which MotOrBAC is built. This API uses the Jena3 java library to represent an OrBAC policy as a RDF graph. It can be used to load MotOrBAC RDF policies and interpret them, i.e access control requests can be made on a loaded policy. Jena Features an inference engine which is used by the OrBAC API to infer the concrete policies and the conicts. When an OrBAC RDF policy is loaded by the API, the concrete policy can be inferred and stored in memory. An instance of the OrbacP olicy java class which encapsulates an OrBAC policy uses a cache of concrete security rules to enhance the performances when the policy is queried. Contexts are evaluated upon a query, this feature is actually used in the MotOrBAC simulation tool to show the contexts state. The contexts implementation can be easily extended in order to interface the API with other applications and add new types of contexts.

Integrating the OrBAC Java API4 into a Java application can be done without modifying the application source code. Aspect Oriented Programming (AOP) can be used to separate security concerns from other concerns relative to the application. We have developped an application which simulates a medical form where entries must be led by subjects having specic roles and rights. This little application does not include any security related code. Using AspectJ we weaved the security concerns with the OrBAC API.

The API can also be used to create OrBAC policies, it can be for instance integrated into a web server to communicate with a web browser which could run a web interface to create and/or administrate OrBAC policies.

Conclusion

In this article we showed that the expressivity of MotOrBAC can be easily used by system administrators to specify dynamic security policies and administrate them. The tool implements the OrBAC access control model and features (1) a security model based on organizational entities (organization, role, activity, view, context), (2) an explicit separation between the organizational level and the concrete level (subject, action, object), (3) the possibility to model permissions, prohibitions and obligations, (4) a simulation and analysis tool, (5) a policy conict detection tool along with resolution strategies, (6) a decentralized policy administration.

The administrator can directly specify a policy with MotOrBAC from its expression in the OrBAC model. The GUI is structured around the organization tree control to allow the administrator to easily specify the abstract policy. The concrete entities are specied using an object-oriented approach. The policy is internally represented as a RDF graph to which the administrator has no direct access, all the editing operation being done through the GUI. The underlying RDF graph can be saved as an XML le or as a N-Triple5 le so the policy can be easily read by other applications. The policy administration, which is known to be a very complicated task, is included in MotOrBAC. Using the OrBAC concept of view and object, administrative privileges are specied by inserting administrative objects into specic views. This model being self-administrated, specifying the administration policy is done using the same concepts involved in the specication of the security policy, which does not require the administrator to learn a separate administration model. Moreover several administrators can use MotOrBAC to manage the same security policy with more expressiveness than the ARBAC model. The privileges given to a subject assigned to an administrative role are activated once the subject has authenticated himself/herself using the GUI.

The security policy enforcement can be done by translating the concrete security policy to other languages used to congure security components. The work did in [START_REF] Cuppens | A formal approach to specify and deploy a network security policy[END_REF] to translate a concrete security policy to a rewall conguration le has been implemented in MotOrBAC.

The problem of delegation [START_REF] Ben Ghorbel | Managing delegation in access control models[END_REF] was not tackled in this article as it is currently under implementation in MotOrBAC.

Several extensions to the current MotOrBAC implementation are currently under development, namely other types of contexts [START_REF] Cuppens | Modelling contexts in the Or-BAC model[END_REF], additional policy translation modules to congures other kinds of security components than rewalls, an interoperability module, a management and inforcement of obligations module and a module implementing usage control.

Fig. 1 :

 1 Fig. 1: The MotOrBAC tool architecture which is based on the java OrBAC API

Fig. 2 :

 2 Fig. 2: The MotOrBAC class editor

Fig. 4 :

 4 Fig. 4: The MotOrBAC concrete policy simulation window

Fig. 6 :

 6 Fig. 6: Abstract conicts tab. Each couple of conicting rules is displayed. The contextual menu shows the choices the administrator has to solve the conict

 Context is a context in organization Sorg and (6) Role is permitted to do Activity on V iew when Context is valid in organization Org, then the permission is also true in organization Sorg.

	permission(Sorg, Role, Activity, V iew, Context) : -
	sub_organization(Sorg, Org),
	use(Sorg, Role, role_view),
	use(Sorg, Activity, activity_view),
	use(Sorg, V iew, view_view),
	use(Sorg, Context, context_view),
	permission(Org, Role, Activity, V iew, Context).
	This rule states that if a (1) Sorg is a sub-organization of Org, (2) Role is a role
	in organization Sorg, (3) Activity is an activity in organization Sorg, (4) V iew is
	a view in organization Sorg, (5)

• Context denition inheritance: Let org and subOrg be two organizations, subOrg being a sub-organization of org, ctx a context and ctx_def _org its denition in organization org. subOrg inherits the denition ctx_def _org if no denition exists for context ctx in subOrg.

Note that Motorbac users do not have to write such rules thanks to the GUI

http://motorbac.sourceforge.net

http://jena.sourceforge.net/

The full specication of the OrBAC API can be found on http://orbac.org

http://www.w3.org/TR/rdf-testcases/