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ABSTRACT
Protoplasmic streaming in plant cells is directly visible in the cases of Chara corallina and Nitella flexilis, and this streaming is understood
to play a role in the transport of biological materials. For this reason, related studies have focused on molecular transportation from a fluid
mechanics viewpoint. However, the experimentally observed distribution of the velocity along the flow direction x, which exhibits two peaks
at Vx = 0 and at a finite Vx(≠0), remains to be studied. In this paper, we numerically study whether this behavior of the flow field can be
simulated by a 2D stochastic Navier–Stokes (NS) equation for Couette flow in which a random Brownian force is assumed. We present the
first numerical evidence that these peaks are reproduced by the stochastic NS equation, which implies that the Brownian motion of the fluid
particles plays an essential role in the emergence of these peaks in the velocity distribution. We also find that the position of the peak at Vx(≠0)
moves with the variation in the strength D of the random Brownian force, which also changes depending on physical parameters such as the
kinematic viscosity, boundary velocity, and diameter of the plant cells.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0019225., s

I. INTRODUCTION

A circular flow called protoplasmic streaming is directly
observed in the cells of specific plants, such as Chara corallina and
Nitella flexilis, in which the cell size is relatively large, ranging from a
few hundred micrometers to 1 mm.1–5 Such streaming inside cells is
naturally considered to play a role in the transportation of biological
materials.

The driving force of the flow is known to be molecules moving
along actin filaments; hence, these molecules are called molecular

motors.6–11 These molecular motors transport chlorophyll, which is
very large, and drive the flow in plant cells. Interestingly, the speed
of the flow in cells is closely related to the size of the plant.12 More-
over, the mechanism for the transportation of biological materials is
understood to be the same as that in animal cells.13,14

Therefore, protoplasmic streaming has attracted substantial
attention both in scientific fields and in the context of agricultural
technology.12 Kamiya and Kuroda observed the position depen-
dence of the flow speed in a section vertical to the longitudinal
direction of Nitella cells via optical microscopy in 19565 [Fig. 1(a)].
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FIG. 1. (a) The flow velocity V⃗ inside a cell. (b) The normalized velocity distribution
h(Vx ) along the x-direction.

This position dependence of the flow speed was later precisely mea-
sured via particle tracking velocimetry by Kikuchi-Mochizuki15 who
reported results compatible with the simulation data obtained by
Goldstein et al. using coupled Navier–Stokes (NS) and advection–
diffusion equations.16,17 Goldstein et al. assumed a spiral flow as
a boundary condition on the wall in their simulations and pro-
vided insight into the role of this spiral flow in molecular trans-
portation. This velocity field was later shown to be compatible with
experimental data obtained through magnetic resonance velocime-
try.18,19 Niwayama et al. also simulated streaming in the case of
Chara corallina using the 3D NS equation in a method called the
moving particle semi-implicit method, in which the spiral flow is
neglected, and reported results almost identical to those of Goldstein
et al.20 Their original motivation was to use particle image velocime-
try to measure the streaming velocity in the case of Caenorhab-
ditis elegans embryos in which the mechanism of transportation
is slightly different from that in the cases of Chara corallina and
Nitella flexilis.20

In 1974, Mustacich and Ware observed the distribution of the
velocity Vx along the flow direction x by means of a laser light scat-
tering technique called laser Doppler velocimetry and found two
different peaks in the velocity distribution: one at Vx = 0 and the
other at a finite Vx(≠0)21–23 [Fig. 1(b)]. Shortly thereafter, the veloc-
ity distribution was again measured using the same technique by
Sattelle and Buchan24 who similarly detected two different peaks.
Figures 2(a) and 2(b) show the experimental data extracted from
Refs. 21–23, where the data are represented by solid lines approxi-
mating the data points. The horizontal axis represents the frequency
of the laser light, which is proportional to the fluid velocity, and
the shape and position of the second peak depend on the scatter-
ing angle; note that the corresponding velocities in these figures are
identical to each other for data obtained at the same point inside
the cell. The velocity of the second peak was reported to be 60
μm/s21 and 72 μm/s22,23 for the data shown in Figs. 2(a) and 2(b),
respectively. The biological implications of the existence of the sec-
ond peak are currently unclear; however, it is possible that the peak
in a relatively high-velocity region may be closely related to an
enhancement of some biological function, such as transportation
or mixing.

However, the experimentally obtained velocity distribution
has not yet been numerically verified. Although the peak at zero

FIG. 2. Plots of experimental velocity distributions obtained via laser Doppler
velocimetry in (a) Ref. 21 and (b) Refs. 22 and 23. The horizontal axis represents
the frequency of the laser light, which is proportional to the fluid velocity.

velocity is expected to be caused by the Brownian motion of the
fluid molecules, as noted in Ref. 24, the peak at a finite velocity has
yet to be explained. Clearly, a microscopic perspective is effective for
studying this problem; therefore, to this end, we adopt Langevin sim-
ulation, which is a technique for simulating the Brownian motion of
small particles.25–32

The peak in the velocity distribution at zero velocity can
be naturally understood from the fact that the fluid at the cen-
tral part of a cell is expected to have a slow speed compared to
the fluid at the wall;16,17 thus, the fluid in the central region is
expected to be influenced by random Brownian forces. In con-
trast, the fluid close to the cell wall is strongly influenced by
the activation forces of molecular motors; in other words, ther-
mal fluctuations are suppressed by contact with the motors and
the cell wall. On the other hand, fluid that is separated from
the cell wall is not influenced by such boundary conditions, and
the speed of the fluid is expected to continuously decrease toward
the central region of the cell. Therefore, no intuitive explanation
is available for the existence of the second peak at a relatively high
velocity.

In this paper, we numerically solve the NS equation with
a random Brownian force for flow fields in a square region
by regarding twisting flows as straight flows along the lon-
gitudinal direction. This 2D NS equation is considered as a
Langevin equation or a stochastic differential equation because
it includes a random force. In this paper, we combine two dif-
ferent techniques:33 NS simulation for continuum fluids34,35 and
Langevin simulation for particles.25–32 This simulation approach
in combination with the NS equation is new and, thus, is not
comparable to standard techniques for the NS equation with-
out random forces; therefore, we carefully check the depen-
dence of the results on parameters including spatial and temporal
discretizations.

It will be shown that all qualitatively different simulation results
can be obtained by merely varying the strength D of the random
Brownian force and that two different peaks appear in the velocity
distribution at intermediate values of D.

II. STOCHASTIC NAVIER–STOKES EQUATION
The symbols for the variables and constants used in this paper

are listed along with their units and descriptions in Table I.
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TABLE I. List of symbols with units and descriptions. The numbers inside the parentheses are the assumed typical values
used as inputs to the simulations.

Symbol Unit Description (assumed typical value)

ψ m2/s Stream function
ω 1/s Vorticity
V⃗ =(Vx, Vy) m/s Velocity vector
VB m/s Velocity at the boundary (50 × 10−6)
η⃗=(ηx,ηy) m/s2 Gaussian random force
g⃗=(gx, gy

) 1 Gaussian random number of mean 0 and deviation 1
D m2/s3 Strength of random force (2 × 10−7

≤ D ≤ 4 × 10−6)
Ddif m2/s Diffusion constant
τe s Macroscopic relaxation time
μ Ns/m2 Viscosity
ν m2/s Kinematic viscosity (1 × 10−4)
nX 1 Total number of lattice points on one edge (100 ≤ nX ≤ 300)
nT 1 Total number of iterations per time step
α 1 Positive number for a unit change in length
β 1 Positive number for a unit change in time
γ 1 Positive number for a change in nX
δ 1 Positive number for a change in nT

d m Cell diameter (500 × 10−6)
Δx m Lattice spacing
Δt s Discrete time step (8 × 10−9)
E Parameter set (ν, V, D)
S Parameter set (ν, V, D, Δx, Δt)
a m Diameter of a lump of fluid particles
Exp(E) Experimental data corresponding to E = (ν, V, D)
Re 1 Reynolds number
Pe 1 Péclet number
Sc 1 Schmidt number

A. Discretization of the stochastic Navier–Stokes
equation for the stream function

First, we present the computational domain extracted from the
cylindrical body shown in Fig. 3(a). The arrows in Fig. 3(a) illustrate
the flow directions in the indifferent zone indicated by the dashed
line on the surface. We consider the section AA′–CC′, which is also
visualized in Fig. 3(b), with arrows on the boundaries AA′ and CC′,
where the flow direction is modified to be parallel/antiparallel along
the longitudinal direction. The arrows inside the square represent
the velocity on the surface of the opposite side, which is not included
in or differs from the square domain. The computational domain
is the flat square region with boundaries AA′ and CC′, where the
other two boundaries, AC and A′C′, are assumed to be periodic. This
square region is extracted and shown in Fig. 3(c) to clarify the 2D
nature of the domain.

The boundary condition given by the velocity VB is simply
the same as that for Couette flow. The real 3D flow is modified
to this 2D flow for simplicity, and the flow direction in the 2D
domain is obtained by modifying the flow direction on the sur-
face of the cylinder, as stated above. Because of this modification
of the velocity direction, we can determine whether the origin of
the peaks in the velocity distribution lies in the spiral flow. It is also

possible to investigate whether the peaks are related to the 3D nature
of the flow.

Here, we should comment on the reason why the shape of the
boundary AA′–CC′ is assumed to remain unchanged. Cell surfaces
composed of soft biological materials may exhibit shape deforma-
tions that can be directly measured, for example, in the case of

FIG. 3. (a) Flow directions in the so-called indifferent zone on the surface and
section AA′–CC′ of the cylinder at the center. (b) Section AA′–CC′ and the flow
directions on the surface of the cylinder. (c) 2D simulation domain corresponding to
section AA′–CC′, where VB denotes the fixed velocity considered as a boundary
condition.
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Caenorhabditis elegans embryos in which cytoplasmic streaming is
also expected.20 However, in the case of plants such as Chara coral-
lina and Nitella flexilis, the situation is different; the cell surface is
relatively hard, and fluctuations can be neglected.

The continuous form of the NS equation34,35 with a random
Brownian force is given by

∂ω
∂t
= −(V⃗ ⋅ ∇)ω + νΔω + (∇ × η⃗(t))z ,

ω = −Δψ,
(1)

where V⃗ = (Vx, Vy, 0) is the fluid velocity obtained from the stream
function ψ and ω is the third component of the vorticity ω⃗=∇ × V⃗
such that

Vx = −
∂ψ
∂y

, Vy =
∂ψ
∂x

, Vz = 0,

ω⃗ = ∇ × V⃗ = (0, 0,ω).
(2)

The physical meaning of each term in Eq. (1) will be given below
in reference to the equation for the velocity V⃗ . The parameter ν in
Eq. (1) is the kinematic viscosity coefficient, where ν ≃ 1 × 10−6

m2/s in the case of water at room temperature. The symbol η⃗(t)
= (ηx,ηy, 0) represents Gaussian white noise or a Gaussian random
force corresponding to the Brownian motion of the fluid particles
or a lump of fluid particles. The components of η⃗(t) are assumed to
satisfy

⟨ημi (t)η
ν
j (t
′
)⟩ = 2Dδijδμνδ(t − t′), (3)

where ⟨⋯⟩ denotes the expectation value, D is called the strength of
the random force, and the subscript i denotes the fluid position. In
Eq. (3), we introduce η⃗(t) in a discrete form because the NS equa-
tion is discretized on a square lattice in this numerical study. No
confusion is expected between the symbol for the kinematic viscos-
ity coefficient ν and the superscript of the Gaussian random force
ην(t).

Here, we comment on the reason why the NS equation for the
stream function is used instead of the NS equation for the velocity
field. Indeed, it is easy to check that Eq. (1) is obtained from the
following NS equation:

ρ[
∂V⃗
∂t

+ (V⃗ ⋅ ∇)V⃗] = −∇p + μΔV⃗ + ρη⃗(t), (4)

where ρ and p are the density and pressure of the fluid, respectively,
and μ = ρν is the viscosity. The fluid is assumed to be Newtonian.
The NS equation in Eq. (4) has the form of the standard equation of
motion per unit volume for a fluid of density ρ. The second term on
the left-hand side (LHS), which is called the advection term, arises
from the fact that the fluid particles are moving with velocity V⃗ . This
term is very small compared with the other terms in the case of pro-
toplasmic streaming; however, we include it for completeness. The
first term on the right-hand side (RHS) represents the force from
the pressure p; the negative sign appears by definition. The second
term on the RHS, defined by the Laplace operator, represents the
force from the viscosity of the fluid. The final term on the RHS is
the random Brownian force η(t), determined by Gaussian random
numbers, on which detailed information will be given below.

Equation (4) can be conveniently modified by multiplying both
sides of the equation by ρ−1, and by additionally incorporating the
condition∇ ⋅ V⃗ =0, we obtain

∂V⃗
∂t
= −(V⃗ ⋅ ∇)V⃗ − ρ−1

∇p + νΔV⃗ + η⃗(t),

∇ ⋅ V⃗ = 0.
(5)

By multiplying this standard NS equation from the left by the rota-
tion ∇×, we obtain the NS equation in Eq. (1). The NS equation in
Eq. (1) is used instead of Eq. (5) because the condition ∇ ⋅ V⃗ = 0 is
exactly satisfied in Eq. (1); therefore, Eq. (1) is easier to solve numeri-
cally than the original NS equation for V⃗ given in Eq. (5) for the case
of protoplasmic streaming.30 This is the reason why the NS equa-
tion for the stream function, i.e., Eq. (1), is used instead of the NS
equation for the velocity field, i.e., Eq. (5).

To obtain the discrete form of the NS equation in Eq. (1) on a
2D regular square lattice [Fig. 4(a)], we introduce the quantity

H⃗i,j(t) = ∫
t+Δt

t
η⃗i,j(t)dt, (6)

where ηi ,j(t) denotes the random force on the fluid particle at lattice
site (i, j) at time t [Fig. 4(b)]. Note that since the representation of
the lattice site is changed from i to (i, j), η⃗i → η⃗i,j accordingly. This
H⃗i,j(t) is still considered a stochastic variable. From the expression
in Eq. (6) and the relation in Eq. (3), it is easy to obtain

⟨H⃗i,j(t)⟩ = 0, ⟨H2
i,j(t)⟩=2DΔt, (7)

which are typical characteristics of stochastic variables. The first rela-
tion comes from the fact that η⃗ij corresponds to Gaussian white noise
with a mean value of zero, and the time integral and the expectation
value operation ⟨⋯⟩ are assumed to be commutative. If we rewrite
Hi ,j(t) in Eq. (6) as

H⃗i,j(t) = η⃗i,j(t)Δt (8)

FIG. 4. (a) 2D regular square lattice of size N = nX × nX , where a lattice site is
represented by (i, j) and the lattice spacing is Δx in both the i and j directions. (b)
The stochastic variable H(t) is understood to have an expectation value of zero;
however, its square is finite [Eq. (7)]. The force η(t) randomly fluctuates inside
a narrow square of width Δt in (b), and its time integral H(t) can be intuitively
understood as an impulse. The macroscopic relaxation time τe is considerably
longer than the width Δt.
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and substitute this Hi ,j(t) into the second expression in Eq. (7), we
obtain a finite value

∣ημi,j(t)∣ =
√

2D/Δt (9)

for the random Brownian force. This expression is used in the
discrete version of Eq. (1), which is given by

ωi,j(t + Δt) ← ωi,j(t) − Δt(V⃗ ⋅ ∇)ωi,j(t) + νΔtΔωi,j(t)

+
√

2DΔt(∇ × g⃗i,j(t))z ,
ωi,j = −Δψi,j,

(10)

where g⃗i,j(t)=(gx
i,j(t), gy

i,j(t), 0) and the components of g⃗i,j are given
by Gaussian random numbers with mean 0 and variance 1. This
g⃗i,j(t) is related to η⃗i,j as follows:

η⃗i,jΔt =
√

2DΔtg⃗i,j(t). (11)

On the RHS of the first expression in Eq. (10), the spatial dis-
cretization of the second term with respect to the lattice spacing Δx
is given by

−Δt(V⃗ ⋅ ∇)ω = −Δt(
∂ψ
∂y

∂ω
∂x
−
∂ψ
∂x

∂ω
∂y
)

→ −
Δt

4(Δx)2 [(ψi,j+1 − ψi,j−1)(ωi+1,j − ωi−1,j)

−(ψi+1,j − ψi−1,j)(ωi,j+1 − ωi,j−1)]. (12)

This term makes almost no contribution to the flow because the
velocity is low (no higher than ∼100 μm/s) in the case of protoplas-
mic streaming. Thus, the results are expected to be independent of
this term, although we include it in the equation for our simulations.
The discrete form of the Laplace operator Δ acting on ωij is given by

Δωi,j → (1/Δx)2
(ωi+1,j + ωi−1,j + ωi,j+1 + ωi,j−1 − 4ωi,j), (13)

and Δψi ,j in the second expression in Eq. (10) has almost the same
discrete form. The discrete form of the final term is given by

(∇ × g⃗i,j(t))z → (gy
i+1,j − gy

i−1,j − gx
i,j+1 + gx

i,j−1)/(2Δx). (14)

Notably,
√

2DΔt in Eq. (10) effectively corresponds to the
deviation of the random Brownian force. As determined through
dimensional analysis, (

√
2DΔt)2Δt = 2D(Δt)2 is the diffusion con-

stant Ddif related to the temperature T by means of the Einstein–
Stokes–Sutherland formula Ddif = kBT/6πμa, which is identified with
2D(Δt)2. Here, we introduce the notion of the macroscopic relax-
ation time τe, which is the time required for the fluid to equili-
brate from the resting state to a stationary state compatible with the
boundary condition given by the velocity VB [Fig. 3(c)], and this τe
is independent of whether the initial state is the resting state or a ran-
dom state.36–39 According to this definition, τe is proportional to the
area (or volume, more generally), in sharp contrast to the standard
relaxation time, which is the mean time required for a molecule to
return to its original position from a disturbed position. We replace
Δt with τe because Δt is a numerically introduced quantity; thus, we
have

2Dτ2
e (= Ddif) =

kBT
6πμa

, (15)

where μ(=ρν) is the viscosity, a is the size of a fluid particle or a group
of particles in the fluid, and kB is the Boltzmann constant. Note that
a is larger than the size of a molecule such as water because it is
obtained by assuming τe, which is not a microscopic quantity. The
actual value of D assumed in the simulation and its relation to the
Ddif value reported in Ref. 16 will be discussed in Sec. III.

The second equation of Eq. (10), which is Poisson’s equation, is
numerically solved by the convergent configuration of the iterations
such that

ψ(ℓ+1)
i,j (t) ← ψ(ℓ)i,j (t)

+ A
⎡
⎢
⎢
⎢
⎢
⎣

ψ(ℓ)i+1,j(t)+ψ(ℓ)i−1,j(t)+ψ(ℓ)i,j+1(t)+ψ(ℓ)i,j−1(t)+ (Δx)2ωi,j(t)

4

−ψ(ℓ)i,j (t)], (16)

where the superscript ℓ is an integer denoting fictitious time or
the number of iterations and the constant A is the acceleration
coefficient fixed to A = 1. This technique is generally called the
successive-over-relaxation (SOR) technique and is equivalent to the
Gauss–Seidel method when A = 1. The convergence criteria will be
discussed in Sec. III.

B. Boundary conditions
The boundary conditions for the variables ω and ψ at the

boundaries Γ1 and Γ3 [Fig. 5(a)] are given by

ωi,nX = −
2
(Δx)2 (ψi,nX−1 + ∣VB∣Δx), ψi,nX = 0 (on Γ1),

ωi,1 = −
2
(Δx)2 (ψi,2 + ∣VB∣Δx), ψi,1 = 0 (on Γ3),

(17)

where the velocity V⃗ at the boundary is given by

V⃗ = (VB, 0) on Γ1, V⃗ = (−VB, 0) on Γ3. (18)

Note that the third component of V⃗ is henceforth assumed to be zero
and is thus neglected in all expressions for simplicity.

FIG. 5. (a) The boundary condition ψ = 0 at the boundaries Γ1 and Γ3. (b) The
velocity V⃗ = (Vx , Vy) is fixed to V⃗ = (VB, 0) at Γ1 and to V⃗ = (−VB, 0) at Γ3.
The lattice sites (i, nX − 1) and (i, 2) in (a), close to Γ1 and Γ3, respectively, are
used to enforce the boundary conditions for the variable ω in Eq. (17).
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The reason why the stream function ψ can be fixed to ψ = 0 on
Γ1 and Γ3 in Eq. (17) is as follows: The function ψ is not uniquely
fixed in the domain because the velocity is given by the first-order
differentials in Eq. (2). For this reason, ψ and ψ + f 0 are exactly
equivalent for any constant f 0 in the sense that both ψ and ψ + f 0
correspond to the same velocity configuration. Therefore, if ψ1,nX is
nonzero such that ψ1,nX = c0 at (1, nX) ∈ Γ1, then ψ can be replaced
by ψ + f 0 with f 0 = −c0, and hence, we have ψ1,nX = 0 [Fig. 5(a)]. It
is also easy to check that ψi,nX = 0 (i > 1) because of the bound-
ary condition Vy = 0 on Γ1 in Eq. (18). On Γ3, we also have ψi ,1
= 0 because of the symmetry argument under a rotation by π around
the z-axis perpendicular to the domain. Evidently, no gravitational
force is considered, and no asymmetry is expected in the random
Brownian force; therefore, this rotational symmetry of ψ is naturally
expected.

Note that the expressions for ω in Eq. (17) are well known and
that the expression forωi,nX on the boundary Γ1 is obtained by means
of Taylor expansion and the second expression in Eq. (1) as follows:

ψ(x, y − Δy) = ψ(x, y) −
∂ψ
∂y
(x, y)Δy +

1
2
∂2ψ
∂y2 (x, y)(Δy)2 +⋯

= 0 + VBΔx −
1
2
ω(x, y)(Δx)2 +⋯ for (x, y) ∈ Γ1,

(19)

where Δy = Δx is assumed and Vx = −∂ψ/∂y in Eq. (2) is used. The
expression for ωi ,1 on Γ3 in Eq. (17) can be obtained in the same
manner.

On the boundaries Γ2 and Γ4, periodic boundary conditions
along the horizontal or i direction are assumed such that

ωnX+1,j = ω1,j, ψnX+1,j = ψ1,j,
ω−1,j = ωnX ,j, ψ−1,j = ψnX ,j.

(20)

These conditions imply that the lattice sites (1, j) on Γ2 and (nX, j)
on Γ4 are adjacent to each other [Fig. 5(a)].

C. Physical and simulation units
In the actual process of protoplasmic streaming, length and

time are measured in units of m and s, respectively, while the cor-
responding values in the simulations are α m and β s, where α and β
are positive numbers. We use αm and βs to denote the correspond-
ing so-called simulation units. The transformation rules from m and
s to αm and βs are given as follows:

1 m = α−1 αm, 1 s = β−1 βs. (21)

The numerical results should be independent of the values of α
and β, which will be discussed in greater detail later. We consider the
physical parameters

ν (m2
/s), VB (m/s), d (m), τ (s),

D (m2
/s3
), Δx (m), Δt (s).

(22)

The kinematic viscosity coefficient ν is explicitly included in Eq. (10).
The velocity VB is necessary in the boundary conditions illustrated
in Figs. 3(c) and 5(b). The third parameter, d, is the diameter illus-
trated in Fig. 5(b). The fourth parameter, τ, is set equal to the macro-
scopic relaxation time τe introduced in Sec. II A and numerically

corresponds to the equilibration time of the fluid [see Fig. 4(b)]. This
length of time should be no less than τe; otherwise, no equilibrium
will be achieved in the numerical simulations. D in Eq. (15) must be
expressed in units of m2/s3 because each term in Eq. (10) must have
units of 1/s, which is clear from the fact that ω is expressed in units
of 1/s.

The final two parameters in Eq. (22), Δx and Δt, are neces-
sary only in the simulations; however, these parameters do have
indirect counterparts in the actual experimental phenomena. Specif-
ically, these parameters have the following relations to the physical
parameters d and τ:

Δx =
d

nX
, Δt =

τ
nT

, (23)

where nX is the total number of lattice points on one edge of the
lattice and nT is the total number of iterations. The parameter τ is
simply related to the convergence of the time evolution correspond-
ing to a set of random Brownian forces {ηij(t)}, and it physically
corresponds to the macroscopic relaxation time, which represents
the typical time scale of the phenomenon, as mentioned above. This
convergence is controlled by the small parameter ε, which will be
discussed later in Sec. III. Therefore, exact information on τ or the
macroscopic relaxation time τe is unnecessary, at least in simula-
tions. Indeed, as long as ε is sufficiently small, then a configuration
that is randomized by Brownian forces can correctly converge or
reach equilibrium. Moreover, if Δt (nT) is excessively large (small),
then the simulation will not converge; hence, Δt0 should be fixed
to Δt0 ≤ Δtcr. This Δtcr is considered the maximal time step sat-
isfying the convergence criterion. Thus, the temporal discretiza-
tion or time evolution is subtle compared to the spatial discretiza-
tion. Both of the discretizations will be discussed in greater detail
in Sec. III.

Here, we introduce the symbol E to represent the experimental
parameters and the symbol S to represent the simulation parameters
such that

E = (ν, V , d),
S = (ν, V , D,Δx,Δt).

(24)

In principle, the parameter D should be included in E; however, it is
unknown for the flows under study. Therefore, D is instead included
in S as an input for the simulations.

D. Invariance under unit transformations
To discuss the invariance of the simulation results obtained

using the discrete NS equation in Eq. (10) under unit transforma-
tions, we use the notion of scale transformations for the parameters
m, s, nX , and nT introduced in Sec. II C. These scale transforma-
tions are defined in terms of positive numbers α, β, γ, and δ(>0) such
that

m, s, nX , nT → αm,βs, γnX , δnT . (25)

The first two transformations, (m, s)→ (αm, βs), represent changes
to the units of length and time. The third transformation, nX → γnX ,
represents a change in lattice size, which corresponds to a change in
the lattice spacing Δx→ γ−1Δx in Eq. (23). The final transformation,
nT → δnT , represents a change in the time step Δt→ δ−1Δt by means
of Eq. (23). γ and δ for nX and nT are necessary in addition to α and
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β for m and s because the simulation results should be independent
of the lattice spacing Δx and the time step Δt. For a change in Δx,
for example, the scaling of nX by α can be used because of the rela-
tion Δx (m) = d/nX (m) = α−1d/nX (αm) = d/(αnX) (αm). Indeed,
this relation implies that a unit transformation by α can be under-
stood as a change in the lattice size nX . However, in this case, it is
impossible to observe the dependence of the results on the lattice
size nX without affecting other parameters that also depend on the
length unit, which is why γ is necessary in addition to α. Moreover,
as will be shown below in further detail, the rescaling of Δx always
affects the force strength D, which implies that we need to modify
D as well as Δx to observe the dependence of the results on Δx. This
behavior arises from the fact that the order of Δx in the Brownian
force term is different from that in the other terms; this difference
is simply due to the difference in the order of spatial differentials
such as Δ and ∇. The dependence of the results on Δt suffers from
the same problem, as will also be studied in detail later. In this case,
the difference in the order of Δt originates from the fact that the
Brownian force is represented by a stochastic variable, as described
in Sec. II A.

First, we rewrite Eq. (10) by explicitly including the lattice
spacing Δx such that

ωi,j ← ωi,j +
Δt
(Δx)2 (ψ⋯)(ω⋯) + ν

Δt
(Δx)2 (ω⋯)

+
√

2DΔt
Δx

(g⋯) (1/s), (26)

where (Δx)−2
(ψ⋯)(ω⋯) on the RHS represents the spatial dis-

cretization in Eq. (12) and (Δx)−2
(ω⋯) and (Δx)−1

(gz⋯) rep-
resent the discretizations of the Laplacian Δω and the rotation
(∇ × g⃗)z , respectively. The symbol (1/s) represents the overall unit
of the terms, which, in Eq. (26), are written with the physical
units (m) and (s).

Under the scale transformations in Eq. (25), Δx(= d/nX) (m)
and Δt(= τ/nT) (s) are replaced by α−1γ−1Δx (αm) and β−1δ−1Δt
(βs), and we also have ν (m2/s) = α−2βν [(αm)2/βs], and D (m2/s3)
= α−2β3D [(αm)2/(βs)3]. The units of ψ and ω are m2/s and 1/s,
respectively; therefore, we have ψ (m2/s) = α−2βψ [(αm)2/βs] and
ω (1/s) = βω (1/βs). From these expressions and Eq. (26), we obtain

ωi,j ← ωi,j + γ2δ−1 Δt
(Δx)2 (ψ⋯)(ω⋯) + γ2δ−1ν

Δt
(Δx)2 (ω⋯)

+

√
2γ2δ−1DΔt
Δx

(g⋯) (1/βs), (27)

where the common factor β is eliminated from both sides. In the
case of γ = 1 and δ = 1, nothing is changed except that the units
are changed from m and s to αm and βs. The problem is the case of
γ ≠ 1 or δ ≠ 1, where the factor

√
γ2δ−1 in the final term is different

from the factor γ2δ−1 in the second and third terms. However, if D
transforms as D → γ2δ−1D under the scale transformation (nX , nT)
→ (γnX , δnT), then we obtain a common factor of γ2δ−1 in all three
of these terms on the RHS of Eq. (27). In this case, we have

ωi,j ← ωi,j + γ2δ−1 Δt
(Δx)2 (ψ⋯)(ω⋯) + γ2δ−1ν

Δt
(Δx)2 (ω⋯)

+ γ2δ−1
√

2DΔt
Δx

(g⋯) (1/βs); (28)

therefore, the convergent numerical solution is expected to remain
unchanged. Indeed, in such a stationary or equilibrium configura-
tion, the term ωi ,j(t + Δt) on the LHS is expected to be identical to
the first term ωi ,j(t) on the RHS; hence, the common factor γ2δ−1 in
the remaining terms can be dropped.

The velocity V for the boundary conditions and the diame-
ter d are included in the parameters E or S in Eq. (24), and their
scaling properties under unit transformation are given by V (m/s)
= α−1βV (αm/βs) and d (m) = α−1d (αm). Thus, under the scale
transformations in Eq. (25), the RHS of Eq. (10) remains unchanged
in the equilibrium configuration if the parameters S = (ν, V, D, Δx,
Δt) scale as follows:

(ν, V, D,Δx,Δt)→(α−2βν,α−1βV ,α−2β3γ2δ−1D,α−1γ−1Δx,β−1δ−1Δt).
(29)

Next, we introduce the notion of equivalence in the simula-
tion data. The simulation data obtained by solving Eq. (10) are
denoted by (ω, ψ), while the experimental velocity data are denoted
by Exp(E) because the experimental data Exp are characterized
by the parameters E in Eq. (24). We define the term equivalent
below.
Two sets of simulation data (ω1, ψ1) and (ω2, ψ2) are equivalent if
the following conditions are satisfied:

(i) The histogram of the normalized velocity Vx distribution and
(ii) the dependence of the normalized Vx on y

for (ω1, ψ1) are identical to those for (ω2, ψ2).
Thus, we have proven the following statement:

(A) The solution (ω,ψ) of Eq. (10) remains unchanged if and only
if the parameters S = (ν, V, D, Δx, Δt) scale in accordance with
Eq. (29) under the scale transformations in Eq. (25).

Here, we comment on the dependence of the simulation results
on Δx, as mentioned above. The parameter γ for rescaling Δx was
introduced in Eq. (25) to elucidate this dependence. However, we
find from statement (A) that Δx alone cannot be changed without
affecting the results. The dependence of the results on Δt shows the
same behavior as the dependence on Δx. This nonstandard situa-
tion with regard to Δt arises from the discrete form of the random
Brownian force in Eq. (10) and is typical of such a discrete Langevin
equation.25–32

The experimental data Exp(E) can also be grouped into equiv-
alent classes in the same way. Specifically, two different sets of
experimental data Exp(E1) and Exp(E2) are considered equivalent
if conditions (i) and (ii) are satisfied.

A similar notion of equivalence can be introduced for the
parameters S in Eq. (24). Two sets of parameters S1 = (ν1, V1, D1,
Δx1, Δt1) and S2 = (ν2, V2, D2, Δx2, Δt2) are called equivalent if there
exists a set of positive numbers α, β, γ, and δ (all >0) such that

(ν1, V1, D1,Δx1,Δt1) = (α−2βν2,α−1βV2,α−2β3γ2δ−1D2,

α−1γ−1Δx2,β−1δ−1Δt2).
(30)

This equivalence is denoted by S1 ≡ S2. It is easy to confirm that S2
≡ S1 if S1 ≡ S2 because α and β can be inverted to α−1 and β−1.
S1 = S2 if and only if α = β = γ = δ = 1. A set of parameters equivalent
to S = (ν, V, D, Δx, Δt) is written as S̄ = (ν̄, V̄ , D̄, Δ̄x, Δ̄t).
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Notably, two different parameter sets Si (i = 1, 2) produce the
same solution (ω, ψ) for the discrete NS equation in Eq. (10) if
these Si (i = 1, 2) are equivalent; in other words, two solutions (ω1,
ψ1) and (ω2, ψ2) are equivalent if the corresponding parameter sets
Si (i = 1, 2) are equivalent. In this sense, the solution to Eq. (10)
depends only on the equivalent class of parameters S̄. If one of the
parameters is transformed as ν → ν1(≠ν) in S̄, then the parameters
(ν̄1, V̄ , d̄, D̄, Δ̄x, Δ̄t) are not equivalent to the original S̄.

Finally, in this subsection, we introduce the notation

Exp(E) ≃ S0

for

E = (ν, V , d), S0 = (ν0, V0, D0,Δx0,Δt0), (31)

which means that the experimentally observed data of the veloc-
ity distribution are equivalent to the simulation data in the sense
defined above. The meaning of the expression Exp(E) ≃ S0 is that
“the experimental data Exp(E) are successfully simulated with the
parameters S0.”

E. Unique solution to the Navier–Stokes equation
The problem that we would like to clarify is how many param-

eters are sufficient to simulate the real experimental data Exp(E).
We must consider this problem because the solution to Eq. (10)
depends on many parameters S = (ν, V, D, Δx, Δt), even though
only their equivalent classes are meaningful. One possible answer
is that only the parameter D must be varied to enable the simu-
lation of arbitrary Exp(Ee) data, while the remaining parameters
can be fixed to the parameters S0 used to simulate certain exist-
ing experimental data Exp(Ee ,0), which are not always identical to
Exp(Ee). This process is described in more detail in the following
statement:

(B) Let Ee ,0 = (νe ,0, Ve ,0, de ,0) be a set of parameters that charac-
terize Exp(Ee ,0), and let S0 be a set of parameters given by S0
= (ν0, V0, D0, Δx0, Δt0). In this situation, if Exp(Ee ,0) ≃ S0,
then for any experimental data Exp(Ee), with Ee = (νe, Ve, de)
and De, and for any given set of (nX , nT), there exists a unique
Dsim such that Exp(Ee) ≃ (ν0, V0, Dsim, Δx0, Δt0).

Statement (B) indicates that only one parameter, Dsim, must
be varied to simulate arbitrary experimental data Exp(Ee). Proof of
statement (B) and further details are provided in the Appendix.

III. SIMULATION RESULTS
A. Computational procedure and Langevin
simulation technique

The simulation program is written in Fortran, and the Gaus-
sian random numbers are generated by a Box–Muller transforma-
tion of uniform random numbers.43 The flow field is exactly the
same as that for Couette flow if the Brownian force η⃗ is zero, and
whether the results obtained under the condition η⃗= 0⃗ are compati-
ble with the expected solution will be determined below. In the case
of η⃗ ≠ 0⃗, the validity of the technique depends on whether the dis-
crete Langevin dynamics with the term in Eq. (11) are meaningful.

This problem has been shown to be meaningful in particle physics
in Refs. 25–32.

The convergent configuration of the variable {ω} for the first
equation in Eq. (10) is obtained using the small number,

ε = 1 × 10−9, (32)

for a time step of the NS equation such that

(1/N)∑
ij
∣1 −

ωij(t + Δt)
ωij(t)

∣ < ε (33)

for ω, and the same small number ε is also assumed for the variable
ψ such that

(1/N)∑
ij
∣1 −

ψij(t + Δt)
ψij(t)

∣ < ε (34)

from which the convergent configuration {ψ} is obtained. N(=∑ij1
= nX × nX) in Eqs. (33) and (34) represents the total number of ver-
tices or the size of the lattice, and the subscript ij denotes a particular
lattice site. The convergence of the SOR technique in Eq. (16) for
Poisson’s equation, which is the second equation in Eq. (10), is given
by the same number ε such that

(1/N)∑
ij

RRRRRRRRRRRRR

1 −
ψ(ℓ+1)

ij (t)

ψ(ℓ)ij (t)

RRRRRRRRRRRRR

< ε (35)

at each time step Δt.
Note that ε is related to τ in Eq. (22). Indeed, ε determines the

total number of iterations nT , which satisfies nT = τ/Δt and, hence,
depends only on τ for a fixed Δt. From this relation, it is clear that ε
depends on τ. If ε is excessively large, the iterative solution processes
for the NS equation and the Poisson equation will not converge. By
contrast, if ε is excessively small, then nT will be very large, result-
ing in time-consuming simulations. The number ε in Eq. (32) is
considered sufficiently small because if it is increased by a factor of
10, i.e., replaced with 10ε, and the results will remain unchanged.
The dependence on the time step Δt will be checked separately in
Sec. III D.

The mean value of a physical quantity Q is calculated as

Q = (1/n)
n

∑
k=1

Qk, (36)

where Qk is the kth sample corresponding to the kth convergent con-
figuration {ω,ψ}k and n denotes the total number of samples. The
configuration {ω,ψ}k, corresponding to a given set of Gaussian ran-
dom forces {g}k, is obtained by iterating the time step Δt and solving
the Poisson equation in Eq. (10) once for every time increment of
Δt. Thus, by repeating these two steps, we obtain the sample Qk in
Eq. (36) from the convergent configuration {ω,ψ}k. The total number
n of samples lies in the range of 1 × 104

≤ n ≤ 2 × 104 for all simu-
lations. Note that the formula given in Eq. (36) for the mean value
is exactly the same as that for the Monte Carlo simulation technique
for statistical mechanical models,41,42 and these two techniques are
known to be equivalent.25–31 This is the reason why we call Eq. (1)
[or Eq. (10)] the stochastic NS equation.

We note that the mean value of the velocity V⃗ , for example, is
independent of the order of the calculations, which is as follows:
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(i) The mean value ψ may first be calculated from the configura-
tions {ω,ψ}k (k = 1, n), and V⃗ can then be calculated using this
mean value configuration ψ.

(ii) {V⃗}k may first be calculated from the kth configuration
{ω,ψ}k, and V⃗ can then be calculated as the mean value of the
{V⃗}k (k=1, n).

This is simply because of the commutativity of the calculation
of V⃗ using Eq. (2) and the mean value calculation using Eq. (36).

Regarding the relation to the lattice Boltzmann method (LBM),
the stochastic NS equation is obtained simply by including the
Brownian force term in the NS equation; hence, this definition
is slightly different from that of the LBM, which is a technique
for describing fluid flow from the viewpoint of particle mechan-
ics.40 Nevertheless, the stochastic NS equation technique can be
regarded as a special case of the LBM because all terms, includ-
ing the random Brownian force term, are understood to rep-
resent forces acting on the fluid particles. However, we do not
delve into the details of this problem because our interest is sim-
ply focused on reproducing the experimentally observed velocity
distribution.

Here, we comment on the dependence of the results on the ini-
tial configuration of the variables {ω, ψ}. On the boundaries Γ1 and
Γ3, the variables are fixed to certain assumed values in accordance
with the boundary conditions. Inside the flow region, two possible
initial configurations can be assumed for {ω,ψ}k: ω = ψ = 0 and
the convergent configuration {ω,ψ}k−1, where {ω,ψ}0 is ω = ψ = 0.
The results, including nT , which is the total number of iterations in
the sense of the mean values, are independent of these initial con-
figurations, implying that the macroscopic relaxation time τe is also
independent of the initial conditions.

B. Normalized velocity distribution
First, before presenting the velocity distribution, we show snap-

shots of the flow field in Figs. 6(a)–6(d). Figure 6(a) shows the snap-
shot obtained for Dsim = 0, and Fig. 6(b) shows the mean ψ values of
1000 convergent configurations for Dsim = 400 and the V⃗ results cal-
culated using this mean ψ. Figures 6(c) and 6(d) show the snapshots
of two different convergent configurations for the same Dsim = 400.
The parameters other than Dsim are the same as those used for the
velocity distribution, which will be presented below. In the graph-
ics, the flow velocity is represented by small cones, and the stream
function is normalized to −1 ≤ ψ ≤ 0 and represented by a gradient
between two different colors, with ψ reaching its maximum value of
ψ = 0 at the boundaries Γ1 and Γ3. If the random Brownian force
is neglected (⇔Dsim = 0), the flow field is uniquely determined by
Eq. (A13). The snapshot in Fig. 6(a) is compatible with this expected
solution. In contrast, for a nonzero Dsim, the flow field exhibits fluc-
tuations even if it is convergent. The graphic in Fig. 6(b) appears
to be almost the same as that in (a); however, the velocity distribu-
tions are different, as will be shown below. In Figs. 6(c) and 6(d),
V⃗ and ψ are different from those in Fig. 6(b) and fluctuate from
one convergent configuration to another. We emphasize that these
fluctuating configurations are ensemble configurations, which are
thermally fluctuating in the statistical mechanical sense, and are not
always identical to experimentally observed configurations in gen-
eral. However, they are understood to be some of the possible con-
figurations, and it is interesting that such vortex configurations are

FIG. 6. (a) Snapshot of the normalized stream function ψ and the velocity V⃗
obtained for Dsim = 0. (b) The mean values of 1000 convergent configurations
for Dsim = 400. [(c) and (d)] Snapshots of convergent configurations for Dsim = 400.
Small cones represent V⃗ , and the colors represent ψ. In the case of Dsim = 0,
no random Brownian force is assumed, and a uniquely determined configuration
appears. In contrast, in the case of Dsim = 400, all of the convergent configura-
tions are slightly different, two examples of which are illustrated by the snapshots
in (c) and (d). If Dsim = 400 is decreased to Dsim = 0, all of the possible configura-
tions continuously deform to that depicted in (a), while if Dsim = 400 is continuously
increased to Dsim = 4000, for example, then the vectors in each snapshot become
more clearly deformed except in the boundary region; however, no deviation can
be observed in the mean values of ψ or the velocity with respect to those depicted
in (b) for Dsim = 400.

included among the ensemble configurations. In some specific cases,
a vortex configuration can dominate; however, we do not address
this problem in detail. The experimentally observable quantity that
we numerically study in this paper is the velocity distribution, which
will be presented below.

Now, the main results are presented. In Figs. 7(a) and 7(b), we
plot the distribution (or normalized histogram) h(Vx) of the abso-
lute velocity |Vx| along the x-direction (the longitudinal direction)
and the distribution h(V) of the magnitude V of the velocity vector
V⃗ =(Vx, Vy). The discrete expressions are

Vx = −
1

2Δx
(ψi,j+1 − ψi,j−1), Vy =

1
2Δx
(ψi+1,j − ψi−1,j), (37)

which are the standard discrete forms corresponding to the first-
order differentials in Eq. (2).

The lattice size is fixed to N = 10 000, with N = nX × nX and
nX = 100. According to statement (B), the simulation results are
expected to depend only on the strength of the random Brownian
force, Dsim; hence, Dsim is varied from Dsim = 0 to Dsim = 4000 in
the simulation units. The lattice size dependence will be presented
in Sec. III C.
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FIG. 7. (a) The distribution h(Vx ) of |Vx | along the x-direction. (b) The distribution
h(V) of the length of V⃗ . The lattice size is fixed to nX = 100, and the strength
Dsim of the random Brownian force is varied from Dsim = 0 to Dsim = 4000 in the
simulation units. The dashed lines are normalized distributions exp(−V2

x /(2c2
))

in (a) and V exp(−V2/(2c2)) in (b) expected from Maxwell–Boltzmann distribution
corresponding to the ideal gas. In these expressions, c = 0.22 is assumed, and
the normalization factor in V exp(−V2/(2c2)) is dropped. Due to the violation of
the equipartition of energy, the distribution h(Vx ) in (a) deviates from the ideal gas
behavior even at the largest Dsim = 4000.

The distribution h(Vx) is obtained by constructing a histogram
in which the velocity range 0 ≤ ∣Vx∣ ≤ vmax

x is divided into 100 sub-
ranges, and the velocity Vx in Eq. (37) at lattice point (i, j) is counted
in the histogram for every convergent configuration. The maximum
velocity vmax

x is fixed to vmax
x = 2VB, where VB denotes the veloc-

ity at the boundaries Γ1 and Γ3. The reason for this choice of vmax
x

is that vmax
x,(i) in the ith convergent configuration is expected to vary

with i instead of remaining constant. The factor of 2 in 2VB for vmax
x

is sufficiently large because the fluctuations in vmax
x,(i) are relatively

small. Such an assumption regarding the maximum velocity for
velocity normalization is unnecessary if the mean value of ψ is calcu-
lated first, in accordance with procedure (i) described in Sec. III A,
because the velocity distribution is obtained from a single configura-
tion corresponding to the mean ψ in that case. The histogram h(Vx)
is also independent of procedures (i) and (ii) for the calculation
of Vx. The height of h(Vx) is normalized such that the maximum
height is equal to 1 for each Dsim, and the horizontal axis |Vx| is sim-
ilarly normalized using the maximum |Vx| satisfying h(Vx) ≠ 0 for
each Dsim. The histograms h(V) with respect to V in Fig. 7(b) are
normalized in the same way.

From Fig. 7(a), we find that h(Vx) is flat for Dsim = 0; this flat
h(Vx) is compatible with the expectation from Eq. (A13). For a suf-
ficiently large Dsim, the nonflat h(Vx) has a peak only at Vx = 0.
However, for intermediate Dsim values, another peak appears at Vx
≠ 0. If all the ensemble configurations for Dsim ≠ 0 were identical
to that in Fig. 6(a) for Dsim = 0, then h(Vx) would be expected to
be flat. Therefore, configurations including vortices, such as those
shown in Figs. 6(c) and 6(d), are understood to be the reason for
the peaks observed in h(Vx) in numerical studies, even though no
such vortex characteristics are apparent in the mean value config-
uration in Fig. 6(b). We should note that the flow field shown in
Fig. 6(b) is understood to be slightly different from the observable
configurations in experimental measurements of Nitella cells due to
the imposed simplifications. The distribution h(V) in Fig. 7(b) drops
to zero, h(V) → 0 in the limit of V → 0, in contrast to h(Vx) in

Fig. 7(a). This drop is reasonable because the fluid is always mov-
ing and there are no fluid particles with zero velocity, V⃗(t) = 0⃗,
for all t. The drop in h(V) at V → 0 corresponds to the same drop
that is visible in the experimentally reported data in Ref. 21. Indeed,
with the light scattering technique, not only V⃗(= (Vx, 0)) but also
V⃗(= (Vx, Vy)), which has a small nonzero Vy component, can be
detected. This drop of h(V) at V → 0 in Fig. 7(b), for sufficiently
large Dsim, is also consistent with the drop observed in the Maxwell–
Boltzmann distribution V exp(−V2/(2c2)) expected in the ideal gas.
In this expression, the constant c(= 0.22) is obtained from the peak
position V of h(V) for Dsim = 4000 in Fig. 7(b). The simulation result
h(V) for Dsim = 4000 is almost consistent with the dashed line as
expected, even though Dsim is finite. However, the corresponding
h(Vx) considerably deviates from the dashed line exp(−V2

x /(2c2
))

in Fig. 7(a). The reason for this deviation is that the equipartition
of energy, ⟨V2

x ⟩ = ⟨V2
y ⟩, is obviously violated due to the effect of

boundary velocity, at least for finite Dsim. Nevertheless, the ideal gas
behavior observed in h(V) for sufficiently large Dsim is also reason-
able because Dsim is proportional to the temperature T as a result
of the Einstein–Stokes–Sutherland formula; hence, for sufficiently
large T, the random Brownian force is expected to be very large
compared to the other interactions within the fluid. The most impor-
tant point to note is that the simulation results at finite Dsim(≠0) are
located between exp(−V2

x /(2c2
)) (dashed line) expected from the

ideal gas and h(Vx) = 1 (◯) expected from the exact solution of the
Couette flow.

We will now discuss the parameters used in the simulations in
detail. The viscosity is considered to be almost 100 times greater than
that of water. In Ref. 2, the viscosity is reported to be 0.5 ≤ μ ≤ 1.5
(dyn s/cm2). Therefore, if the density ρ is assumed to be the same as
that of water, then the kinematic viscosity νe ,0 ranges from νe ,0 = 0.5
× 10−4 m2/s to νe ,0 = 1.5 × 10−4 m2/s. Thus, we assume that νe ,0
= 1 × 10−4 m2/s. In the experiment conducted by Kamiya,5 a cell
with a diameter of 0.46 mm was used for the velocity measure-
ments, and 50 μm/s was observed at the boundary. For this rea-
son, a velocity of Ve ,0(= 50 μm/s) at the boundary and a diam-
eter of de ,0(= 500 μm) are assumed, as shown in Table II. The
parameters α0 and β0 in Eq. (21) that are used in the simula-
tions are also shown in Table II. These values, α0 = 1 × 10−6 and
β0 = 1 × 10−1, imply that the simulation units for length and time are
1 μm and 0.1 s, respectively. The first three parameters in Table II are
collectively denoted by Ee ,0. The corresponding α0 and β0 values are
obtained via Eq. (A1) using the parameters S0 shown in Table III.

The lattice spacing Δx0 (α0m) is calculated using Eq. (A11). For
Δx0 = 5 α0m, we have Δxe,0=Δx0α−1

0 =5 × 10−6 m.
There is no need to mention that the parameters S0 in

Table III are also obtained from the parameters Ee ,0 in Table II
and α0 and β0. Indeed, it is easy to check that the kinematic
viscosity ν0 = 1 × 107 α2

0m2
/β0s is obtained from the relation

TABLE II. Physical parameters Ee ,0 = (νe ,0, Ve ,0, de ,0) assumed in the simulations,
expressed in physical units, and the parameters α0 and β0 for the conversion to the
simulation units.

νe ,0 (m2/s) Ve ,0 (μm/s) de ,0 (μm) α0 β0

1 × 10−4 50 500 1× 10−6 1× 10−1
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TABLE III. The parameters S0 used in the simulations; these values are given in the
simulation units. γ0nX is written as nX 0 for simplicity.

ν0 [
(α0 m)2

β0 s ] V0 [
α0 m
β0s ] Δx0 (α0m) Δt0 (β0s) nX 0

1 × 107 5 5 8 × 10−8 100

νe,0 (m2
/s) = 1 × 10−4β0/α2

0 (α2
0m2
/β0s) = ν0 (α2

0m2
/β0s). The

velocity V0 (α0m/β0s) and d0 (α0m) are also obtained through the
relations Veα−1

0 β0 (α0m/β0s)=V0 and deα−1
0 =d0 (α0 m), which are

not explicitly used in the simulations.
Each value of Dsim shown in Table IV is fixed as an input to

the simulations, and the corresponding physical strength De ,0 can
be obtained as De,0 = Dsimα2

0β−3
0 . The parameter τ0 in Table IV is

estimated using the relation τ0 = nTΔt0, where τ0 is expected to sat-
isfy τ0 ≤ nTΔtcr, as discussed in Sec. II C. Using these De ,0 and τ0
values, we can estimate the diameter a (m) of a fluid particle using
Eq. (15), where the temperature is assumed to be T = 300 K and
kBT = 4.1 × 10−21 Nm. Although the time scale τ in Eq. (15) is
expected to be smaller than τ0, we use the results of τ0 = nTΔt0
to calculate a. Nevertheless, the value of a calculated in this way
should be larger than the size of a water molecule, i.e., 4 × 10−10

m, and indeed, we find that almost all the data in Table IV satisfy
this condition.

The diffusion constant Ddif in Eq. (15) can be estimated by
assuming that nTΔt0 is τe as follows: Ddif = 2De,0(nTΔt0β0)

2. For
De ,0 = 4 × 107 m2/s3 in Table IV, we have Ddif ≃ 4 × 10−11 m2/s
= 4 × 10−7 cm2/s, which is almost 10 times smaller than the esti-
mated value of Ddif = kBT/6πμa ≃ 5.3 × 10−6 cm2/s obtained with
μ = 0.1 m2/s and a = 4 × 10−10 m. Note, however, that this value
of 5.3 × 10−6 cm2/s is comparable to the value of 10−5 cm2/s
reported in Ref. 16. The deviation between the estimates Ddif =2Dτ2

e
and Ddif = kBT/6πμa is expected to shrink in one of the follow-
ing two possible cases: either a may be considered equal to the
radius of a group of water molecules and, hence, should be larger
than the radius of a single water molecule, or τe may be slightly
larger than nTΔt0β0. If either of these conditions is satisfied, then
the two estimates are almost compatible, and the notion of τe as
adopted in Eq. (15) is reasonable. Clearly, the first condition, at least,
is quite reasonable.

Now, let us comment on the Schmidt number Sc, which is cal-
culated as the ratio of the Reynolds number Re and the Péclet num-
ber Pe such that Sc = Pe/Re. The Reynolds number is evaluated to be

TABLE IV. The assumed parameters Dsim and De ,0, the results τ0 estimated as
τ0 = nTΔt0, and the diameter a of a fluid particle as estimated using Eq. (15).

Dsim [
(α0m)2

(β0s)3 ] De ,0 (m2/s3) nTΔt0 (β0s) a (m)

200 2× 10−7 8.7× 10−3 3.6× 10−9

400 4× 10−7 7.0× 10−3 2.8× 10−9

800 8× 10−7 7.0× 10−3 2.8× 10−9

1200 1.2× 10−6 1.1× 10−2 7.5× 10−10

4000 4× 10−6 2.6× 10−2 4× 10−10

Re = Vd/ν = 5 × 10−5 because the velocity, diameter, and kinematic
viscosity are assumed to be V = 50× 10−6 m/s, d = 500× 10−6 m, and
ν = 1 × 10−4 m2/s, respectively. The Péclet number is similarly evalu-
ated to be Pe = Vd/Ddif ≃ 10 for Ddif = 5.3 × 10−10 m2/s. If we assume
that Ddif = 4×10−11 m2

/s(= 2De,0(nTΔt0β0)
2
), we obtain Pe ≃ 100,

which is closer to the estimate of 102–103 given in Ref. 16. Therefore,
we obtain Sc ≃ 2 × 105 for Ddif = 5.3 × 10−10 m2/s and Sc ≃ 2 × 106

for Ddif = 4 × 10−11 m2/s. Note also that Sc can be obtained directly
from its definition, Sc = ν/Ddif. Thus, the relatively large Sc implies
that the viscosity force is larger than the diffusion force, which is
activated by thermal fluctuations. Therefore, the effect of thermal
fluctuations is relatively small compared not only to the advection
term16,17 but also to the viscosity term. Nevertheless, the peaks in
the velocity distribution essentially originate from this small thermal
fluctuation effect.

C. Lattice size dependence
In this subsection, we show that the simulation results are inde-

pendent of the lattice size nX . As mentioned in Sec. II D, we need
to change not only nX but also Dsim to observe this dependence.
Figure 8(a) shows the histograms h(Vx) with respect to |Vx| obtained
on lattices with sizes ranging from nX = 100 to nX = 300. In these
simulations, the parameters Dsim and Δx0 are scaled to γ2Dsim and
γ−1Δx0, as indicated in Eq. (29). The results remain unchanged when
the lattice size is modified from nX(= 100) to γnX , where 1 ≤ γ
≤ 3 [see Eq. (25)]. We start with γ = 1 for Dsim = γ2200 and Δx0
= γ−15 (αm) with Δt0 = 4 × 10−8 βs. The parameters Dsim and Δt0
can also be replaced with Dsim = γ2400 and Δt0 = 8 × 10−8 βs, respec-
tively, which are identical to those plotted in Figs. 7(a) and 7(b).
The reason Dsim = γ2400 and Δt0 = 8 × 10−8 βs are replaced with
Dsim = γ2200 and Δt0 = 4 × 10−8 βs, respectively, is that if we start
with Δt0 = 8 × 10−8 βs, the simulation does not converge for the
case of γ = 3.

The height of the histogram h(Vx) is normalized such that the
maximum height is equal to 1 for each Dsim, as in Fig. 7(a), while
the horizontal axes |Vx| for all Dsim are normalized using a constant

FIG. 8. (a) Distributions h(Vx ) obtained on lattices with sizes ranging from nX
= 100 to nX = 300. (b) The dependence of Vx on y. The parameters Dsim and Δx0
are varied in accordance with Eq. (29), and Dsim, Δx0, and the other parameters
d0, V0, ν0, and Δt0 shown in (a) and (b) are all expressed in the simulation units.
Dashed lines in (b) denoted by Exp. are normalized experimental data reported in
Refs. 15 and 18.
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value equal to the maximum |Vx| for Dsim = 200 and a lattice size of
nX = 100 satisfying h(Vx) ≠ 0.

We find that h(Vx) with respect to |Vx| is almost independent
of either nX or Δx. This finding supports not only the correctness of
statement (B) but also the Δx independence of the results. In fact,
if h(Vx) with respect to |Vx| did depend on Δx, we would need to
consider either statement (B) to be incorrect or the results to depend
on Δx.

Additionally, the dependence of Vx on y, plotted in Fig. 8(b), is
almost linear, and this linear behavior is the same as that of the triv-
ial solution in Eq. (A13). We should note that this linear behavior is
different from the previously experimentally observed behaviors.15,18

The reason for this deviation is considered to be the simplification
of the model, as stated in the Introduction and in Sec. II A. The y
dependence of Vx is found simply by averaging Vx from the con-
vergent configurations using Eq. (37). Thus, the nontrivial behavior
of two distinct peaks in h(Vx) is not always reflected in the depen-
dence of Vx on y. The parameters used in the simulations are shown
in Fig. 8(b).

D. Discrete time-step dependence
In this subsection, the dependence of the results on Δt is

checked, as mentioned in Sec. II D. This subsection contributes to
the numerical Proof of statement (B). There are two possible origins,
τ and nT , for the change in Δt, as described in Eq. (23). However, in
sharp contrast to the case of the diameter d for Δx, the relaxation
time τ is not clear. Nevertheless, to check the scaling properties in
Eq. (29), it is sufficient to observe the dependence of the results on
Δt or δ. The normalization of the histograms h(Vx) with respect to
|Vx| is defined in the same way as in Fig. 8(a).

In Fig. 9(a), the histograms h(Vx) of velocity vs |Vx| are plot-
ted. The parameters Dsim and Δt0 are scaled to δ−1Dsim and δ−1Δt0,
respectively. The results are independent of Δt0, which is varied in
the range 2 × 10−8

≤ Δt0 ≤ 32 × 10−8 in the simulation units (1 β0s
= 0.1 s). This range of Δt0 corresponds to a δ range of 1 ≤ δ ≤ 16.
Thus, the results plotted in Fig. 9(a) confirm that the correspond-
ing scaling properties, such as δ−1Dsim and δ−1Δt0, are correct. This
completes the numerical verification of statement (B).

FIG. 9. (a) Distributions h(Vx ) with respect to |Vx | for different combinations of
Δt0 and Dsim. (b) nTΔt0 vs Δt0. In (a), the parameters Δt0 and Dsim are scaled
to δ−1Δt0 and δ−1Dsim, where Δt0 is varied in the range 2 × 10−8

≤ Δt0 ≤ 32
× 10−8 with the simulation units (1 β0s = 0.1 s).

Finally, in this subsection, we check whether nTΔt0 depends on
the ε used for the convergence criteria in Eqs. (33) and (34), which
has previously been fixed to ε = 1× 10−9 for all simulations. Here, the
value is additionally set to ε = 1× 10−7, ε = 1× 10−8, and ε = 1× 10−10

to assess the dependence of nTΔt0 on ε. The results shown in Fig. 9(b)
indicate that nTΔt0 is roughly independent of ε for sufficiently
small Δt0.

E. Dependence on physical parameters
In this subsection, we demonstrate how to use statement (B) to

discuss the dependence of the normalized velocity distribution on
the physical parameters νe, Ve, and de. From the perspective of state-
ment (B), the purpose of the simulations in Sec. III B is to find S0
= (ν0, V0, D0, Δx0, Δt0) with a suitable D0 and the set of parame-
ters listed in Table III. Indeed, from the simulation results, we find
that D0 = 400 in the second line of Table IV is suitable because the
shape of h(Vx) in Fig. 7(a) is relatively close to the experimental
data reported in Refs. 21–23. Since |Vx| in Fig. 7(a) is normalized,
the position of the second peak can only be compared to those in
Figs. 2(a) and 2(b). The peak position of the result of Dsim = 400
is approximately 0.6, while that of Fig. 2(b) is approximately 0.5;
the deviation from the peak in Fig. 2(a) is clearly larger. However,
the positions of the second peaks in Figs. 2(a) and 2(b) move to the
right if the high-frequency part, where the intensity is close to zero,
is removed. Although the relative intensity of the second peak in the
numerical data is higher than those in Figs. 2(a) and 2(b), we con-
sider that the existence of the second peak is clearly reproduced by
this simplified 2D model. Thus, using the parameters S0, we can per-
form simulations of Exp(Ee) characterized by Ee, which is different
from Ee ,0.

The parameters are shown in Table V, where νe, Ve, and de are
the elements of the experimental data E(i) (i = 1, 2, 3). E(1), E(2), and
E(3) are different from Ee ,0 in Table II only in terms of νe, Ve, and de,
respectively (indicated by underlines). Note that νe/νe ,0 = 2, Ve/Ve ,0
= 2, and de/de ,0 = 2 imply that νe = 2νe ,0 = 2 × 10−4 m2/s, Ve = 2Ve ,0
= 100 μm/s, and de = 2de ,0 = 1 mm. All of these values are meaningful
in the engineering viewpoint because these parameters in plant cells
such as Chara corallina and Nitella flexilis are not always uniquely
determined but distributed around the values νe ,0, Ve ,0, and de ,0 in
Table II depending on their size.2

We assume that the macroscopic relaxation time τe in Eq. (15)
is proportional to the inverse kinematic viscosity ν−1

e
39 and the area

Ae as follows:

τe ∼ Ae/νe. (38)

TABLE V. Experimental data E( i ) (i = 1, 2, 3), τe, De, and the corresponding param-
eters α, β, γ, δ, and Dsim assumed for the simulation parameters Se ( i ) (i = 1, 2, 3).
These parameters are determined by the ratio Dsim/D0, where D0 = 400 from the
second line of Table IV.

E(i)
νe
νe,0

Ve
Ve,0

de
de,0

τe
τe,0

De
De,0

α
α0

β
β0

γ
γ0

δ
δ0

Dsim
D0

(1) 2 1 1 1
2 2 2 2 1

2
1
4 4

(2) 1 2 1 1 1 1
2

1
4 2 4 1

16

(3) 1 1 2 4 1
4 1 1 2 4 1

4
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Using this relation, we obtain the ratio τe/τe ,0 in Table V. Conse-
quently, from Eq. (15), we have

De ∼
kBT
μa

τ−2
e ∼ d−2

e νe, (39)

where Ae is replaced with d2
e , the viscosity μ is proportional to νe, and

the temperature is assumed to be constant.
We will now explain how to obtain the values of Dsim/D0 via

statement (B). Since Exp(Ee ,0) is simulated with S0 = (ν0, V0, D0,
Δx0, Δt0), from statement (B), we have

(ν0, V0, D0,Δx0,Δt0) = (α−2
0 β0νe,0,α−1

0 β0Ve,0,α−2
0 β3

0γ
2
0δ
−1
0 De,0,

α−1
0 γ−1

0 Δxe,0,β−1
0 δ−1

0 Δte,0), (40)

using the parameters α0, β0, γ0, and δ0 for the scale transformation
between S0 and Se ,0. This is the assumption component, or the trivial
case of statement (B), and is exactly the same as Eq. (A2). We also
have

(ν0, V0, Dsim,Δx0,Δt0) = (α−2βνe,α−1βVe,α−2β3γ2δ−1De

α−1γ−1Δxe,β−1δ−1Δte), (41)

using the parameters α, β, γ, and δ for the scale transformation
between S0 and Se. Therefore, from Table V, we have

α−2
0 β0 = 2α−2β, α−1

0 β0 = α−1β for E(1),

α−2
0 β0 = α−2β, α−1

0 β0 = 2α−1β for E(2),

α−2
0 β0 = α−2β, α−1

0 β0 = α−1β for E(3),

(42)

which imply

α/α0 = 2, β/β0 = 2 for E(1),

α/α0 = 1/2, β/β0 = 1/4 for E(2),

α/α0 = 1, β/β0 = 1 for E(3).

(43)

From Eqs. (A6) and (A7), we have γ/γ0 and δ/δ0 as listed in Table V
for E(1) and E(2). Thus, we obtain Dsim/D0 using these values of α/α0,
β/β0, γ/γ0, and δ/δ0 and by Eqs. (40) and (41), as follows:

Dsim

D0
= (

α
α0
)
−2
(
β
β0
)

3

(
γ
γ0
)

2

(
δ
δ0
)

−1 De

De,0
. (44)

Therefore, the experimental data corresponding to Exp(E(i)) (i = 1,
2, 3) can be simulated with

Dsim = 1600 (E(1)), 25 (E(2)), 100 (E(3)) (45)

and with the parameters in Table III. Thus, we expect the peak posi-
tion for E(1) (E(2) or E(3)) to move to the left (right) of the peak
position for Ee ,0. Moreover, the simulation results for Exp(E(i)) (i
= 1, 2, 3) are located between, or are only slightly different from,
the curves in Figs. 7(a) and 7(b). This is why we regard the results in
Sec. III B as our main results, which we emphasize in this subsection.
Note that the results are true only if the assumption regarding τe in
Eq. (38) is true. It should also be noted that the results in Eq. (45) are
qualitatively reasonable. Indeed, the Reynolds number Re(=Vd/ν) is
decreased for E(1) and increased for E(2) and E(3), and consequently,
the second peak position is expected to move in opposite directions
depending on the variation of Re.

Finally, we must note the implications of statement (B) and
its supporting analyses in this subsection. Our main result that all
qualitatively different simulation results can be obtained merely by
varying the strength D of the random Brownian force, as stated in
the Introduction, is limited in the sense that this is true only if the
simulation results obtained with the parameter set S0 correspond
to Exp(Ee ,0). In fact, this assumption is not always exactly satisfied
because the experimental data in Figs. 2(a) and 2(b) are not exactly
the same as the simulation data for Dsim = 400 in Fig. 7(a). However,
for the second peak position, as mentioned above, these experimen-
tal and simulation data are almost the same; therefore, statement (B)
indicates that the second peaks of all the experimental normalized
velocity distributions corresponding to different (νe, Ve, De), such as
those in Table IV, are identical to or located between the peaks in
Fig. 7(a).

IV. SUMMARY AND CONCLUSION
In this paper, we study the flow fields associated with pro-

toplasmic streaming in plant cells such as Chara corallina and
Nitella flexilis by means of the stochastic or Langevin Navier–
Stokes (NS) equation, which is a 2D equation for describing incom-
pressible viscous flows with random Brownian forces. The study
focuses on the experimentally observed distribution of the veloc-
ity along the flow direction, which exhibits two distinct peaks. To
clearly illustrate the role of the random Brownian force assumed
in the NS equation, the computational model is simplified such
that the twist of the flows is neglected and 2D Couette flow is
assumed.

From a dimensional analysis of the Langevin NS equation, we
find that the normalized velocity distribution depends only on the
strength D of the random Brownian force. This finding is numer-
ically verified in detail in Sec. III B. Furthermore, in Sec. III E,
we extract the reasonable finding that the position of the second
peak moves to the right or left in accordance with the variation
in the physical parameters, i.e., the kinematic viscosity, diameter,
and boundary velocity. If the kinematic viscosity is decreased, for
example, then the peak position is expected to move to the right or
a higher-velocity region. This phenomenon is consistent with the
intuitive understanding of the Reynolds number in the sense that
a decrease in the kinematic viscosity is equivalent to an increase in
velocity.

The results in this paper imply that the spiral flow and the 3D
nature of real protoplasmic streaming are not essential for the emer-
gence of the two peaks in the velocity distribution, although the
shapes of the peaks are expected to be influenced by these exper-
imentally observed characteristics. Rather, the random Brownian
forces, represented by Gaussian random numbers, are confirmed to
be the origin of the peaks.

As noted in Sec. III B, the dependence of Vx on y is almost lin-
ear and is slightly different from the experimentally reported results.
One reason for this deviation is that compared with real flows, the
simulation model used in this paper is simplified in many respects.
In particular, this simulation model is a 2D model, and the twist
of the flows and the interactions between the fluid and biological
materials are neglected, as mentioned above. These neglected com-
ponents should be included in the model for further fluid mechanics
studies on protoplasmic streaming.
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APPENDIX: PROOF OF STATEMENT (B) IN SEC. II E
Statement (B) in Sec. II E is as follows:

(B) Let Ee ,0 = (νe ,0, Ve ,0, de ,0) be a set of parameters that charac-
terize Exp(Ee ,0), and let S0 be a set of parameters given by S0
= (ν0, V0, D0, Δx0, Δt0). In this situation, if Exp(Ee ,0) ≃ S0,
then for any experimental data Exp(Ee), with Ee = (νe, Ve, de)
and De, and for any given set of (nX , nT), there exists a unique
Dsim such that Exp(Ee) ≃ (ν0, V0, Dsim, Δx0, Δt0).

To prove statement (B), we first fix the parameters α and β using
the parameter sets S0 and Ee such that

α =
νe

ν0

V0

Ve
, β =

νe

ν0
(

V0

Ve
)
2
. (A1)

Indeed, from the expressions νe (m2/s) = νeα−2β [(αm)2/βs] and Ve
(m/s) = Veα−1β (αm/βs), we have ν0 = νeα−2β and V0 = Veα−1β,
which lead to Eq. (A1). Note that α and β in Eq. (A1) correspond
to the unit transformation between Ee and S0 and are not always
identical to α0 and β0 for the unit transformation between Ee ,0 and
S0.

The assumption Exp(Ee ,0) ≃ S0 implies that there exist param-
eters α0, β0, γ0, and δ0 for the scale transformations m → α0m,
s→ β0s, nX → γ0nX , and nT → δ0nT such that

(ν0, V0, D0,Δx0,Δt0) = (α−2
0 β0νe,0,α−1

0 β0Ve,0,α−2
0 β3

0γ
2
0δ
−1
0 De,0,

α−1
0 γ−1

0 Δxe,0,β−1
0 δ−1

0 Δte,0). (A2)

The parameter De is assumed to be given in addition to Ee for
Exp(Ee), and it is not always identical to De ,0. The parameters Δxe
and Δte are defined as

Δxe = γΔx0α, Δte = δΔt0β, (A3)

where Δx0 and Δt0 are given by

Δx0 =
de

γnX
α−1
=

de

γnX

ν0

νe

Ve

V0
(αm), (A4)

Δt0 =
τe

δnT
β−1
=

τe

δnT

ν0

νe
(

Ve

V0
)

2
(βs). (A5)

The parameter γ/γ0 is obtained from the constraint that Δx0 in
Eq. (A4), expressed in units of αm for the simulation of Exp(Ee) and

expressed in units of α0m for the simulation of Exp(Ee ,0), is identical
to Δx0; thus, we have

γ
γ0
=

de

de,0

νe,0

νe

Ve

Ve,0
. (A6)

This expression indicates that γ is uniquely determined because the
parameters that appear in this expression are already uniquely given.
The uniqueness of the parameter δ can be understood from a similar
expression obtained through the same procedure,

δ
δ0
=

τe

τe,0

νe,0

νe
(

Ve

Ve,0
)

2
, (A7)

although we must assume that the macroscopic relaxation time τe is
a well-defined quantity in the target experiments corresponding to
Ee ,0 and Ee.

Using De, Δxe, and Δte, we define a set of parameters Se such
that

Se = (νe, Ve, De,Δxe,Δte). (A8)

The strength Dsim of the random force is fixed to

Dsim = α−2β3γ2δ−1De, (A9)

which is unique because the quantities on the RHS are all uniquely
given. Thus, we have proven that

(ν0, V0, Dsim,Δx0,Δt0) = (α−2βνe,α−1βVe,α−2β3γ2δ−1De,

α−1γ−1Δxe,β−1δ−1Δte). (A10)

The relation in Eq. (A10) implies that Se ≡ (ν0, V0, Dsim, Δx0,
Δt0), which means that Exp(Ee) can be simulated by (ν0, V0,
Dsim, Δx0, Δt0) from statement (A), thus concluding the Proof of
statement (B).

In terms of its rigor, this proof is insufficient because the
macroscopic relaxation time τe is not always explicitly given in
actual experimental data corresponding to Ee. In such a case, the
expressions in Eqs. (A5) and (A7) are meaningless. Therefore, this
component is studied numerically in Sec. III. The problem to be
numerically clarified is whether the scaling properties expressed in
Eq. (A10) are correct for the cases of α = β = 1, γ ≠ 1, and δ ≠ 1. It
is sufficient to check only the case of δ ≠ 1; however, the case of γ ≠
1 will also be checked. It is numerically shown in Sec. III that these
scaling properties are correct. Thus, we assume that statement (B) is
correct.

The lattice spacing Δx0 in S0 used in Eq. (A3) is defined in terms
of the experimental diameter de ,0 (m) and the lattice size nX 0(=γ0nX),
similar to Eq. (A4), such that

Δx0 =
de,0

nX0
α−1

0 =
de,0

nX,0

ν0

νe,0

Ve,0

V0
(α0 m) (A11)

in the simulation units for Exp(Ee ,0). Since the diameter de ,0 appears
in Δx0, it is not explicitly included in S0 and Se. The parameter Δxe
on the RHS of Eq. (A10) is not experimental and is simply defined
by Eq. (A3). The final parameter in Se, i.e., Δte, is also defined by
Eq. (A3).

The implications of statement (B) should be emphasized. The
meaning of the equivalence between Se and (ν0, V0, Dsim, Δx0, Δt0),
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as expressed by Se ≡ (ν0, V0, Dsim, Δx0, Δt0), is that any experimen-
tal data Exp(Ee) characterized by the parameter Ee can be simulated
with a single set of parameters S0 = (ν0, V0, D0, Δx0, Δt0) if D0 is
replaced with Dsim. To simulate other experimental data Exp(E′e), it
is sufficient to replace Dsim with D′sim such that S′e ≡ (ν0, V0, D′sim,
Δx0, Δt0).

Se ≡ (ν0, V0, Dsim, Δx0, Δt0) simply implies that the simulation
results with parameter set Se are identical to those with parameter
set (ν0, V0, Dsim, Δx0, Δt0); hence, this equivalence does not always
imply that the real experimental data characterized by Ee are exactly
the same as the simulation results obtained with (ν0, V0, Dsim, Δx0,
Δt0). The latter problem is related to the fundamental problem of
whether the Langevin NS simulation can successfully simulate real
physical flows. In this paper, we assume that it can; this is the impli-
cation of the assumption that Exp(Ee ,0) ≃ S0. However, we empha-
size that this assumption is true only because the experimentally
observed peaks in the velocity distribution can be reproduced, which
is the main result in this paper, as has been shown. Another impli-
cation of the assumption Exp(Ee ,0) ≃ S0 is that the set of parameters
in S0 is already given. Using the parameters in S0 and Ee, we obtain
α and β via Eq. (A1) for Exp(Ee).

Although the kinematic viscosity coefficient ν appears in the NS
equation given in Eq. (10), statement (B) indicates that the simula-
tion results depend only on D, which is understood from the original
NS equation in Eq. (5) for the velocity field without the pressure
term,

∂V⃗
∂t
= −(V⃗ ⋅ ∇)V⃗ + νΔV⃗ + η⃗(t). (A12)

This equation contains two parameters, ν and D, in the second and
final terms, respectively. The first term can be neglected for proto-
plasmic streaming; this term is irrelevant to the following discussion,
although it is included in Eq. (A12). If the final term η⃗ is not present,
it is easy to confirm that the solution is

V⃗ = (
2VB

d
y, 0), (A13)

which satisfies the boundary conditions in Eq. (18) and is inde-
pendent of ν. Thus, the question is whether this solution is also
expected to satisfy Eq. (A12) and to be independent of ν in the
presence of η⃗(t). Statement (B) indirectly answers this question
and shows that the results depend only on D in the presence of η⃗,
although this statement does not always imply that the results are
independent of ν.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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